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Recap: Latent Variable Models

Assume each observation xn to be associated with a “local” latent variable zn

Parameters of p(x |z , θ) and p(z |φ) are collectively referred to as “global” parameters

For brevity, we usually refer to the global parameters θ and φ as Θ = (θ, φ)

A Gaussian mixture model is an example of such a model

zn ∈ {1, . . . ,K} with p(zn|φ) = multinoulli(π1, . . . , πK )

xn ∈ RD with p(xn|zn, θ) = N (x |µzn .Σzn )

Here Θ = (φ, θ) = {πk , µk ,Σk}Kk=1

Given data X = {x1, . . . , xN}, the goal is to estimate the parameters Θ or latent variable Z or both
(note: we can usually estimate Θ given Z, and vice-versa)
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Why Estimation is Difficult in LVMs?

Suppose we want to estimate parameters Θ. If we knew both xn and zn then we could do

ΘMLE = arg max
Θ

N∑
n=1

log p(xn, zn|Θ) = arg max
Θ

N∑
n=1

[log p(zn|φ) + log p(xn|zn, θ)]

Simple to solve (usually closed form) if p(zn|φ) and p(xn|zn, θ) are “simple” (e.g., exp-fam. dist.)

However, in LVMs where zn is “hidden”, the MLE problem will be the following

ΘMLE = arg max
Θ

N∑
n=1

log p(xn|Θ) = arg max
Θ

log p(X|Θ)

The form of p(xn|Θ) may not be simple since we need to sum over unknown zn’s possible values

p(xn|Θ) =
∑
zn

p(xn, zn|Θ) ... or if zn is continuous: p(xn|Θ) =

∫
p(xn, zn|Θ)dzn

The summation/integral may be intractable + may lead to complex expressions for p(xn|Θ), in
fact almost never an exponential family distribution. MLE for Θ won’t have closed form solutions!
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An Important Identity

Define pz = p(Z|X,Θ) and let q(Z) be some distribution over Z

Assume discrete Z, the identity below holds for any choice of the distribution q(Z)

log p(X|Θ) = L(q,Θ) + KL(q||pz)

L(q,Θ) =
∑

Z

q(Z) log

{
p(X,Z|Θ)

q(Z)

}

KL(q||pz ) = −
∑

Z

q(Z) log

{
p(Z|X,Θ)

q(Z)

}

(Exercise: Verify the above identity)

Since KL(q||pz) ≥ 0, L(q,Θ) is a lower-bound on log p(X|Θ)

log p(X|Θ) ≥ L(q,Θ)

Maximizing L(q,Θ) will also improve log p(X|Θ). Also, as we’ll see, it’s easier to maximize L(q,Θ)
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Maximizing L(q,Θ)

Note that L(q,Θ) depends on two things q(Z) and Θ. Let’s do ALT-OPT for these

First recall the identity we had: log p(X|Θ) = L(q,Θ) + KL(q||pz) with

L(q,Θ) =
∑

Z

q(Z) log

{
p(X,Z|Θ)

q(Z)

}
and KL(q||pz ) = −

∑
Z

q(Z) log

{
p(Z|X,Θ)

q(Z)

}

Maximize L w.r.t. q with Θ fixed at Θold : Since log p(X|Θ) will be a constant in this case,

q̂ = arg max
q
L(q,Θold) = arg min

q
KL(q||pz) = pz = p(Z|X,Θold)

Maximize L w.r.t. Θ with q fixed at q̂ = p(Z|X,Θold)

Θnew = arg max
Θ
L(q̂,Θ) = arg max

Θ

∑
Z

p(Z|X,Θold ) log
p(X,Z|Θ)

p(Z|X,Θold )
= arg max

Θ

∑
Z

p(Z|X,Θold ) log p(X,Z|Θ)

.. therefore, Θnew = arg max
θ
Q(Θ,Θold) where Q(Θ,Θold) = Ep(Z|X,Θold )[log p(X,Z|Θ)]

Q(Θ,Θold) = Ep(Z|X,Θold )[log p(X,Z|Θ)] is known as expected complete data log-likelihood (CLL)
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What’s Going On: A Visual Illustration..

Step 1: We set q̂ = p(Z|X,Θold), L(q̂,Θ) touches log p(X|Θ) at Θold

Step 2: We maximize L(q̂,Θ) w.r.t. Θ (equivalent to maximizing Q(Θ,Θold))

After updating q
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What’s Going On: A Visual Illustration..
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Local Maxima Found

After updating q
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What’s Going On: Another Illustration

The two-step alternating optimzation scheme we saw can never decrease p(X|Θ) (good thing)

To see this consider both steps: (1) Optimize q given Θ = Θold ; (2) Optimize Θ given this q

(Step 1)
(Step 2)

Step 1 keeps Θ fixed, so p(X|Θ) obviously can’t decrease (stays unchanged in this step)

Step 2 maximizes the lower bound L(q,Θ) w.r.t Θ. Thus p(X|Θ) can’t decrease!
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The Expectation Maximization (EM) Algorithm

The ALT-OPT of L(q,Θ) that we saw leads to the EM algorithm (Dempster, Laird, Rubin, 1977)

The EM Algorithm

1 Initialize Θ as Θ(0), set t = 1

2 Step 1: Compute posterior of latent variables given current parameters Θ(t−1)

p(z (t)
n |xn,Θ

(t−1)) =
p(z (t)

n |Θ(t−1))p(xn|z (t)
n ,Θ(t−1))

p(xn|Θ(t−1))
∝ prior× likelihood

3 Step 2: Now maximize the expected complete data log-likelihood w.r.t. Θ

Θ(t) = arg max
Θ
Q(Θ,Θ(t−1)) = arg max

Θ

N∑
n=1

E
p(z (t)

n |xn,Θ(t−1))
[log p(xn, z (t)

n |Θ)]

4 If not yet converged, set t = t + 1 and go to step 2.

Note: If we can take the MAP estimate ẑn of zn (not full posterior) in Step 1 and maximize the CLL in

Step 2 using that estimate, i.e., do arg maxΘ

∑N
n=1 log p(xn, ẑ (t)

n |Θ), this will be identical to ALT-OPT
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Writing Down the Expected CLL

Deriving the EM algorithm for any model requires finding the expression of the expected CLL

Q(Θ,Θold) =
N∑

n=1

Ep(zn|xn,Θold )[log p(xn, zn|Θ)]

=
N∑

n=1

Ep(zn|xn,Θold )[log p(xn|zn,Θ) + log p(zn|Θ)]

If p(xn|zn,Θ) and p(zn|Θ) are exp-family distributions, expected CLL will have a simple form

Finding the expression for the expected CLL in such cases is fairly straightforward

First write down the expressions for p(xn|zn,Θ) and p(zn|Θ) and simplify as much as possible

In the resulting expressions, replace all terms containing zn’s by their respective expectations, e.g.,

zn replaced by Ep(zn|xn,Θold )[zn], i.e., the posterior mean of zn

znz>
n replaced by Ep(zn|xn,Θold )[znz>

n ]

.. and so on..

The expected CLL may not always be computable and may need to be approximated
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EM for Gaussian Mixture Model

Intro to Machine Learning (CS771A) Latent Variable Models and Expectation Maximization 17



EM for Gaussian Mixture Model

Let’s first look at the CLL. Similar to generative classification with Gaussian class-conditionals

log p(X,Z|Θ) =
N∑

n=1

K∑
k=1

znk [log πk + logN (xn|µk ,Σk)] (we’ve seen how we get this)

The expected CLL Q(Θ,Θold) will be

Q(Θ,Θold) = E[log p(X,Z|Θ)] =
N∑

n=1

K∑
k=1

E[znk ][log πk + logN (xn|µk ,Σk)]

.. where the expectation is w.r.t. the current posterior of zn, i.e., p(zn|xn,Θ
old)

In this case, we only need E[znk ] which can be computed as

E[znk ] = γnk = 0× p(znk = 0|xn,Θ
old) + 1× p(znk = 1|xn,Θ

old) = p(znk = 1|xn)

∝ p(znk = 1)p(xn|znk = 1) (from Bayes Rule)

Thus E[znk ] ∝ πkN (xn|µk ,Σk) (Posterior prob. that xn is generated by k-th Gaussian)

Note: We can finally normalize E[znk ] as E[znk ] = πkN (xn|µk ,Σk )∑K
`=1 π`N (xn|µ`,Σ`)

since
∑K

k=1 E[znk ] = 1

Intro to Machine Learning (CS771A) Latent Variable Models and Expectation Maximization 18



EM for Gaussian Mixture Model

EM for Gaussian Mixture Model
1 Initialize Θ = {πk , µk ,Σk}Kk=1 as Θ(0), set t = 1

2 E step: compute the expectation of each zn (we need it in M step)

E[z
(t)
nk ] = γ

(t)
nk =

π
(t−1)
k N (xn|µ(t−1)

k ,Σ
(t−1)
k )∑K

`=1 π
(t−1)
` N (xn|µ(t−1)

` ,Σ
(t−1)
` )

∀n, k

3 Given “responsibilities” γnk = E[znk ], and Nk =
∑N

n=1 γnk , re-estimate Θ via MLE

µ
(t)
k =

1

Nk

N∑
n=1

γ
(t)
nk xn

Σ
(t)
k =

1

Nk

N∑
n=1

γ
(t)
nk (xn − µ

(t)
k )(xn − µ

(t)
k )>

π
(t)
k =

Nk

N

4 Set t = t + 1 and go to step 2 if not yet converged
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Another Example: (Probabilistic) Dimensionality Reduction

Let’s consider a latent factor model for dimensionality reduction (will revisit this later)

p(xn|zn,W, σ2) = N (Wzn, σ
2ID) p(zn) = N (0, IK )

A low-dim zn ∈ RK mapped to high-dim xn ∈ RD via a projection matrix W ∈ RD×K

The complete data log-likelihood for this model will be

log p(X,Z|W, σ
2) = log

N∏
n=1

p(xn, zn|W, σ
2) = log

N∏
n=1

p(xn|zn,W, σ
2)p(zn) =

N∑
n=1

{log p(xn|zn,W, σ
2) + log p(zn)}

Plugging in the expressions for p(xn|zn,W, σ2) and p(zn) and simplifying (exercise)

CLL = −
N∑

n=1

{
D

2
log σ2+

1

2σ2
||xn||2 −

1

σ2
z>n W>xn +

1

2σ2
tr(znz

>
n W>W) +

1

2
tr(znz

>
n )

}

Expected CLL will require replacing zn by E[zn] and znz>n by E[znz>n ]

These expectations can be obtained from the posterior p(zn|xn) (easy to compute due to conjugacy)

The M step maximizes the expected CLL w.r.t. the parameters (W, σ2 in this case)
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The EM Algorithm: Some Comments

The E and M steps may not always be possible to perform exactly. Some reasons

The posterior of latent variables p(Z|X,Θ) may not be easy to find

Would need to approximate p(Z|X,Θ) in such a case

Even if p(Z|X,Θ) is easy, the expected CLL, i.e., E[log p(X,Z|Θ)] may still not be tractabe

E[log p(X,Z|Θ)] =

∫
log p(X,Z|Θ)p(Z|X,Θ)dZ

.. which can be approximated, e.g., using Monte-Carlo expectation (called Monte-Carlo EM)

Maximization of the expected CLL may not be possible in closed form

EM works even if the M step is only solved approximately (Generalized EM)

If M step has multiple parameters whose updates depend on each other, they are updated in an
alternating fashion - called Expectation Conditional Maximization (ECM) algorithm

Other advanced probabilistic inference algorithms are based on ideas similar to EM

E.g., Variational Bayesian (VB) inference

Intro to Machine Learning (CS771A) Latent Variable Models and Expectation Maximization 21


