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Announcement: Mid-Sem Exam

@ September 20 (Thursday) 13:00-15:00

e Venue: L17, L18, L19 (all OROS)

@ Syllabus: Up to what we see today (only 1-2 small questions from today’s lecture)

@ Open notes, open slides (please only print in 4-up mode), books not allowed

@ No electronic items allowed (please keep phones switched off)

@ Important: ALL answers have to be written on the question paper itself (dedicated space)

@ Important: You need to bring a few other things

e A notebook for rough work (may use blank pages from your notes)

e Pen, pencil and eraser (but final answers should be written with pen to avoid smudging)

@ A review session: September 15/16/17 (timing/venue TBD)
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Recap: Speeding Up Kernel Methods

e Can extract “good” features ¢)(x) € R from a kernel k (with mapping ¢) such that
D(xn) TP(Xm) = $(xn) " d(xm)
@ Unlike the kernel's original mapping ¢, the mapping % is low-dimensional (L is typically small)
o With these features 1/(x,), we can apply a linear model (both train/test). No need to kernelize.
@ Looked at two main approaches to get such an approximate mapping
e Landmark based approach: Using landmark points z1, ..., z; (selected or learned), compute
W(x,) = [k(z1, xn), k(z2,%5), ..., k(zL, x5)]

o Kernel Random Features approach: Can be used for many kernels. For the RBF kernel

v(x,) = \%[cos
we ~ N(O,XMp), by~ Unif(0,2r), ¢=1,...,L

(Wirxn + bl)v s 7COS(W—ern + bL)]

@ Some other approaches (that we didn't see): Nystrodm approx, other low-rank kernel matrix approx
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Recap: K-means Algorithm

e Goal: Assign N inputs {xy,...,xy}, with each x, € RP, to K clusters (flat partitioning)

e Notation: z, € {1,...,K} or z, is a K-dim one-hot vector(z,x = 1 and z, = k mean the same)

K-means Algorithm

© |Initialize K cluster means p1, ..., ux

@ Forn=1,... N, assign each point x, to the closest cluster
. 2
zp = argmingcy .kl Xn — pu|
© Suppose Ck = {x, : z, = k}. Re-compute the means

uk = mean(Cx), k=1,...,K

© Go to step 2 if not yet converged

@ Note: The basic K-means models each cluster only by a mean p. lgnores size/shape of clusters
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The K-means Algorithm: Some Comments

@ One of the most popular clustering algorithms
@ Very widely used, guaranteed to converge (to a local minima; will see a proof)
@ Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)

@ Has some shortcomings (as we will see) but can be improved upon

Some of the many improvements (some of which we will see)
e Can be kernelized (using kernels or using kernel-based landmarks/random features)

e More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)

Soft-clustering (fractional/probabilistic memberships): z, is a probability vector

Overlapping clustering - a point can belong to multiple clusters: z, is a binary vector

e .. even deep learning based K-means :-)

@ .. so it is worth looking a bit deeply into what K-means is doing
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K-means Loss Function: Several Forms, Same Meaning!

Notation: Xis N x D, Z is N x K (each row is a one-hot z,,), p is K x D (each row is a p)

L(X,Z,p) = Z Z [ — ][

k=1n:z,=

L(X,Z, p) Z l|zn — 1z, 2

n=1

“distortion” on assignment to within cluster variance

. Clusterz_
K

X z, l"’ ZZ‘I!I»”:BM_/“»H ‘C(le‘): ||X—Zp,||§:

n=1k=1 . P
as matrix fgctorization

{Z,0} = argmin £(X,Z, ) : Total distortion” or
Z.p . reconstruction error
Note: Replacing ¢5 squared (Euclidean) distance by absolute (¢;) distance

gives the K-medians algorithm (more robust to outliers)

Note: Most unsup. learning algos try to minimize the distortion or reconstruction error of X from Z
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Optimizing the K-means Loss Function

@ So the K-means problem is
N K

Z. i) =argmin L X,Z, ) = argmin Znk || Xn — 2
(2,1} = argrpin £(X, Z, 1) gZ#;; el X — |

o Can't optimize it jointly for Z and . Let's try alternating optimization for Z and u

Alternating Optimization for K-means Problem

@ Fix p as 1 and find the optimal Z as

Z = arg mzin L(X,Z,x) (still not easy - next slide)

@ Fix Z as Z and find the optimal L as

f=argmin L(X,Z, )
"

© Go to step 1 if not yet converged
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Solving for Z

@ Solving for Z with p fixed at f&

N K

2 = arg mzlnﬁ(x7zvﬁ’) = arg mzin Zlgznkan - ﬁk”z
n—= =

@ Still not easy. Since Z is discrete, it is an NP-hard problem

o Combinatorial optimization: K" possibilities for Z (N x K matrix with one-hot rows)

@ A greedy approach: Optimize Z one row (z,) at a time keeping all others z,'s (and ) fixed
K

z, = argmin Zz,,ka,, — fi||? = arg min||x, — iz,
FN st Zn

2

o Easy to see that this is minimized by assigning x, to the closest mean

e This is exactly what the K-means algo does!
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Solving for u

@ Solving for p with Z fixed at y4

K
fr=argmin L(X,Z, ) = arg minz Z [[xn — k]
w 7
k=1 n:2,=k

@ This is not that hard to solve (ux's are real-valued vectors, can optimize easily)
@ Note that each p, can be optimized independently

e = argmin > [|xn — jui
Hk > K

n:z,=
o (Verify) This is minimized by setting fix to be mean of points currently in cluster k

e This is exactly what the K-means algo does!
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Convergence of K-means Algorithm

@ Each step (updating Z or p) can never increase the K-means loss
e When we update Z from Z(t=1) to Z(Y)
£, 20, n Dy < £(x, 20D, uD)
because the new Z(t) = arg minz L(X,Z, ,u(tfl))
e When we update g from p(t=1 to p(®)
£, 209, u0) < £(x, 29, ul)
because the new p(Y) = argmin, £(X,Z(®), u)

@ Thus the K-means algorithm monotonically decreases the objective

9
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K-means objective

o0 o o0 o

0

1 2 3 4
Iteration number
(blue: after Z updated, red: after u updated)
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K-means: Choosing K

@ One way to select K for the K-means algorithm is to try different values of K, plot the K-means
objective versus K, and look at the “elbow-point”

an

\

K-means objective

Number of clusters
@ For the above plot, K = 6 is the elbow point
@ Can also information criterion such as AIC (Akaike Information Criterion)
AIC = 2L(j1, X, Z) + KD
. and choose the K that has the smallest AIC (discourages large K)

@ Several other approaches when using probabilistic models for clustering, e.g., comparing marginal
likelihood p(X|K), using nonparametric Bayesian models, etc.
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K-means: Hard vs Soft Assignments

@ Makes hard assignments of points to clusters

e A point either completely belongs to a cluster or doesn’t belong at all

e No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for
some point x,, p1 = 0.7, p> = 0.2, p3 = 0.1)

N

A ) 2\ N
( \ / Jas \
) Z /\ |

)
Hard-assignment okay Hard-assignment tricky

@ A heuristic to get soft assignments: Transform distances from clusters into probabilities

_ep(—llx— pall?)
Eff:l exp(—||xn — pel[?)

Ynk (prob. that x, belongs to cluster k)

@ These heuristics are used in “fuzzy” or “soft” K-means algorithms

ZnNzl YnkXn

o Soft K-means u, updates are slightly different: ux = S
n=1 /N

(all points used, but fractionally)
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K-means: Decision Boundaries and Cluster Sizes/Shapes

@ K-mean assumes that the decision boundary between any two clusters is linear

@ Reason: The K-means loss function implies assumes equal-sized, spherical clusters

Distance from a cluster = ||z, — MHZ

. M3 Like using Gaussians with equal covariances
K

@ Assumes clusters to be roughly equi-populated, and convex-shaped. Otherwise, may do badly

{a‘;rﬂ
¥,

o Kernel K-means can help address some of these issues. Probabilistic models is another option
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Kernel K-means

@ Basic idea: Replace the Euclidean distances in K-means by the kernelized versions

16(xn) = o)l = [le(xa)ll* + [|0(ki)|* = 26(xn) "6 (1)
= k(XmX")+ k(u‘kau’k) *2k(Xn,/1,k)

@ Here k(.,.) denotes the kernel function and ¢ is its (implicit) feature map

o Note: ¢(p,) is the average of ¢'s the data points assigned to cluster k
Kernel K-means vs. K-means

KMeans Kernel KMeans
= ol e .,

o “‘q. L

s .

| £ % | E %
fetife}
~ L L/ 3
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@ Can also use landmark or random features approach to make it faster
e Can then simply run the basic K-means on those features!
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Going the Probabilistic Way..

@ Assume a generative model for the inputs. Suppose © denotes all the unknown parameters
@ Clustering then boils down to computing p(z,|x,, ©) for each x,, where z, is a latent variable

@ Using the Bayes rule, we can write p(z,|x,, ©) as

p(zs = K|O)p(xs|2, = K, ©)
p(x,]©)

@ Assuming p(z|®) as multinoulli(7) and each cluster as Gaussian p(x|z = k,©) = N'(x|ux, L«)

p(z,, = k|Xn7@) =

p(zn = klzn, ©) o< mp X N(@n|pr, Bi)
(here © = {m, fui, Zk},ﬁl)

Cluster assignment prob now Different clusters can
depends on the number of have different shapes
points in cluster k (covariances)

@ We know how to estimate © for such problems.. if z, is known (recall generative classification)
@ The tricky part here is that we don’t know z,. How do we estimate © then?

@ A solution: Take an alternating approach (like K-means)
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Going the Probabilistic Way..

@ At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

@ Initialize the model parameters © somehow
@ Given the current ©, estimate Z (cluster assignments) in a soft/hard way
p(zn = k|®)p(xn|2, = k, ©)

P(x:|©) ’
OR 2, = argmaxycq . x3Vnk

,,,,,

p(zn = k|xn, ©) = Vnk k=1,...,K

© Use {2,}V_, (hard cluster labels) or {'y,,k},’x’kil (soft labels) to update © via
MLE/MAP (similar to how we do for gen. classification where the labels are known)

Q@ Note: The soft-label based © updates slightly more involved (wait until we see EM)

© Go to step 2 if not converged yet.

v

@ The above algorithm is an instance of a more general Expectation Maximization (EM) algorithm
for latent variable models (we will see this post mid-sem)
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Clustering vs Classification

@ Any clustering model typically learns two type of quantities
e Parameters © of the clustering model (e.g., cluster means p = {u1, ..., ux} in K-means)

o Cluster assignments Z = {z1,...,zy} for the points

o If the cluster assignments Z are known, learning the parameters © is just like learning the
parameters of a classification model (typically generative classification) using labeled data

@ Therefore it helps to think of clustering as (generative) classification with unknown labels
@ This equivalence is very important and makes it possible to solve clustering problems

@ Therefore many clustering problems are typically solved in the following fashion

@ Initialize © somehow

@ Predict Z given current estimate of ©

© Use the predicted Z to improve the estimate of © (like learning a generative classification model)
© Go to step 2 if not converged yet
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Clustering can help supervised learning, too

o Often “difficult” supervised learning problems can be seen as mixture of simpler models

@ Example: Nonlinear regression or nonlinear classification as mixture of linear models

Mixture of two linear regression models
Mixture of two linear classification models

. .
o
e )
/ @ /,/
(0g®

@ An alternative to kernel methods and deep learning :-)

@ Don't know which point belongs to which linear model = Clustering problem
@ Can therefore solve such problems as follows
© Initialize each linear model somehow (maybe randomly)
@ Cluster the data by assigning each point to its “closest” linear model
© (Re-)Learn a linear model for each cluster’s data. Go to step 2 if not converged.
o Often called Mixture of Experts models. Will look at these more formally after mid-sem

Intro to Machine Learning (CS771A) K-means Clustering and Extensions

18



