K-means Clustering and Extensions

Piyush Rai

Introduction to Machine Learning (CS771A)

September 13, 2018

Intro to Machine Learning (CS771A)

< ロ > < 回 > < 回 > < 回 > < 回 >

- September 20 (Thursday) 13:00-15:00
- Venue: L17, L18, L19 (all OROS)

- September 20 (Thursday) 13:00-15:00
- Venue: L17, L18, L19 (all OROS)
- Syllabus: Up to what we see today (only 1-2 small questions from today's lecture)

イロン イロン イヨン イヨン

- September 20 (Thursday) 13:00-15:00
- Venue: L17, L18, L19 (all OROS)
- Syllabus: Up to what we see today (only 1-2 small questions from today's lecture)
- Open notes, open slides (please only print in 4-up mode), books not allowed

- September 20 (Thursday) 13:00-15:00
- Venue: L17, L18, L19 (all OROS)
- Syllabus: Up to what we see today (only 1-2 small questions from today's lecture)
- Open notes, open slides (please only print in 4-up mode), books not allowed
- No electronic items allowed (please keep phones switched off)

- September 20 (Thursday) 13:00-15:00
- Venue: L17, L18, L19 (all OROS)
- Syllabus: Up to what we see today (only 1-2 small questions from today's lecture)
- Open notes, open slides (please only print in 4-up mode), books not allowed
- No electronic items allowed (please keep phones switched off)
- Important: ALL answers have to be written on the question paper itself (dedicated space)

- September 20 (Thursday) 13:00-15:00
- Venue: L17, L18, L19 (all OROS)
- Syllabus: Up to what we see today (only 1-2 small questions from today's lecture)
- Open notes, open slides (please only print in 4-up mode), books not allowed
- No electronic items allowed (please keep phones switched off)
- Important: ALL answers have to be written on the question paper itself (dedicated space)
- Important: You need to bring a few other things

- September 20 (Thursday) 13:00-15:00
- Venue: L17, L18, L19 (all OROS)
- Syllabus: Up to what we see today (only 1-2 small questions from today's lecture)
- Open notes, open slides (please only print in 4-up mode), books not allowed
- No electronic items allowed (please keep phones switched off)
- Important: ALL answers have to be written on the question paper itself (dedicated space)
- Important: You need to bring a few other things
 - A notebook for rough work (may use blank pages from your notes)

- September 20 (Thursday) 13:00-15:00
- Venue: L17, L18, L19 (all OROS)
- Syllabus: Up to what we see today (only 1-2 small questions from today's lecture)
- Open notes, open slides (please only print in 4-up mode), books not allowed
- No electronic items allowed (please keep phones switched off)
- Important: ALL answers have to be written on the question paper itself (dedicated space)
- Important: You need to bring a few other things
 - A notebook for rough work (may use blank pages from your notes)
 - Pen, pencil and eraser (but final answers should be written with pen to avoid smudging)

- September 20 (Thursday) 13:00-15:00
- Venue: L17, L18, L19 (all OROS)
- Syllabus: Up to what we see today (only 1-2 small questions from today's lecture)
- Open notes, open slides (please only print in 4-up mode), books not allowed
- No electronic items allowed (please keep phones switched off)
- Important: ALL answers have to be written on the question paper itself (dedicated space)
- Important: You need to bring a few other things
 - A notebook for rough work (may use blank pages from your notes)
 - Pen, pencil and eraser (but final answers should be written with pen to avoid smudging)
- A review session: September 15/16/17 (timing/venue TBD)

• Can extract "good" features $\psi(\mathbf{x}) \in \mathbb{R}^{L}$ from a kernel k (with mapping ϕ) such that $\psi(\mathbf{x}_{n})^{\top}\psi(\mathbf{x}_{m}) \approx \phi(\mathbf{x}_{n})^{\top}\phi(\mathbf{x}_{m})$

・ロト ・日下・ ・日下・ ・日下

• Can extract "good" features $\psi(\mathbf{x}) \in \mathbb{R}^L$ from a kernel k (with mapping ϕ) such that

 $\psi(\boldsymbol{x}_n)^{\top}\psi(\boldsymbol{x}_m)\approx\phi(\boldsymbol{x}_n)^{\top}\phi(\boldsymbol{x}_m)$

• Unlike the kernel's original mapping ϕ , the mapping ψ is low-dimensional (L is typically small)

・ロト ・ (日) ・ (10) \cdot (1

- Can extract "good" features $\psi(\mathbf{x}) \in \mathbb{R}^L$ from a kernel k (with mapping ϕ) such that $\psi(\mathbf{x}_n)^\top \psi(\mathbf{x}_m) \approx \phi(\mathbf{x}_n)^\top \phi(\mathbf{x}_m)$
- Unlike the kernel's original mapping ϕ , the mapping ψ is low-dimensional (L is typically small)
- With these features $\psi(\mathbf{x}_n)$, we can apply a linear model (both train/test). No need to kernelize.

- Can extract "good" features $\psi(\mathbf{x}) \in \mathbb{R}^{L}$ from a kernel k (with mapping ϕ) such that $\psi(\mathbf{x}_{n})^{\top}\psi(\mathbf{x}_{m}) \approx \phi(\mathbf{x}_{n})^{\top}\phi(\mathbf{x}_{m})$
- Unlike the kernel's original mapping ϕ , the mapping ψ is low-dimensional (L is typically small)
- With these features $\psi(\mathbf{x}_n)$, we can apply a linear model (both train/test). No need to kernelize.
- \bullet Looked at two main approaches to get such an approximate mapping ψ

- Can extract "good" features $\psi(\mathbf{x}) \in \mathbb{R}^L$ from a kernel k (with mapping ϕ) such that $\psi(\mathbf{x}_n)^\top \psi(\mathbf{x}_m) \approx \phi(\mathbf{x}_n)^\top \phi(\mathbf{x}_m)$
- Unlike the kernel's original mapping ϕ , the mapping ψ is low-dimensional (*L* is typically small)
- With these features $\psi(\mathbf{x}_n)$, we can apply a linear model (both train/test). No need to kernelize.
- \bullet Looked at two main approaches to get such an approximate mapping ψ
- Landmark based approach: Using landmark points z_1, \ldots, z_L (selected or learned), compute

 $\psi(\mathbf{x}_n) = [k(\mathbf{z}_1, \mathbf{x}_n), k(\mathbf{z}_2, \mathbf{x}_n), \dots, k(\mathbf{z}_L, \mathbf{x}_n)]$

- Can extract "good" features $\psi(\mathbf{x}) \in \mathbb{R}^L$ from a kernel k (with mapping ϕ) such that $\psi(\mathbf{x}_n)^\top \psi(\mathbf{x}_m) \approx \phi(\mathbf{x}_n)^\top \phi(\mathbf{x}_m)$
- Unlike the kernel's original mapping ϕ , the mapping ψ is low-dimensional (*L* is typically small)
- With these features $\psi(\mathbf{x}_n)$, we can apply a linear model (both train/test). No need to kernelize.
- \bullet Looked at two main approaches to get such an approximate mapping ψ
- Landmark based approach: Using landmark points z_1, \ldots, z_L (selected or learned), compute $\psi(x_n) = [k(z_1, x_n), k(z_2, x_n), \ldots, k(z_L, x_n)]$
- Kernel Random Features approach: Can be used for many kernels. For the RBF kernel

$$\psi(\boldsymbol{x}_n) = \frac{1}{\sqrt{L}} [\cos(\boldsymbol{w}_1^{\top} \boldsymbol{x}_n + b_1), \dots, \cos(\boldsymbol{w}_L^{\top} \boldsymbol{x}_n + b_L)]$$

- Can extract "good" features $\psi(\mathbf{x}) \in \mathbb{R}^L$ from a kernel k (with mapping ϕ) such that $\psi(\mathbf{x}_n)^\top \psi(\mathbf{x}_m) \approx \phi(\mathbf{x}_n)^\top \phi(\mathbf{x}_m)$
- Unlike the kernel's original mapping ϕ , the mapping ψ is low-dimensional (*L* is typically small)
- With these features $\psi(\mathbf{x}_n)$, we can apply a linear model (both train/test). No need to kernelize.
- $\bullet\,$ Looked at two main approaches to get such an approximate mapping ψ
- Landmark based approach: Using landmark points z_1, \ldots, z_L (selected or learned), compute $\psi(\mathbf{x}_n) = [k(\mathbf{z}_1, \mathbf{x}_n), k(\mathbf{z}_2, \mathbf{x}_n), \ldots, k(\mathbf{z}_L, \mathbf{x}_n)]$
- Kernel Random Features approach: Can be used for many kernels. For the RBF kernel

$$\psi(\mathbf{x}_n) = \frac{1}{\sqrt{L}} [\cos(\mathbf{w}_1^\top \mathbf{x}_n + b_1), \dots, \cos(\mathbf{w}_L^\top \mathbf{x}_n + b_L)]$$

$$\mathbf{w}_{\ell} \sim \mathcal{N}(0, \lambda^{-1} \mathbf{I}_D), \quad b_{\ell} \sim \text{Unif}(0, 2\pi), \quad \ell = 1, \dots, L$$

- Can extract "good" features $\psi(\mathbf{x}) \in \mathbb{R}^L$ from a kernel k (with mapping ϕ) such that $\psi(\mathbf{x}_n)^\top \psi(\mathbf{x}_m) \approx \phi(\mathbf{x}_n)^\top \phi(\mathbf{x}_m)$
- Unlike the kernel's original mapping ϕ , the mapping ψ is low-dimensional (*L* is typically small)
- With these features $\psi(\mathbf{x}_n)$, we can apply a linear model (both train/test). No need to kernelize.
- $\bullet\,$ Looked at two main approaches to get such an approximate mapping ψ
- Landmark based approach: Using landmark points z_1, \ldots, z_L (selected or learned), compute $\psi(x_n) = [k(z_1, x_n), k(z_2, x_n), \ldots, k(z_L, x_n)]$
- Kernel Random Features approach: Can be used for many kernels. For the RBF kernel

$$\psi(\mathbf{x}_n) = \frac{1}{\sqrt{L}} [\cos(\mathbf{w}_1^\top \mathbf{x}_n + b_1), \dots, \cos(\mathbf{w}_L^\top \mathbf{x}_n + b_L)]$$

$$\mathbf{w}_{\ell} \sim \mathcal{N}(0, \lambda^{-1} \mathbf{I}_D), \quad b_{\ell} \sim \text{Unif}(0, 2\pi), \quad \ell = 1, \dots, L$$

• Some other approaches (that we didn't see): Nyström approx, other low-rank kernel matrix approx

- Goal: Assign N inputs $\{x_1, \ldots, x_N\}$, with each $x_n \in \mathbb{R}^D$, to K clusters (flat partitioning)
- Notation: $z_n \in \{1, \ldots, K\}$ or \boldsymbol{z}_n is a K-dim one-hot vector

(日) (四) (三) (三) (三)

- Goal: Assign N inputs $\{x_1, \ldots, x_N\}$, with each $x_n \in \mathbb{R}^D$, to K clusters (flat partitioning)
- Notation: $z_n \in \{1, \ldots, K\}$ or \boldsymbol{z}_n is a K-dim one-hot vector($z_{nk} = 1$ and $z_n = k$ mean the same)

(日) (四) (日) (日) (日)

- Goal: Assign N inputs $\{x_1, \ldots, x_N\}$, with each $x_n \in \mathbb{R}^D$, to K clusters (flat partitioning)
- Notation: $z_n \in \{1, \ldots, K\}$ or \boldsymbol{z}_n is a K-dim one-hot vector($z_{nk} = 1$ and $z_n = k$ mean the same)

・ロト ・日下・ ・日下・ ・日下

- Goal: Assign N inputs $\{x_1, \ldots, x_N\}$, with each $x_n \in \mathbb{R}^D$, to K clusters (flat partitioning)
- Notation: $z_n \in \{1, \ldots, K\}$ or z_n is a K-dim one-hot vector($z_{nk} = 1$ and $z_n = k$ mean the same)

K-means Algorithm

1 Initialize K cluster means μ_1, \ldots, μ_K

- Goal: Assign N inputs $\{x_1, \ldots, x_N\}$, with each $x_n \in \mathbb{R}^D$, to K clusters (flat partitioning)
- Notation: $z_n \in \{1, \ldots, K\}$ or z_n is a K-dim one-hot vector($z_{nk} = 1$ and $z_n = k$ mean the same)

K-means Algorithm

- **1** Initialize K cluster means μ_1, \ldots, μ_K
- **2** For n = 1, ..., N, assign each point x_n to the closest cluster

$$z_n = \arg\min_{k \in \{1,\ldots,K\}} ||\boldsymbol{x}_n - \mu_k||^2$$

- Goal: Assign N inputs $\{x_1, \ldots, x_N\}$, with each $x_n \in \mathbb{R}^D$, to K clusters (flat partitioning)
- Notation: $z_n \in \{1, \ldots, K\}$ or z_n is a K-dim one-hot vector($z_{nk} = 1$ and $z_n = k$ mean the same)

K-means Algorithm

- **1** Initialize K cluster means μ_1, \ldots, μ_K
- **2** For n = 1, ..., N, assign each point x_n to the closest cluster

$$z_n = \arg\min_{k \in \{1,\dots,K\}} ||\boldsymbol{x}_n - \mu_k||^2$$

Suppose $C_k = \{x_n : z_n = k\}$. Re-compute the means

$$\mu_k = \operatorname{mean}(\mathcal{C}_k), \quad k = 1, \dots, K$$

- Goal: Assign N inputs $\{x_1, \ldots, x_N\}$, with each $x_n \in \mathbb{R}^D$, to K clusters (flat partitioning)
- Notation: $z_n \in \{1, \ldots, K\}$ or z_n is a K-dim one-hot vector($z_{nk} = 1$ and $z_n = k$ mean the same)

K-means Algorithm

- **1** Initialize K cluster means μ_1, \ldots, μ_K
- **2** For n = 1, ..., N, assign each point x_n to the closest cluster

$$z_n = \arg\min_{k \in \{1,\dots,K\}} ||\boldsymbol{x}_n - \mu_k||^2$$

Suppose $C_k = \{x_n : z_n = k\}$. Re-compute the means

$$\mu_k = \operatorname{mean}(\mathcal{C}_k), \quad k = 1, \ldots, K$$

Go to step 2 if not yet converged

イロト 不得 とうせい うけん

- Goal: Assign N inputs $\{x_1, \ldots, x_N\}$, with each $x_n \in \mathbb{R}^D$, to K clusters (flat partitioning)
- Notation: $z_n \in \{1, \ldots, K\}$ or z_n is a K-dim one-hot vector($z_{nk} = 1$ and $z_n = k$ mean the same)

K-means Algorithm

- **1** Initialize K cluster means μ_1, \ldots, μ_K
- **2** For n = 1, ..., N, assign each point x_n to the closest cluster

$$z_n = \arg\min_{k \in \{1,\dots,K\}} ||\boldsymbol{x}_n - \mu_k||^2$$

Suppose $C_k = \{x_n : z_n = k\}$. Re-compute the means

$$\mu_k = \operatorname{mean}(\mathcal{C}_k), \quad k = 1, \ldots, K$$

Go to step 2 if not yet converged

• Note: The basic K-means models each cluster only by a mean μ_k . Ignores size/shape of clusters

• One of the most popular clustering algorithms

イロト イロト イモト イモト

- One of the most popular clustering algorithms
- Very widely used, guaranteed to converge (to a local minima; will see a proof)

- One of the most popular clustering algorithms
- Very widely used, guaranteed to converge (to a local minima; will see a proof)
- Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)

- One of the most popular clustering algorithms
- Very widely used, guaranteed to converge (to a local minima; will see a proof)
- Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)
- Has some shortcomings (as we will see) but can be improved upon

- One of the most popular clustering algorithms
- Very widely used, guaranteed to converge (to a local minima; will see a proof)
- Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)
- Has some shortcomings (as we will see) but can be improved upon
- Some of the many improvements (some of which we will see)

- One of the most popular clustering algorithms
- Very widely used, guaranteed to converge (to a local minima; will see a proof)
- Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)
- Has some shortcomings (as we will see) but can be improved upon
- Some of the many improvements (some of which we will see)
 - Can be kernelized (using kernels or using kernel-based landmarks/random features)

- One of the most popular clustering algorithms
- Very widely used, guaranteed to converge (to a local minima; will see a proof)
- Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)
- Has some shortcomings (as we will see) but can be improved upon
- Some of the many improvements (some of which we will see)
 - Can be kernelized (using kernels or using kernel-based landmarks/random features)
 - More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)

- One of the most popular clustering algorithms
- Very widely used, guaranteed to converge (to a local minima; will see a proof)
- Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)
- Has some shortcomings (as we will see) but can be improved upon
- Some of the many improvements (some of which we will see)
 - Can be kernelized (using kernels or using kernel-based landmarks/random features)
 - More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)
 - Soft-clustering (fractional/probabilistic memberships): z_n is a probability vector

- One of the most popular clustering algorithms
- Very widely used, guaranteed to converge (to a local minima; will see a proof)
- Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)
- Has some shortcomings (as we will see) but can be improved upon
- Some of the many improvements (some of which we will see)
 - Can be kernelized (using kernels or using kernel-based landmarks/random features)
 - More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)
 - Soft-clustering (fractional/probabilistic memberships): z_n is a probability vector
 - Overlapping clustering a point can belong to multiple clusters: z_n is a binary vector

・ロト ・四ト ・ヨト ・ヨト

- One of the most popular clustering algorithms
- Very widely used, guaranteed to converge (to a local minima; will see a proof)
- Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)
- Has some shortcomings (as we will see) but can be improved upon
- Some of the many improvements (some of which we will see)
 - Can be kernelized (using kernels or using kernel-based landmarks/random features)
 - More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)
 - Soft-clustering (fractional/probabilistic memberships): z_n is a probability vector
 - Overlapping clustering a point can belong to multiple clusters: z_n is a binary vector
 - .. even deep learning based K-means :-)

The K-means Algorithm: Some Comments

- One of the most popular clustering algorithms
- Very widely used, guaranteed to converge (to a local minima; will see a proof)
- Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)
- Has some shortcomings (as we will see) but can be improved upon
- Some of the many improvements (some of which we will see)
 - Can be kernelized (using kernels or using kernel-based landmarks/random features)
 - More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)
 - Soft-clustering (fractional/probabilistic memberships): z_n is a probability vector
 - Overlapping clustering a point can belong to multiple clusters: z_n is a binary vector
 - .. even deep learning based K-means :-)
- .. so it is worth looking a bit deeply into what K-means is doing

・ロット 美国マネ 田マネ 田マ

Notation: **X** is $N \times D$, **Z** is $N \times K$ (each row is a one-hot z_n), μ is $K \times D$ (each row is a μ_k)

・ロト ・ 日 ト ・ モ ト ・ モ ト

Notation: **X** is $N \times D$, **Z** is $N \times K$ (each row is a one-hot z_n), μ is $K \times D$ (each row is a μ_k)

$$\mathcal{L}(\mathbf{X},\mathbf{Z},oldsymbol{\mu}) = \sum_{n=1}^N ||oldsymbol{x}_n - \mu_{z_n}||^2$$

,

Notation: **X** is $N \times D$, **Z** is $N \times K$ (each row is a one-hot z_n), μ is $K \times D$ (each row is a μ_k)

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}, \mu) = \sum_{n=1}^{N} ||\boldsymbol{x}_n - \mu_{z_n}||^2 \qquad \qquad \mathcal{L}(\mathbf{X}, \mathbf{Z}, \mu) = \sum_{k=1}^{K} \sum_{\substack{n:z_n=k \\ n:z_n=k}} ||\boldsymbol{x}_n - \mu_k||^2$$

within cluster variance

A B > A B > A B >

 \sim

J ()

Notation: **X** is $N \times D$, **Z** is $N \times K$ (each row is a one-hot z_n), μ is $K \times D$ (each row is a μ_k)

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}, \mu) = \sum_{n=1}^{N} ||\boldsymbol{x}_n - \mu_{z_n}||^2 \qquad \qquad \mathcal{L}(\mathbf{X}, \mathbf{Z}, \mu) = \sum_{k=1}^{K} \sum_{n:z_n=k} ||\boldsymbol{x}_n - \mu_k||^2$$

within cluster variance

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\boldsymbol{x}_n - \boldsymbol{\mu}_k||^2$$

 \sim

J ()

Notation: **X** is $N \times D$, **Z** is $N \times K$ (each row is a one-hot z_n), μ is $K \times D$ (each row is a μ_k)

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \sum_{n=1}^{N} ||\boldsymbol{x}_n - \boldsymbol{\mu}_{z_n}||^2$$

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \sum_{k=1}^{K} \sum_{\underline{n: z_n = k}} ||\boldsymbol{x}_n - \boldsymbol{\mu}_k||^2$$

within cluster variance

(□) (四) (三) (三)

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\boldsymbol{x}_n - \boldsymbol{\mu}_k||^2$$

 \sim

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = - \underbrace{||\mathbf{X} - \mathbf{Z}\boldsymbol{\mu}||_F^2}$$

as matrix factorization

J ()

Notation: **X** is $N \times D$, **Z** is $N \times K$ (each row is a one-hot z_n), μ is $K \times D$ (each row is a μ_k)

$$\mathcal{L}(\mathbf{X},\mathbf{Z},oldsymbol{\mu}) = \sum_{n=1}^{N} ||oldsymbol{x}_n - \mu_{z_n}||^2$$

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \sum_{k=1}^{K} \sum_{\underline{n: z_n = k}} ||\boldsymbol{x}_n - \boldsymbol{\mu}_k||^2$$

within cluster variance

(日) (四) (三) (三) (三)

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\boldsymbol{x}_n - \boldsymbol{\mu}_k||^2$$

 \sim

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}, oldsymbol{\mu}) = - \underbrace{||\mathbf{X} - \mathbf{Z}oldsymbol{\mu}||_F^2}$$

$$||\mathbf{X} - \mathbf{Z} \boldsymbol{\mu}||_F^2$$

as matrix factorization

$$\{\hat{\mathbf{Z}},\hat{oldsymbol{\mu}}\}=rg\min_{\mathbf{Z},oldsymbol{\mu}}\mathcal{L}(\mathbf{X},\mathbf{Z},oldsymbol{\mu})$$

Notation: **X** is $N \times D$, **Z** is $N \times K$ (each row is a one-hot z_n), μ is $K \times D$ (each row is a μ_k)

$$\mathcal{L}(\mathbf{X},\mathbf{Z},oldsymbol{\mu}) = \sum_{n=1}^{N} ||oldsymbol{x}_n - oldsymbol{\mu}_{z_n}||^2$$

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \sum_{k=1}^{K} \sum_{\underline{n: z_n = k}} ||\boldsymbol{x}_n - \boldsymbol{\mu}_k||^2$$

within cluster variance

(日) (四) (日) (日) (日)

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\boldsymbol{x}_n - \mu_k||^2$$

$$\mathcal{L}(\mathbf{X},\mathbf{Z},oldsymbol{\mu}) = - \underbrace{||\mathbf{X}-\mathbf{Z}oldsymbol{\mu}||_F^2}$$

$$\{\hat{\mathbf{Z}},\hat{oldsymbol{\mu}}\}=rg\min_{\mathbf{Z},oldsymbol{\mu}}\mathcal{L}(\mathbf{X},\mathbf{Z},oldsymbol{\mu})$$

Note: Replacing ℓ_2 squared (Euclidean) distance by absolute (ℓ_1) distance gives the K-medians algorithm (more robust to outliers)

Notation: **X** is $N \times D$, **Z** is $N \times K$ (each row is a one-hot z_n), μ is $K \times D$ (each row is a μ_k)

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \sum_{n=1}^{N} ||\boldsymbol{x}_n - \boldsymbol{\mu}_{\boldsymbol{z}_n}||^2 \qquad \qquad \mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \sum_{k=1}^{K} \sum_{\substack{n:\boldsymbol{z}_n = k \\ min \text{ cluster } \mathbf{z}_n \\ \mathbf{X}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\boldsymbol{x}_n - \boldsymbol{\mu}_k||^2 \qquad \qquad \mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \underbrace{||\mathbf{X} - \mathbf{Z}\boldsymbol{\mu}||_F^2}_{\text{as matrix factorization}} \\ \left\{ \hat{\mathbf{Z}}, \hat{\boldsymbol{\mu}} \right\} = \arg\min_{\mathbf{Z}, \boldsymbol{\mu}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) \qquad \qquad \text{Total "distortion" or reconstruction error}$$

Note: Replacing ℓ_2 squared (Euclidean) distance by absolute (ℓ_1) distance gives the *K*-medians algorithm (more robust to outliers)

Note: Most unsup. learning algos try to minimize the distortion or reconstruction error of X from Z

・ロト ・日ト ・ヨト ・ヨト (道) りんの

• So the K-means problem is

$$\{\hat{\mathbf{Z}}, \hat{\boldsymbol{\mu}}\} = \arg\min_{\mathbf{Z}, \boldsymbol{\mu}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \arg\min_{\mathbf{Z}, \boldsymbol{\mu}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2$$

イロト イヨト イヨト イヨト

• So the K-means problem is

$$\{\hat{\mathbf{Z}}, \hat{\boldsymbol{\mu}}\} = \arg\min_{\mathbf{Z}, \boldsymbol{\mu}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \arg\min_{\mathbf{Z}, \boldsymbol{\mu}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2$$

ullet Can't optimize it jointly for ${\sf Z}$ and $\mu.$ Let's try alternating optimization for ${\sf Z}$ and μ

イロト イロト イヨト イヨト

• So the K-means problem is

$$\{\hat{\mathbf{Z}}, \hat{\boldsymbol{\mu}}\} = \arg\min_{\mathbf{Z}, \boldsymbol{\mu}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \arg\min_{\mathbf{Z}, \boldsymbol{\mu}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2$$

ullet Can't optimize it jointly for ${\sf Z}$ and $\mu.$ Let's try alternating optimization for ${\sf Z}$ and μ

Alternating Optimization for *K*-means Problem

• So the K-means problem is

$$\{\hat{\mathbf{Z}}, \hat{\boldsymbol{\mu}}\} = \arg\min_{\mathbf{Z}, \boldsymbol{\mu}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \arg\min_{\mathbf{Z}, \boldsymbol{\mu}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2$$

ullet Can't optimize it jointly for ${\sf Z}$ and $\mu.$ Let's try alternating optimization for ${\sf Z}$ and μ

Alternating Optimization for K-means Problem

• Fix μ as $\hat{\mu}$ and find the optimal Z as

$$\hat{f Z} = lpha$$
rg min ${\cal L}({f X},{f Z},\hat{m \mu})$ (still not easy - next slide)

• So the K-means problem is

$$\{\hat{\mathbf{Z}}, \hat{\boldsymbol{\mu}}\} = \arg\min_{\mathbf{Z}, \boldsymbol{\mu}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \arg\min_{\mathbf{Z}, \boldsymbol{\mu}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2$$

ullet Can't optimize it jointly for Z and $\mu.$ Let's try alternating optimization for Z and μ

Alternating Optimization for K-means Problem

 $\bullet \ \ \, {\sf Fix} \ \mu \ {\sf as} \ \hat{\mu} \ {\sf and} \ {\sf find} \ {\sf the \ optimal} \ \, {\sf Z} \ {\sf as}$

$$\hat{\mathsf{Z}}_{-}=lpha$$
 arg min $\mathcal{L}(\mathsf{X},\mathsf{Z},\hat{oldsymbol{\mu}})$ (still not easy - next slide)

2 Fix Z as \hat{Z} and find the optimal μ as

$$\hat{oldsymbol{\mu}} = rg\min_{oldsymbol{\mu}} \mathcal{L}(oldsymbol{\mathsf{X}}, \hat{oldsymbol{\mathsf{Z}}}, oldsymbol{\mu})$$

E Dac

イロト 不得 とうせい うけん

• So the K-means problem is

$$\{\hat{\mathbf{Z}}, \hat{\boldsymbol{\mu}}\} = \arg\min_{\mathbf{Z}, \boldsymbol{\mu}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}) = \arg\min_{\mathbf{Z}, \boldsymbol{\mu}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2$$

ullet Can't optimize it jointly for ${\sf Z}$ and $\mu.$ Let's try alternating optimization for ${\sf Z}$ and μ

Alternating Optimization for K-means Problem

 $\bullet \quad \mathsf{Fix} \ \mu \ \mathsf{as} \ \hat{\mu} \ \mathsf{and} \ \mathsf{find} \ \mathsf{the optimal} \ \mathsf{Z} \ \mathsf{as}$

$$\hat{f Z} = rgmin_{m Z} {\cal L}(f X, f Z, \hat{m \mu})$$
 (still not easy - next slide)

2 Fix Z as \hat{Z} and find the optimal μ as

$$\hat{oldsymbol{\mu}} = rg\min_{oldsymbol{\mu}} \mathcal{L}(oldsymbol{\mathsf{X}}, \hat{oldsymbol{\mathsf{Z}}}, oldsymbol{\mu})$$

Go to step 1 if not yet converged

イロト 不得 とうせい うけん

• Solving for **Z** with μ fixed at $\hat{\mu}$

$$\hat{\mathbf{Z}} = \arg\min_{\mathbf{Z}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \hat{\boldsymbol{\mu}}) = \arg\min_{\mathbf{Z}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\mathbf{x}_n - \hat{\mu}_k||^2$$

メロト メポト メヨト メヨト

• Solving for Z with μ fixed at $\hat{\mu}$

$$\hat{\mathbf{Z}} = \arg\min_{\mathbf{Z}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \hat{\boldsymbol{\mu}}) = \arg\min_{\mathbf{Z}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} || \mathbf{x}_n - \hat{\mu}_k ||^2$$

 \bullet Still not easy. Since ${\bf Z}$ is discrete, it is an NP-hard problem

イロト イポト イヨト イヨト

• Solving for Z with μ fixed at $\hat{\mu}$

$$\hat{\mathbf{Z}} = \arg\min_{\mathbf{Z}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \hat{\boldsymbol{\mu}}) = \arg\min_{\mathbf{Z}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\mathbf{x}_n - \hat{\mu}_k||^2$$

- \bullet Still not easy. Since ${\bf Z}$ is discrete, it is an NP-hard problem
 - Combinatorial optimization: K^N possibilities for **Z** ($N \times K$ matrix with one-hot rows)

・ロト ・日下・ ・日下・ ・日下

• Solving for Z with μ fixed at $\hat{\mu}$

$$\hat{\mathbf{Z}} = \arg\min_{\mathbf{Z}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \hat{\boldsymbol{\mu}}) = \arg\min_{\mathbf{Z}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\mathbf{x}_n - \hat{\mu}_k||^2$$

- \bullet Still not easy. Since ${\bf Z}$ is discrete, it is an NP-hard problem
 - Combinatorial optimization: K^N possibilities for **Z** ($N \times K$ matrix with one-hot rows)
- A greedy approach: Optimize Z one row (z_n) at a time keeping all others z_n 's (and μ) fixed

$$\hat{\boldsymbol{z}}_n = \arg\min_{\boldsymbol{z}_n} \sum_{k=1}^{K} z_{nk} || \boldsymbol{x}_n - \hat{\mu}_k ||^2$$

(日)

• Solving for Z with μ fixed at $\hat{\mu}$

$$\hat{\mathbf{Z}} = \arg\min_{\mathbf{Z}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \hat{\boldsymbol{\mu}}) = \arg\min_{\mathbf{Z}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\mathbf{x}_n - \hat{\mu}_k||^2$$

- \bullet Still not easy. Since ${\bf Z}$ is discrete, it is an NP-hard problem
 - Combinatorial optimization: K^N possibilities for **Z** ($N \times K$ matrix with one-hot rows)
- A greedy approach: Optimize Z one row (z_n) at a time keeping all others z_n 's (and μ) fixed

$$\hat{\boldsymbol{z}}_n = \arg\min_{\boldsymbol{z}_n} \sum_{k=1}^{K} z_{nk} ||\boldsymbol{x}_n - \hat{\mu}_k||^2 = \arg\min_{\boldsymbol{z}_n} ||\boldsymbol{x}_n - \hat{\mu}_{\boldsymbol{z}_n}||^2$$

(日)

• Solving for Z with μ fixed at $\hat{\mu}$

$$\hat{\mathbf{Z}} = \arg\min_{\mathbf{Z}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \hat{\boldsymbol{\mu}}) = \arg\min_{\mathbf{Z}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\mathbf{x}_n - \hat{\mu}_k||^2$$

- \bullet Still not easy. Since ${\bf Z}$ is discrete, it is an NP-hard problem
 - Combinatorial optimization: K^N possibilities for **Z** ($N \times K$ matrix with one-hot rows)
- A greedy approach: Optimize Z one row (z_n) at a time keeping all others z_n 's (and μ) fixed

$$\hat{\boldsymbol{z}}_n = \arg\min_{\boldsymbol{z}_n} \sum_{k=1}^{K} z_{nk} ||\boldsymbol{x}_n - \hat{\mu}_k||^2 = \arg\min_{\boldsymbol{z}_n} ||\boldsymbol{x}_n - \hat{\mu}_{\boldsymbol{z}_n}||^2$$

• Easy to see that this is minimized by assigning x_n to the closest mean

A B > A B > A B >
 A
 B >
 A
 B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

• Solving for Z with μ fixed at $\hat{\mu}$

$$\hat{\mathbf{Z}} = \arg\min_{\mathbf{Z}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \hat{\boldsymbol{\mu}}) = \arg\min_{\mathbf{Z}} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\mathbf{x}_n - \hat{\mu}_k||^2$$

- \bullet Still not easy. Since ${\bf Z}$ is discrete, it is an NP-hard problem
 - Combinatorial optimization: K^N possibilities for **Z** ($N \times K$ matrix with one-hot rows)
- A greedy approach: Optimize Z one row (z_n) at a time keeping all others z_n 's (and μ) fixed

$$\hat{\boldsymbol{z}}_n = \arg\min_{\boldsymbol{z}_n} \sum_{k=1}^{K} z_{nk} ||\boldsymbol{x}_n - \hat{\mu}_k||^2 = \arg\min_{\boldsymbol{z}_n} ||\boldsymbol{x}_n - \hat{\mu}_{\boldsymbol{z}_n}||^2$$

- Easy to see that this is minimized by assigning x_n to the closest mean
 - This is exactly what the K-means algo does!

・ロト ・日下・ ・日下・ ・日下

• Solving for μ with Z fixed at \hat{Z}

$$\hat{\boldsymbol{\mu}} = \arg\min_{\boldsymbol{\mu}} \mathcal{L}(\mathbf{X}, \hat{\mathbf{Z}}, \boldsymbol{\mu}) = \arg\min_{\boldsymbol{\mu}} \sum_{k=1}^{K} \sum_{n: \hat{z}_n = k} ||\mathbf{x}_n - \mu_k||^2$$

イロト 不同ト 不同ト 不同ト

• Solving for μ with Z fixed at \hat{Z}

$$\hat{\boldsymbol{\mu}} = \arg\min_{\boldsymbol{\mu}} \mathcal{L}(\mathbf{X}, \hat{\mathbf{Z}}, \boldsymbol{\mu}) = \arg\min_{\boldsymbol{\mu}} \sum_{k=1}^{K} \sum_{n:\hat{x}_n=k} ||\boldsymbol{x}_n - \mu_k||^2$$

• This is not that hard to solve (μ_k 's are real-valued vectors, can optimize easily)

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

• Solving for μ with Z fixed at \hat{Z}

$$\hat{\boldsymbol{\mu}} = \arg\min_{\boldsymbol{\mu}} \mathcal{L}(\mathbf{X}, \hat{\mathbf{Z}}, \boldsymbol{\mu}) = \arg\min_{\boldsymbol{\mu}} \sum_{k=1}^{K} \sum_{n:\hat{z}_n=k} ||\mathbf{x}_n - \mu_k||^2$$

- This is not that hard to solve (μ_k 's are real-valued vectors, can optimize easily)
- Note that each μ_k can be optimized independently

$$\hat{\mu}_k = \arg\min_{\mu_k} \sum_{n:\hat{x}_n=k} ||oldsymbol{x}_n - \mu_k||^2$$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

• Solving for μ with Z fixed at \hat{Z}

$$\hat{\boldsymbol{\mu}} = \arg\min_{\boldsymbol{\mu}} \mathcal{L}(\mathbf{X}, \hat{\mathbf{Z}}, \boldsymbol{\mu}) = \arg\min_{\boldsymbol{\mu}} \sum_{k=1}^{K} \sum_{n:\hat{z}_n=k} ||\boldsymbol{x}_n - \mu_k||^2$$

- This is not that hard to solve (μ_k 's are real-valued vectors, can optimize easily)
- Note that each μ_k can be optimized independently

$$\hat{\mu}_k = \arg\min_{\mu_k} \sum_{n:\hat{z}_n=k} ||\boldsymbol{x}_n - \mu_k||^2$$

• (Verify) This is minimized by setting $\hat{\mu}_k$ to be mean of points currently in cluster k

• Solving for μ with Z fixed at \hat{Z}

$$\hat{\boldsymbol{\mu}} = \arg\min_{\boldsymbol{\mu}} \mathcal{L}(\mathbf{X}, \hat{\mathbf{Z}}, \boldsymbol{\mu}) = \arg\min_{\boldsymbol{\mu}} \sum_{k=1}^{K} \sum_{n:\hat{z}_n=k} ||\boldsymbol{x}_n - \mu_k||^2$$

- This is not that hard to solve (μ_k 's are real-valued vectors, can optimize easily)
- Note that each μ_k can be optimized independently

$$\hat{\mu}_k = \arg\min_{\mu_k} \sum_{n:\hat{z}_n=k} ||\boldsymbol{x}_n - \mu_k||^2$$

- (Verify) This is minimized by setting $\hat{\mu}_k$ to be mean of points currently in cluster k
 - This is exactly what the K-means algo does!

• Each step (updating Z or μ) can never increase the K-means loss

メロト メロト メヨト メヨト

- Each step (updating Z or μ) can never increase the K-means loss
- When we update **Z** from $\mathbf{Z}^{(t-1)}$ to $\mathbf{Z}^{(t)}$

 $\mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t)}, \boldsymbol{\mu}^{(t-1)}) \leq \mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t-1)}, \boldsymbol{\mu}^{(t-1)})$

イロト イロト イヨト イヨト

- Each step (updating Z or μ) can never increase the K-means loss
- When we update **Z** from $\mathbf{Z}^{(t-1)}$ to $\mathbf{Z}^{(t)}$

 $\mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t)}, \boldsymbol{\mu}^{(t-1)}) \leq \mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t-1)}, \boldsymbol{\mu}^{(t-1)})$

because the new $\mathbf{Z}^{(t)} = rgmin_{\mathbf{Z}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}^{(t-1)})$

イロト 不得 とうせい うけん

- Each step (updating Z or μ) can never increase the K-means loss
- When we update **Z** from $\mathbf{Z}^{(t-1)}$ to $\mathbf{Z}^{(t)}$

 $\mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t)}, \boldsymbol{\mu}^{(t-1)}) \leq \mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t-1)}, \boldsymbol{\mu}^{(t-1)})$

because the new $\mathbf{Z}^{(t)} = rgmin_{\mathbf{Z}} \, \mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}^{(t-1)})$

ullet When we update $oldsymbol{\mu}$ from $oldsymbol{\mu}^{(t-1)}$ to $oldsymbol{\mu}^{(t)}$

 $\mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t)}, \boldsymbol{\mu}^{(t)}) \leq \mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t)}, \boldsymbol{\mu}^{(t-1)})$

- Each step (updating Z or μ) can never increase the K-means loss
- When we update **Z** from $\mathbf{Z}^{(t-1)}$ to $\mathbf{Z}^{(t)}$

 $\mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t)}, \boldsymbol{\mu}^{(t-1)}) \leq \mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t-1)}, \boldsymbol{\mu}^{(t-1)})$

because the new $\mathbf{Z}^{(t)} = rgmin_{\mathbf{Z}} \, \mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}^{(t-1)})$

ullet When we update μ from $\mu^{(t-1)}$ to $\mu^{(t)}$

 $\mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t)}, \boldsymbol{\mu}^{(t)}) \leq \mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t)}, \boldsymbol{\mu}^{(t-1)})$

because the new $\mu^{(t)} = \arg\min_{\mu} \mathcal{L}(\mathsf{X},\mathsf{Z}^{(t)},\mu)$

- Each step (updating Z or μ) can never increase the K-means loss
- \bullet When we update ${\bf Z}$ from ${\bf Z}^{(t-1)}$ to ${\bf Z}^{(t)}$

 $\mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t)}, \boldsymbol{\mu}^{(t-1)}) \leq \mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t-1)}, \boldsymbol{\mu}^{(t-1)})$

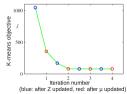
because the new $\mathbf{Z}^{(t)} = \arg\min_{\mathbf{Z}} \mathcal{L}(\mathbf{X}, \mathbf{Z}, \boldsymbol{\mu}^{(t-1)})$

• When we update μ from $\mu^{(t-1)}$ to $\mu^{(t)}$

 $\mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t)}, \boldsymbol{\mu}^{(t)}) \leq \mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t)}, \boldsymbol{\mu}^{(t-1)})$

because the new $\boldsymbol{\mu}^{(t)} = rgmin_{\boldsymbol{\mu}} \, \mathcal{L}(\mathbf{X}, \mathbf{Z}^{(t)}, \boldsymbol{\mu})$

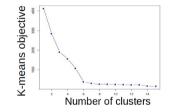
• Thus the K-means algorithm monotonically decreases the objective



・ロト ・ 日 ・ ・ 日 ・ ・

K-means: Choosing K

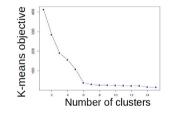
• One way to select K for the K-means algorithm is to try different values of K, plot the K-means objective versus K, and look at the "elbow-point"



(E)

K-means: Choosing K

• One way to select K for the K-means algorithm is to try different values of K, plot the K-means objective versus K, and look at the "elbow-point"

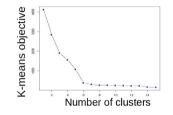


• For the above plot, K = 6 is the elbow point

글 > < 글

K-means: Choosing *K*

• One way to select K for the K-means algorithm is to try different values of K, plot the K-means objective versus K, and look at the "elbow-point"



- For the above plot, K = 6 is the elbow point
- Can also information criterion such as AIC (Akaike Information Criterion) $AIC = 2\mathcal{L}(\hat{\mu}, \mathbf{X}, \hat{\mathbf{Z}}) + KD$

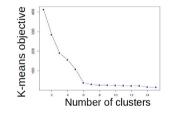
.. and choose the K that has the smallest AIC (discourages large K)

Image: A matrix

-

K-means: Choosing *K*

• One way to select K for the K-means algorithm is to try different values of K, plot the K-means objective versus K, and look at the "elbow-point"



- For the above plot, K = 6 is the elbow point
- Can also information criterion such as AIC (Akaike Information Criterion)

$$AIC = 2\mathcal{L}(\hat{\mu}, \mathbf{X}, \hat{\mathbf{Z}}) + KD$$

.. and choose the K that has the smallest AIC (discourages large K)

Several other approaches when using probabilistic models for clustering, e.g., comparing marginal likelihood p(X|K), using nonparametric Bayesian models, etc.

• Makes hard assignments of points to clusters

- Makes hard assignments of points to clusters
 - A point either completely belongs to a cluster or doesn't belong at all

イロン イロン イヨン イヨン

- Makes hard assignments of points to clusters
 - A point either completely belongs to a cluster or doesn't belong at all
 - No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for some point x_n, p₁ = 0.7, p₂ = 0.2, p₃ = 0.1)

- Makes hard assignments of points to clusters
 - A point either completely belongs to a cluster or doesn't belong at all
 - No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for some point x_n, p₁ = 0.7, p₂ = 0.2, p₃ = 0.1)

メロト メポト メヨト メヨ

- Makes hard assignments of points to clusters
 - A point either completely belongs to a cluster or doesn't belong at all
 - No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for some point x_n, p₁ = 0.7, p₂ = 0.2, p₃ = 0.1)

• A heuristic to get soft assignments: Transform distances from clusters into probabilities

$$\gamma_{nk} = \frac{\exp(-||\boldsymbol{x}_n - \mu_k||^2)}{\sum_{\ell=1}^{K} \exp(-||\boldsymbol{x}_n - \mu_\ell||^2)} \quad \text{(prob. that } \boldsymbol{x}_n \text{ belongs to cluster } k\text{)}$$

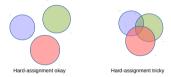
- Makes hard assignments of points to clusters
 - A point either completely belongs to a cluster or doesn't belong at all
 - No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for some point x_n, p₁ = 0.7, p₂ = 0.2, p₃ = 0.1)

• A heuristic to get soft assignments: Transform distances from clusters into probabilities

$$\gamma_{nk} = \frac{\exp(-||\boldsymbol{x}_n - \mu_k||^2)}{\sum_{\ell=1}^{K} \exp(-||\boldsymbol{x}_n - \mu_\ell||^2)} \quad \text{(prob. that } \boldsymbol{x}_n \text{ belongs to cluster } k\text{)}$$

• These heuristics are used in "fuzzy" or "soft" K-means algorithms

- Makes hard assignments of points to clusters
 - A point either completely belongs to a cluster or doesn't belong at all
 - No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for some point x_n, p₁ = 0.7, p₂ = 0.2, p₃ = 0.1)



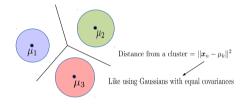
• A heuristic to get soft assignments: Transform distances from clusters into probabilities

$$\gamma_{nk} = \frac{\exp(-||\boldsymbol{x}_n - \mu_k||^2)}{\sum_{\ell=1}^{K} \exp(-||\boldsymbol{x}_n - \mu_\ell||^2)} \quad \text{(prob. that } \boldsymbol{x}_n \text{ belongs to cluster } k\text{)}$$

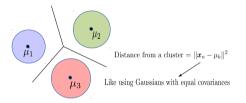
• These heuristics are used in "fuzzy" or "soft" K-means algorithms

• Soft K-means μ_k updates are slightly different: $\mu_k = \frac{\sum_{n=1}^{N} \gamma_{nk} \mathbf{x}_n}{\sum_{n=1}^{N} \gamma_{nk}}$ (all points used, but fractionally)

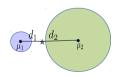
- K-mean assumes that the decision boundary between any two clusters is linear
- Reason: The K-means loss function implies assumes equal-sized, spherical clusters



- K-mean assumes that the decision boundary between any two clusters is linear
- Reason: The K-means loss function implies assumes equal-sized, spherical clusters

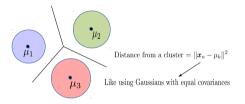


• Assumes clusters to be roughly equi-populated, and convex-shaped. Otherwise, may do badly

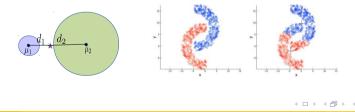


-

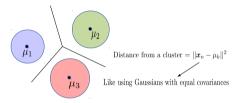
- K-mean assumes that the decision boundary between any two clusters is linear
- Reason: The K-means loss function implies assumes equal-sized, spherical clusters



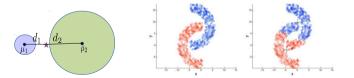
• Assumes clusters to be roughly equi-populated, and convex-shaped. Otherwise, may do badly



- K-mean assumes that the decision boundary between any two clusters is linear
- Reason: The K-means loss function implies assumes equal-sized, spherical clusters



• Assumes clusters to be roughly equi-populated, and convex-shaped. Otherwise, may do badly



• Kernel K-means can help address some of these issues. Probabilistic models is another option

• Basic idea: Replace the Euclidean distances in K-means by the kernelized versions

メロト メポト メヨト メヨト

• Basic idea: Replace the Euclidean distances in K-means by the kernelized versions

 $||\phi(\boldsymbol{x}_n) - \phi(\boldsymbol{\mu}_k)||^2$

• Basic idea: Replace the Euclidean distances in K-means by the kernelized versions

$$||\phi(\mathbf{x}_n) - \phi(\mathbf{\mu}_k)||^2 = ||\phi(\mathbf{x}_n)||^2 + ||\phi(\mathbf{\mu}_k)||^2 - 2\phi(\mathbf{x}_n)^\top \phi(\mathbf{\mu}_k)$$

メロト メポト メヨト メヨト

• Basic idea: Replace the Euclidean distances in K-means by the kernelized versions

$$||\phi(\mathbf{x}_n) - \phi(\boldsymbol{\mu}_k)||^2 = ||\phi(\mathbf{x}_n)||^2 + ||\phi(\boldsymbol{\mu}_k)||^2 - 2\phi(\mathbf{x}_n)^\top \phi(\boldsymbol{\mu}_k)$$
$$= k(\mathbf{x}_n, \mathbf{x}_n) + k(\boldsymbol{\mu}_k, \boldsymbol{\mu}_k) - 2k(\mathbf{x}_n, \boldsymbol{\mu}_k)$$

• Here k(.,.) denotes the kernel function and ϕ is its (implicit) feature map

• Basic idea: Replace the Euclidean distances in K-means by the kernelized versions

$$||\phi(\mathbf{x}_n) - \phi(\boldsymbol{\mu}_k)||^2 = ||\phi(\mathbf{x}_n)||^2 + ||\phi(\boldsymbol{\mu}_k)||^2 - 2\phi(\mathbf{x}_n)^\top \phi(\boldsymbol{\mu}_k)$$
$$= k(\mathbf{x}_n, \mathbf{x}_n) + k(\boldsymbol{\mu}_k, \boldsymbol{\mu}_k) - 2k(\mathbf{x}_n, \boldsymbol{\mu}_k)$$

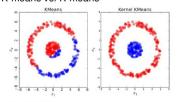
- Here k(.,.) denotes the kernel function and ϕ is its (implicit) feature map
- Note: $\phi(\mu_k)$ is the average of ϕ 's the data points assigned to cluster k

(日)

• Basic idea: Replace the Euclidean distances in K-means by the kernelized versions

$$\begin{aligned} ||\phi(\boldsymbol{x}_n) - \phi(\boldsymbol{\mu}_k)||^2 &= ||\phi(\boldsymbol{x}_n)||^2 + ||\phi(\boldsymbol{\mu}_k)||^2 - 2\phi(\boldsymbol{x}_n)^\top \phi(\boldsymbol{\mu}_k) \\ &= k(\boldsymbol{x}_n, \boldsymbol{x}_n) + k(\boldsymbol{\mu}_k, \boldsymbol{\mu}_k) - 2k(\boldsymbol{x}_n, \boldsymbol{\mu}_k) \end{aligned}$$

- Here k(.,.) denotes the kernel function and ϕ is its (implicit) feature map
- Note: $\phi(\mu_k)$ is the average of ϕ 's the data points assigned to cluster k Kernel K-means vs. K-means

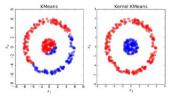


Pyclust: Open Source Data Clustering Pokage

• Basic idea: Replace the Euclidean distances in K-means by the kernelized versions

$$\begin{aligned} ||\phi(\boldsymbol{x}_n) - \phi(\boldsymbol{\mu}_k)||^2 &= ||\phi(\boldsymbol{x}_n)||^2 + ||\phi(\boldsymbol{\mu}_k)||^2 - 2\phi(\boldsymbol{x}_n)^\top \phi(\boldsymbol{\mu}_k) \\ &= k(\boldsymbol{x}_n, \boldsymbol{x}_n) + k(\boldsymbol{\mu}_k, \boldsymbol{\mu}_k) - 2k(\boldsymbol{x}_n, \boldsymbol{\mu}_k) \end{aligned}$$

- Here k(.,.) denotes the kernel function and ϕ is its (implicit) feature map
- Note: $\phi(\mu_k)$ is the average of ϕ 's the data points assigned to cluster k Kernel K-means vs. K-means



Pyclust: Open Source Data Clustering Pokage

- Can also use landmark or random features approach to make it faster
 - Can then simply run the basic K-means on those features!

 \bullet Assume a generative model for the inputs. Suppose Θ denotes all the unknown parameters

- \bullet Assume a generative model for the inputs. Suppose Θ denotes all the unknown parameters
- Clustering then boils down to computing $p(z_n | x_n, \Theta)$ for each x_n , where z_n is a latent variable

・ロト ・ 日 ト ・ モ ト ・ モ ト

- \bullet Assume a generative model for the inputs. Suppose Θ denotes all the unknown parameters
- Clustering then boils down to computing $p(z_n | x_n, \Theta)$ for each x_n , where z_n is a latent variable
- Using the Bayes rule, we can write $p(\boldsymbol{z}_n | \boldsymbol{x}_n, \Theta)$ as

$$p(\mathbf{z}_n = k | \mathbf{x}_n, \Theta) = rac{p(\mathbf{z}_n = k | \Theta) p(\mathbf{x}_n | \mathbf{z}_n = k, \Theta)}{p(\mathbf{x}_n | \Theta)}$$

- Assume a generative model for the inputs. Suppose Θ denotes all the unknown parameters
- Clustering then boils down to computing $p(z_n|x_n, \Theta)$ for each x_n , where z_n is a latent variable
- Using the Bayes rule, we can write $p(\boldsymbol{z}_n | \boldsymbol{x}_n, \Theta)$ as

$$p(\mathbf{z}_n = k | \mathbf{x}_n, \Theta) = \frac{p(\mathbf{z}_n = k | \Theta) p(\mathbf{x}_n | \mathbf{z}_n = k, \Theta)}{p(\mathbf{x}_n | \Theta)}$$

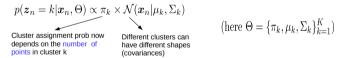
• Assuming $p(\mathbf{z}|\Theta)$ as multinoulli (π) and each cluster as Gaussian $p(\mathbf{x}|\mathbf{z}=k,\Theta) = \mathcal{N}(\mathbf{x}|\mu_k,\Sigma_k)$

$$p(\boldsymbol{z}_n = k | \boldsymbol{x}_n, \boldsymbol{\Theta}) \propto \pi_k \times \mathcal{N}(\boldsymbol{x}_n | \mu_k, \boldsymbol{\Sigma}_k)$$
Cluster assignment prob now depends on the number of points in cluster k (covariances) (covariances)

- Assume a generative model for the inputs. Suppose Θ denotes all the unknown parameters
- Clustering then boils down to computing $p(z_n | x_n, \Theta)$ for each x_n , where z_n is a latent variable
- Using the Bayes rule, we can write $p(\boldsymbol{z}_n | \boldsymbol{x}_n, \Theta)$ as

$$p(\mathbf{z}_n = k | \mathbf{x}_n, \Theta) = \frac{p(\mathbf{z}_n = k | \Theta) p(\mathbf{x}_n | \mathbf{z}_n = k, \Theta)}{p(\mathbf{x}_n | \Theta)}$$

• Assuming $p(\mathbf{z}|\Theta)$ as multinoulli (π) and each cluster as Gaussian $p(\mathbf{x}|\mathbf{z}=k,\Theta) = \mathcal{N}(\mathbf{x}|\mu_k,\Sigma_k)$

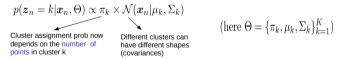


• We know how to estimate Θ for such problems.. if z_n is known (recall generative classification)

- Assume a generative model for the inputs. Suppose Θ denotes all the unknown parameters
- Clustering then boils down to computing $p(z_n | x_n, \Theta)$ for each x_n , where z_n is a latent variable
- Using the Bayes rule, we can write $p(\boldsymbol{z}_n | \boldsymbol{x}_n, \Theta)$ as

$$p(\mathbf{z}_n = k | \mathbf{x}_n, \Theta) = \frac{p(\mathbf{z}_n = k | \Theta) p(\mathbf{x}_n | \mathbf{z}_n = k, \Theta)}{p(\mathbf{x}_n | \Theta)}$$

• Assuming $p(\mathbf{z}|\Theta)$ as multinoulli (π) and each cluster as Gaussian $p(\mathbf{x}|\mathbf{z}=k,\Theta) = \mathcal{N}(\mathbf{x}|\mu_k,\Sigma_k)$

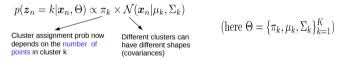


- We know how to estimate Θ for such problems. if z_n is known (recall generative classification)
- The tricky part here is that we don't know z_n . How do we estimate Θ then?

- \bullet Assume a generative model for the inputs. Suppose Θ denotes all the unknown parameters
- Clustering then boils down to computing $p(z_n | x_n, \Theta)$ for each x_n , where z_n is a latent variable
- Using the Bayes rule, we can write $p(\boldsymbol{z}_n | \boldsymbol{x}_n, \Theta)$ as

$$p(\mathbf{z}_n = k | \mathbf{x}_n, \Theta) = \frac{p(\mathbf{z}_n = k | \Theta) p(\mathbf{x}_n | \mathbf{z}_n = k, \Theta)}{p(\mathbf{x}_n | \Theta)}$$

• Assuming $p(\mathbf{z}|\Theta)$ as multinoulli (π) and each cluster as Gaussian $p(\mathbf{x}|\mathbf{z}=k,\Theta) = \mathcal{N}(\mathbf{x}|\mu_k,\Sigma_k)$



- We know how to estimate Θ for such problems. if z_n is known (recall generative classification)
- The tricky part here is that we don't know z_n . How do we estimate Θ then?
- A solution: Take an alternating approach (like K-means)

▲□▶ ▲圖▶ ▲三▶ ▲三▶ 《월》

• At a high-level, a probabilistic clustering algorithm would look somewhat like this

メロト メロト メヨト メヨト

• At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

• At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

• At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

- **②** Given the current Θ , estimate **Z** (cluster assignments) in a soft/hard way

$$p(\mathbf{z}_n = k | \mathbf{x}_n, \Theta) = \gamma_{nk} = \frac{p(\mathbf{z}_n = k | \Theta) p(\mathbf{x}_n | \mathbf{z}_n = k, \Theta)}{p(\mathbf{x}_n | \Theta)}, \quad k = 1, \dots, K$$

OR $\hat{\mathbf{z}}_n = \operatorname{arg max}_{k \in \{1, \dots, K\}} \gamma_{nk}$

• At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

- **②** Given the current Θ , estimate **Z** (cluster assignments) in a soft/hard way

$$p(\boldsymbol{z}_n = k | \boldsymbol{x}_n, \Theta) = \gamma_{nk} = \frac{p(\boldsymbol{z}_n = k | \Theta) p(\boldsymbol{x}_n | \boldsymbol{z}_n = k, \Theta)}{p(\boldsymbol{x}_n | \Theta)}, \quad k = 1, \dots, K$$

OR $\hat{\boldsymbol{z}}_n = \operatorname{arg max}_{k \in \{1, \dots, K\}} \gamma_{nk}$

Use { ẑ_n}^N_{n=1} (hard cluster labels) or { γ_{nk}}^{N,K}_{n,k=1} (soft labels) to update Θ via MLE/MAP (similar to how we do for gen. classification where the labels are known)

• At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

- **②** Given the current Θ , estimate **Z** (cluster assignments) in a soft/hard way

$$p(\boldsymbol{z}_n = k | \boldsymbol{x}_n, \Theta) = \gamma_{nk} = \frac{p(\boldsymbol{z}_n = k | \Theta) p(\boldsymbol{x}_n | \boldsymbol{z}_n = k, \Theta)}{p(\boldsymbol{x}_n | \Theta)}, \quad k = 1, \dots, K$$

OR $\hat{\boldsymbol{z}}_n = \operatorname{arg max}_{k \in \{1, \dots, K\}} \gamma_{nk}$

- Use { ẑ_n}^N_{n=1} (hard cluster labels) or { γ_{nk}}^{N,K}_{n,k=1} (soft labels) to update Θ via MLE/MAP (similar to how we do for gen. classification where the labels are known)
- Note: The soft-label based Θ updates slightly more involved (wait until we see EM)

• At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

- **②** Given the current Θ , estimate **Z** (cluster assignments) in a soft/hard way

$$p(\boldsymbol{z}_n = k | \boldsymbol{x}_n, \Theta) = \gamma_{nk} = \frac{p(\boldsymbol{z}_n = k | \Theta) p(\boldsymbol{x}_n | \boldsymbol{z}_n = k, \Theta)}{p(\boldsymbol{x}_n | \Theta)}, \quad k = 1, \dots, K$$

OR $\hat{\boldsymbol{z}}_n = \operatorname{arg max}_{k \in \{1, \dots, K\}} \gamma_{nk}$

Use {ẑ_n}^N_{n=1} (hard cluster labels) or {γ_{nk}}^{N,K}_{n,k=1} (soft labels) to update Θ via MLE/MAP (similar to how we do for gen. classification where the labels are known)
Note: The soft-label based Θ updates <u>slightly</u> more involved (wait until we see EM)
Go to step 2 if not converged yet.

• At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

- **②** Given the current Θ , estimate **Z** (cluster assignments) in a soft/hard way

$$p(\boldsymbol{z}_n = k | \boldsymbol{x}_n, \Theta) = \gamma_{nk} = \frac{p(\boldsymbol{z}_n = k | \Theta) p(\boldsymbol{x}_n | \boldsymbol{z}_n = k, \Theta)}{p(\boldsymbol{x}_n | \Theta)}, \quad k = 1, \dots, K$$

OR $\hat{\boldsymbol{z}}_n = \operatorname{arg} \max_{k \in \{1, \dots, K\}} \gamma_{nk}$

- Use {ẑ_n}^N_{n=1} (hard cluster labels) or {γ_{nk}}^{N,K}_{n,k=1} (soft labels) to update Θ via MLE/MAP (similar to how we do for gen. classification where the labels are known)
 Note: The soft-label based Θ updates <u>slightly</u> more involved (wait until we see EM)
 Go to step 2 if not converged yet.
- The above algorithm is an instance of a more general Expectation Maximization (EM) algorithm for latent variable models (we will see this post mid-sem)

- Any clustering model typically learns two type of quantities
 - Parameters Θ of the clustering model (e.g., cluster means $\mu = \{\mu_1, \dots, \mu_K\}$ in K-means)
 - Cluster assignments $Z = \{z_1, \ldots, z_N\}$ for the points

・ロト ・四ト ・ヨト ・ヨト

- Any clustering model typically learns two type of quantities
 - Parameters Θ of the clustering model (e.g., cluster means $\mu = \{\mu_1, \dots, \mu_K\}$ in K-means)
 - Cluster assignments $\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$ for the points
- If the cluster assignments Z are known, learning the parameters Θ is just like learning the parameters of a classification model (typically generative classification) using labeled data

・ロト ・日下・ ・日下・ ・日下

- Any clustering model typically learns two type of quantities
 - Parameters Θ of the clustering model (e.g., cluster means $\mu = \{\mu_1, \dots, \mu_K\}$ in K-means)
 - Cluster assignments $\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$ for the points
- If the cluster assignments Z are known, learning the parameters Θ is just like learning the parameters of a classification model (typically generative classification) using labeled data
- Therefore it helps to think of clustering as (generative) classification with unknown labels

- Any clustering model typically learns two type of quantities
 - Parameters Θ of the clustering model (e.g., cluster means $\mu = \{\mu_1, \dots, \mu_K\}$ in K-means)
 - Cluster assignments $\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$ for the points
- If the cluster assignments Z are known, learning the parameters Θ is just like learning the parameters of a classification model (typically generative classification) using labeled data
- Therefore it helps to think of clustering as (generative) classification with unknown labels
- This equivalence is very important and makes it possible to solve clustering problems

<□> <□> <□> <□> <□> <□> <□> <□>

- Any clustering model typically learns two type of quantities
 - Parameters Θ of the clustering model (e.g., cluster means $\mu = \{\mu_1, \dots, \mu_K\}$ in K-means)
 - Cluster assignments $\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$ for the points
- If the cluster assignments Z are known, learning the parameters Θ is just like learning the parameters of a classification model (typically generative classification) using labeled data
- Therefore it helps to think of clustering as (generative) classification with unknown labels
- This equivalence is very important and makes it possible to solve clustering problems
- Therefore many clustering problems are typically solved in the following fashion

- Any clustering model typically learns two type of quantities
 - Parameters Θ of the clustering model (e.g., cluster means $\mu = \{\mu_1, \dots, \mu_K\}$ in K-means)
 - Cluster assignments $\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$ for the points
- If the cluster assignments Z are known, learning the parameters Θ is just like learning the parameters of a classification model (typically generative classification) using labeled data
- Therefore it helps to think of clustering as (generative) classification with unknown labels
- This equivalence is very important and makes it possible to solve clustering problems
- Therefore many clustering problems are typically solved in the following fashion
 - $\textcircled{0} Initialize \ \Theta \ somehow$

- Any clustering model typically learns two type of quantities
 - Parameters Θ of the clustering model (e.g., cluster means $\mu = \{\mu_1, \dots, \mu_K\}$ in K-means)
 - Cluster assignments $\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$ for the points
- If the cluster assignments Z are known, learning the parameters Θ is just like learning the parameters of a classification model (typically generative classification) using labeled data
- Therefore it helps to think of clustering as (generative) classification with unknown labels
- This equivalence is very important and makes it possible to solve clustering problems
- Therefore many clustering problems are typically solved in the following fashion
 - $\textcircled{0} Initialize \ \Theta \ somehow$
 - **2** Predict **Z** given current estimate of Θ

- Any clustering model typically learns two type of quantities
 - Parameters Θ of the clustering model (e.g., cluster means $\mu = \{\mu_1, \dots, \mu_K\}$ in K-means)
 - Cluster assignments $\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$ for the points
- If the cluster assignments Z are known, learning the parameters Θ is just like learning the parameters of a classification model (typically generative classification) using labeled data
- Therefore it helps to think of clustering as (generative) classification with unknown labels
- This equivalence is very important and makes it possible to solve clustering problems
- Therefore many clustering problems are typically solved in the following fashion
 - $\textcircled{0} Initialize \ \Theta \ somehow$
 - **2** Predict **Z** given current estimate of Θ
 - **(2)** Use the predicted **Z** to improve the estimate of Θ (like learning a generative classification model)

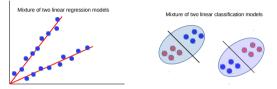
イロト イヨト イヨト イヨト (星) りんで

- Any clustering model typically learns two type of quantities
 - Parameters Θ of the clustering model (e.g., cluster means $\mu = \{\mu_1, \dots, \mu_K\}$ in K-means)
 - Cluster assignments $\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$ for the points
- If the cluster assignments Z are known, learning the parameters Θ is just like learning the parameters of a classification model (typically generative classification) using labeled data
- Therefore it helps to think of clustering as (generative) classification with unknown labels
- This equivalence is very important and makes it possible to solve clustering problems
- Therefore many clustering problems are typically solved in the following fashion
 - $\textcircled{0} Initialize \ \Theta \ somehow$
 - **2** Predict **Z** given current estimate of Θ
 - **③** Use the predicted **Z** to improve the estimate of Θ (like learning a generative classification model)
 - Go to step 2 if not converged yet

イロト イヨト イヨト イヨト (星) りんで

Clustering can help supervised learning, too

- Often "difficult" supervised learning problems can be seen as mixture of simpler models
- Example: Nonlinear regression or nonlinear classification as mixture of linear models

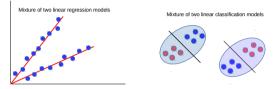


- An alternative to kernel methods and deep learning :-)
- $\bullet\,$ Don't know which point belongs to which linear model \Rightarrow Clustering problem

イロト イボト イヨト イヨ

Clustering can help supervised learning, too

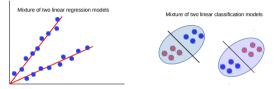
- Often "difficult" supervised learning problems can be seen as mixture of simpler models
- Example: Nonlinear regression or nonlinear classification as mixture of linear models



- An alternative to kernel methods and deep learning :-)
- Don't know which point belongs to which linear model \Rightarrow Clustering problem ۲
- Can therefore solve such problems as follows
 - Initialize each linear model somehow (maybe randomly)
 - Cluster the data by assigning each point to its "closest" linear model
 - (Re-)Learn a linear model for each cluster's data. Go to step 2 if not converged.

Clustering can help supervised learning, too

- Often "difficult" supervised learning problems can be seen as mixture of simpler models
- Example: Nonlinear regression or nonlinear classification as mixture of linear models



- An alternative to kernel methods and deep learning :-)
- $\bullet\,$ Don't know which point belongs to which linear model $\Rightarrow\,$ Clustering problem
- Can therefore solve such problems as follows
 - Initialize each linear model somehow (maybe randomly)
 - ② Cluster the data by assigning each point to its "closest" linear model
 - (Re-)Learn a linear model for each cluster's data. Go to step 2 if not converged.
- Often called Mixture of Experts models. Will look at these more formally after mid-sem