
K -means Clustering and Extensions

Piyush Rai

Introduction to Machine Learning (CS771A)

September 13, 2018

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 1

Announcement: Mid-Sem Exam

September 20 (Thursday) 13:00-15:00

Venue: L17, L18, L19 (all OROS)

Syllabus: Up to what we see today (only 1-2 small questions from today’s lecture)

Open notes, open slides (please only print in 4-up mode), books not allowed

No electronic items allowed (please keep phones switched off)

Important: ALL answers have to be written on the question paper itself (dedicated space)

Important: You need to bring a few other things

A notebook for rough work (may use blank pages from your notes)

Pen, pencil and eraser (but final answers should be written with pen to avoid smudging)

A review session: September 15/16/17 (timing/venue TBD)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 2

Announcement: Mid-Sem Exam

September 20 (Thursday) 13:00-15:00

Venue: L17, L18, L19 (all OROS)

Syllabus: Up to what we see today (only 1-2 small questions from today’s lecture)

Open notes, open slides (please only print in 4-up mode), books not allowed

No electronic items allowed (please keep phones switched off)

Important: ALL answers have to be written on the question paper itself (dedicated space)

Important: You need to bring a few other things

A notebook for rough work (may use blank pages from your notes)

Pen, pencil and eraser (but final answers should be written with pen to avoid smudging)

A review session: September 15/16/17 (timing/venue TBD)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 2

Announcement: Mid-Sem Exam

September 20 (Thursday) 13:00-15:00

Venue: L17, L18, L19 (all OROS)

Syllabus: Up to what we see today (only 1-2 small questions from today’s lecture)

Open notes, open slides (please only print in 4-up mode), books not allowed

No electronic items allowed (please keep phones switched off)

Important: ALL answers have to be written on the question paper itself (dedicated space)

Important: You need to bring a few other things

A notebook for rough work (may use blank pages from your notes)

Pen, pencil and eraser (but final answers should be written with pen to avoid smudging)

A review session: September 15/16/17 (timing/venue TBD)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 2

Announcement: Mid-Sem Exam

September 20 (Thursday) 13:00-15:00

Venue: L17, L18, L19 (all OROS)

Syllabus: Up to what we see today (only 1-2 small questions from today’s lecture)

Open notes, open slides (please only print in 4-up mode), books not allowed

No electronic items allowed (please keep phones switched off)

Important: ALL answers have to be written on the question paper itself (dedicated space)

Important: You need to bring a few other things

A notebook for rough work (may use blank pages from your notes)

Pen, pencil and eraser (but final answers should be written with pen to avoid smudging)

A review session: September 15/16/17 (timing/venue TBD)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 2

Announcement: Mid-Sem Exam

September 20 (Thursday) 13:00-15:00

Venue: L17, L18, L19 (all OROS)

Syllabus: Up to what we see today (only 1-2 small questions from today’s lecture)

Open notes, open slides (please only print in 4-up mode), books not allowed

No electronic items allowed (please keep phones switched off)

Important: ALL answers have to be written on the question paper itself (dedicated space)

Important: You need to bring a few other things

A notebook for rough work (may use blank pages from your notes)

Pen, pencil and eraser (but final answers should be written with pen to avoid smudging)

A review session: September 15/16/17 (timing/venue TBD)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 2

Announcement: Mid-Sem Exam

September 20 (Thursday) 13:00-15:00

Venue: L17, L18, L19 (all OROS)

Syllabus: Up to what we see today (only 1-2 small questions from today’s lecture)

Open notes, open slides (please only print in 4-up mode), books not allowed

No electronic items allowed (please keep phones switched off)

Important: ALL answers have to be written on the question paper itself (dedicated space)

Important: You need to bring a few other things

A notebook for rough work (may use blank pages from your notes)

Pen, pencil and eraser (but final answers should be written with pen to avoid smudging)

A review session: September 15/16/17 (timing/venue TBD)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 2

Announcement: Mid-Sem Exam

September 20 (Thursday) 13:00-15:00

Venue: L17, L18, L19 (all OROS)

Syllabus: Up to what we see today (only 1-2 small questions from today’s lecture)

Open notes, open slides (please only print in 4-up mode), books not allowed

No electronic items allowed (please keep phones switched off)

Important: ALL answers have to be written on the question paper itself (dedicated space)

Important: You need to bring a few other things

A notebook for rough work (may use blank pages from your notes)

Pen, pencil and eraser (but final answers should be written with pen to avoid smudging)

A review session: September 15/16/17 (timing/venue TBD)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 2

Announcement: Mid-Sem Exam

September 20 (Thursday) 13:00-15:00

Venue: L17, L18, L19 (all OROS)

Syllabus: Up to what we see today (only 1-2 small questions from today’s lecture)

Open notes, open slides (please only print in 4-up mode), books not allowed

No electronic items allowed (please keep phones switched off)

Important: ALL answers have to be written on the question paper itself (dedicated space)

Important: You need to bring a few other things

A notebook for rough work (may use blank pages from your notes)

Pen, pencil and eraser (but final answers should be written with pen to avoid smudging)

A review session: September 15/16/17 (timing/venue TBD)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 2

Announcement: Mid-Sem Exam

September 20 (Thursday) 13:00-15:00

Venue: L17, L18, L19 (all OROS)

Syllabus: Up to what we see today (only 1-2 small questions from today’s lecture)

Open notes, open slides (please only print in 4-up mode), books not allowed

No electronic items allowed (please keep phones switched off)

Important: ALL answers have to be written on the question paper itself (dedicated space)

Important: You need to bring a few other things

A notebook for rough work (may use blank pages from your notes)

Pen, pencil and eraser (but final answers should be written with pen to avoid smudging)

A review session: September 15/16/17 (timing/venue TBD)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 2

Recap: Speeding Up Kernel Methods

Can extract “good” features ψ(x) ∈ RL from a kernel k (with mapping φ) such that

ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

Unlike the kernel’s original mapping φ, the mapping ψ is low-dimensional (L is typically small)

With these features ψ(xn), we can apply a linear model (both train/test). No need to kernelize.

Looked at two main approaches to get such an approximate mapping ψ

Landmark based approach: Using landmark points z1, . . . , zL (selected or learned), compute

ψ(xn) = [k(z1, xn), k(z2, xn), . . . , k(zL, xn)]

Kernel Random Features approach: Can be used for many kernels. For the RBF kernel

ψ(xn) =
1√
L

[cos(w>1 xn + b1), . . . , cos(w>L xn + bL)]

w ` ∼ N (0, λ−1ID), b` ∼ Unif(0, 2π), ` = 1, . . . , L

Some other approaches (that we didn’t see): Nyström approx, other low-rank kernel matrix approx

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 3

Recap: Speeding Up Kernel Methods

Can extract “good” features ψ(x) ∈ RL from a kernel k (with mapping φ) such that

ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

Unlike the kernel’s original mapping φ, the mapping ψ is low-dimensional (L is typically small)

With these features ψ(xn), we can apply a linear model (both train/test). No need to kernelize.

Looked at two main approaches to get such an approximate mapping ψ

Landmark based approach: Using landmark points z1, . . . , zL (selected or learned), compute

ψ(xn) = [k(z1, xn), k(z2, xn), . . . , k(zL, xn)]

Kernel Random Features approach: Can be used for many kernels. For the RBF kernel

ψ(xn) =
1√
L

[cos(w>1 xn + b1), . . . , cos(w>L xn + bL)]

w ` ∼ N (0, λ−1ID), b` ∼ Unif(0, 2π), ` = 1, . . . , L

Some other approaches (that we didn’t see): Nyström approx, other low-rank kernel matrix approx

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 3

Recap: Speeding Up Kernel Methods

Can extract “good” features ψ(x) ∈ RL from a kernel k (with mapping φ) such that

ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

Unlike the kernel’s original mapping φ, the mapping ψ is low-dimensional (L is typically small)

With these features ψ(xn), we can apply a linear model (both train/test). No need to kernelize.

Looked at two main approaches to get such an approximate mapping ψ

Landmark based approach: Using landmark points z1, . . . , zL (selected or learned), compute

ψ(xn) = [k(z1, xn), k(z2, xn), . . . , k(zL, xn)]

Kernel Random Features approach: Can be used for many kernels. For the RBF kernel

ψ(xn) =
1√
L

[cos(w>1 xn + b1), . . . , cos(w>L xn + bL)]

w ` ∼ N (0, λ−1ID), b` ∼ Unif(0, 2π), ` = 1, . . . , L

Some other approaches (that we didn’t see): Nyström approx, other low-rank kernel matrix approx

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 3

Recap: Speeding Up Kernel Methods

Can extract “good” features ψ(x) ∈ RL from a kernel k (with mapping φ) such that

ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

Unlike the kernel’s original mapping φ, the mapping ψ is low-dimensional (L is typically small)

With these features ψ(xn), we can apply a linear model (both train/test). No need to kernelize.

Looked at two main approaches to get such an approximate mapping ψ

Landmark based approach: Using landmark points z1, . . . , zL (selected or learned), compute

ψ(xn) = [k(z1, xn), k(z2, xn), . . . , k(zL, xn)]

Kernel Random Features approach: Can be used for many kernels. For the RBF kernel

ψ(xn) =
1√
L

[cos(w>1 xn + b1), . . . , cos(w>L xn + bL)]

w ` ∼ N (0, λ−1ID), b` ∼ Unif(0, 2π), ` = 1, . . . , L

Some other approaches (that we didn’t see): Nyström approx, other low-rank kernel matrix approx

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 3

Recap: Speeding Up Kernel Methods

Can extract “good” features ψ(x) ∈ RL from a kernel k (with mapping φ) such that

ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

Unlike the kernel’s original mapping φ, the mapping ψ is low-dimensional (L is typically small)

With these features ψ(xn), we can apply a linear model (both train/test). No need to kernelize.

Looked at two main approaches to get such an approximate mapping ψ

Landmark based approach: Using landmark points z1, . . . , zL (selected or learned), compute

ψ(xn) = [k(z1, xn), k(z2, xn), . . . , k(zL, xn)]

Kernel Random Features approach: Can be used for many kernels. For the RBF kernel

ψ(xn) =
1√
L

[cos(w>1 xn + b1), . . . , cos(w>L xn + bL)]

w ` ∼ N (0, λ−1ID), b` ∼ Unif(0, 2π), ` = 1, . . . , L

Some other approaches (that we didn’t see): Nyström approx, other low-rank kernel matrix approx

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 3

Recap: Speeding Up Kernel Methods

Can extract “good” features ψ(x) ∈ RL from a kernel k (with mapping φ) such that

ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

Unlike the kernel’s original mapping φ, the mapping ψ is low-dimensional (L is typically small)

With these features ψ(xn), we can apply a linear model (both train/test). No need to kernelize.

Looked at two main approaches to get such an approximate mapping ψ

Landmark based approach: Using landmark points z1, . . . , zL (selected or learned), compute

ψ(xn) = [k(z1, xn), k(z2, xn), . . . , k(zL, xn)]

Kernel Random Features approach: Can be used for many kernels. For the RBF kernel

ψ(xn) =
1√
L

[cos(w>1 xn + b1), . . . , cos(w>L xn + bL)]

w ` ∼ N (0, λ−1ID), b` ∼ Unif(0, 2π), ` = 1, . . . , L

Some other approaches (that we didn’t see): Nyström approx, other low-rank kernel matrix approx

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 3

Recap: Speeding Up Kernel Methods

Can extract “good” features ψ(x) ∈ RL from a kernel k (with mapping φ) such that

ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

Unlike the kernel’s original mapping φ, the mapping ψ is low-dimensional (L is typically small)

With these features ψ(xn), we can apply a linear model (both train/test). No need to kernelize.

Looked at two main approaches to get such an approximate mapping ψ

Landmark based approach: Using landmark points z1, . . . , zL (selected or learned), compute

ψ(xn) = [k(z1, xn), k(z2, xn), . . . , k(zL, xn)]

Kernel Random Features approach: Can be used for many kernels. For the RBF kernel

ψ(xn) =
1√
L

[cos(w>1 xn + b1), . . . , cos(w>L xn + bL)]

w ` ∼ N (0, λ−1ID), b` ∼ Unif(0, 2π), ` = 1, . . . , L

Some other approaches (that we didn’t see): Nyström approx, other low-rank kernel matrix approx

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 3

Recap: Speeding Up Kernel Methods

Can extract “good” features ψ(x) ∈ RL from a kernel k (with mapping φ) such that

ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

Unlike the kernel’s original mapping φ, the mapping ψ is low-dimensional (L is typically small)

With these features ψ(xn), we can apply a linear model (both train/test). No need to kernelize.

Looked at two main approaches to get such an approximate mapping ψ

Landmark based approach: Using landmark points z1, . . . , zL (selected or learned), compute

ψ(xn) = [k(z1, xn), k(z2, xn), . . . , k(zL, xn)]

Kernel Random Features approach: Can be used for many kernels. For the RBF kernel

ψ(xn) =
1√
L

[cos(w>1 xn + b1), . . . , cos(w>L xn + bL)]

w ` ∼ N (0, λ−1ID), b` ∼ Unif(0, 2π), ` = 1, . . . , L

Some other approaches (that we didn’t see): Nyström approx, other low-rank kernel matrix approx

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 3

Recap: K -means Algorithm

Goal: Assign N inputs {x1, . . . , xN}, with each xn ∈ RD , to K clusters (flat partitioning)

Notation: zn ∈ {1, . . . ,K} or zn is a K -dim one-hot vector

(znk = 1 and zn = k mean the same)

K -means Algorithm

1 Initialize K cluster means µ1, . . . , µK

2 For n = 1, . . . ,N, assign each point xn to the closest cluster

zn = arg mink∈{1,...,K}||xn − µk ||2

3 Suppose Ck = {xn : zn = k}. Re-compute the means

µk = mean(Ck), k = 1, . . . ,K

4 Go to step 2 if not yet converged

Note: The basic K -means models each cluster only by a mean µk . Ignores size/shape of clusters

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 4

Recap: K -means Algorithm

Goal: Assign N inputs {x1, . . . , xN}, with each xn ∈ RD , to K clusters (flat partitioning)

Notation: zn ∈ {1, . . . ,K} or zn is a K -dim one-hot vector(znk = 1 and zn = k mean the same)

K -means Algorithm

1 Initialize K cluster means µ1, . . . , µK

2 For n = 1, . . . ,N, assign each point xn to the closest cluster

zn = arg mink∈{1,...,K}||xn − µk ||2

3 Suppose Ck = {xn : zn = k}. Re-compute the means

µk = mean(Ck), k = 1, . . . ,K

4 Go to step 2 if not yet converged

Note: The basic K -means models each cluster only by a mean µk . Ignores size/shape of clusters

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 4

Recap: K -means Algorithm

Goal: Assign N inputs {x1, . . . , xN}, with each xn ∈ RD , to K clusters (flat partitioning)

Notation: zn ∈ {1, . . . ,K} or zn is a K -dim one-hot vector(znk = 1 and zn = k mean the same)

K -means Algorithm

1 Initialize K cluster means µ1, . . . , µK

2 For n = 1, . . . ,N, assign each point xn to the closest cluster

zn = arg mink∈{1,...,K}||xn − µk ||2

3 Suppose Ck = {xn : zn = k}. Re-compute the means

µk = mean(Ck), k = 1, . . . ,K

4 Go to step 2 if not yet converged

Note: The basic K -means models each cluster only by a mean µk . Ignores size/shape of clusters

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 4

Recap: K -means Algorithm

Goal: Assign N inputs {x1, . . . , xN}, with each xn ∈ RD , to K clusters (flat partitioning)

Notation: zn ∈ {1, . . . ,K} or zn is a K -dim one-hot vector(znk = 1 and zn = k mean the same)

K -means Algorithm

1 Initialize K cluster means µ1, . . . , µK

2 For n = 1, . . . ,N, assign each point xn to the closest cluster

zn = arg mink∈{1,...,K}||xn − µk ||2

3 Suppose Ck = {xn : zn = k}. Re-compute the means

µk = mean(Ck), k = 1, . . . ,K

4 Go to step 2 if not yet converged

Note: The basic K -means models each cluster only by a mean µk . Ignores size/shape of clusters

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 4

Recap: K -means Algorithm

Goal: Assign N inputs {x1, . . . , xN}, with each xn ∈ RD , to K clusters (flat partitioning)

Notation: zn ∈ {1, . . . ,K} or zn is a K -dim one-hot vector(znk = 1 and zn = k mean the same)

K -means Algorithm

1 Initialize K cluster means µ1, . . . , µK

2 For n = 1, . . . ,N, assign each point xn to the closest cluster

zn = arg mink∈{1,...,K}||xn − µk ||2

3 Suppose Ck = {xn : zn = k}. Re-compute the means

µk = mean(Ck), k = 1, . . . ,K

4 Go to step 2 if not yet converged

Note: The basic K -means models each cluster only by a mean µk . Ignores size/shape of clusters

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 4

Recap: K -means Algorithm

Goal: Assign N inputs {x1, . . . , xN}, with each xn ∈ RD , to K clusters (flat partitioning)

Notation: zn ∈ {1, . . . ,K} or zn is a K -dim one-hot vector(znk = 1 and zn = k mean the same)

K -means Algorithm

1 Initialize K cluster means µ1, . . . , µK

2 For n = 1, . . . ,N, assign each point xn to the closest cluster

zn = arg mink∈{1,...,K}||xn − µk ||2

3 Suppose Ck = {xn : zn = k}. Re-compute the means

µk = mean(Ck), k = 1, . . . ,K

4 Go to step 2 if not yet converged

Note: The basic K -means models each cluster only by a mean µk . Ignores size/shape of clusters

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 4

Recap: K -means Algorithm

Goal: Assign N inputs {x1, . . . , xN}, with each xn ∈ RD , to K clusters (flat partitioning)

Notation: zn ∈ {1, . . . ,K} or zn is a K -dim one-hot vector(znk = 1 and zn = k mean the same)

K -means Algorithm

1 Initialize K cluster means µ1, . . . , µK

2 For n = 1, . . . ,N, assign each point xn to the closest cluster

zn = arg mink∈{1,...,K}||xn − µk ||2

3 Suppose Ck = {xn : zn = k}. Re-compute the means

µk = mean(Ck), k = 1, . . . ,K

4 Go to step 2 if not yet converged

Note: The basic K -means models each cluster only by a mean µk . Ignores size/shape of clusters

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 4

Recap: K -means Algorithm

Goal: Assign N inputs {x1, . . . , xN}, with each xn ∈ RD , to K clusters (flat partitioning)

Notation: zn ∈ {1, . . . ,K} or zn is a K -dim one-hot vector(znk = 1 and zn = k mean the same)

K -means Algorithm

1 Initialize K cluster means µ1, . . . , µK

2 For n = 1, . . . ,N, assign each point xn to the closest cluster

zn = arg mink∈{1,...,K}||xn − µk ||2

3 Suppose Ck = {xn : zn = k}. Re-compute the means

µk = mean(Ck), k = 1, . . . ,K

4 Go to step 2 if not yet converged

Note: The basic K -means models each cluster only by a mean µk . Ignores size/shape of clusters

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 4

The K -means Algorithm: Some Comments

One of the most popular clustering algorithms

Very widely used, guaranteed to converge (to a local minima; will see a proof)

Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)

Has some shortcomings (as we will see) but can be improved upon

Some of the many improvements (some of which we will see)

Can be kernelized (using kernels or using kernel-based landmarks/random features)

More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)

Soft-clustering (fractional/probabilistic memberships): zn is a probability vector

Overlapping clustering - a point can belong to multiple clusters: zn is a binary vector

.. even deep learning based K -means :-)

.. so it is worth looking a bit deeply into what K -means is doing

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 5

The K -means Algorithm: Some Comments

One of the most popular clustering algorithms

Very widely used, guaranteed to converge (to a local minima; will see a proof)

Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)

Has some shortcomings (as we will see) but can be improved upon

Some of the many improvements (some of which we will see)

Can be kernelized (using kernels or using kernel-based landmarks/random features)

More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)

Soft-clustering (fractional/probabilistic memberships): zn is a probability vector

Overlapping clustering - a point can belong to multiple clusters: zn is a binary vector

.. even deep learning based K -means :-)

.. so it is worth looking a bit deeply into what K -means is doing

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 5

The K -means Algorithm: Some Comments

One of the most popular clustering algorithms

Very widely used, guaranteed to converge (to a local minima; will see a proof)

Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)

Has some shortcomings (as we will see) but can be improved upon

Some of the many improvements (some of which we will see)

Can be kernelized (using kernels or using kernel-based landmarks/random features)

More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)

Soft-clustering (fractional/probabilistic memberships): zn is a probability vector

Overlapping clustering - a point can belong to multiple clusters: zn is a binary vector

.. even deep learning based K -means :-)

.. so it is worth looking a bit deeply into what K -means is doing

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 5

The K -means Algorithm: Some Comments

One of the most popular clustering algorithms

Very widely used, guaranteed to converge (to a local minima; will see a proof)

Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)

Has some shortcomings (as we will see) but can be improved upon

Some of the many improvements (some of which we will see)

Can be kernelized (using kernels or using kernel-based landmarks/random features)

More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)

Soft-clustering (fractional/probabilistic memberships): zn is a probability vector

Overlapping clustering - a point can belong to multiple clusters: zn is a binary vector

.. even deep learning based K -means :-)

.. so it is worth looking a bit deeply into what K -means is doing

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 5

The K -means Algorithm: Some Comments

One of the most popular clustering algorithms

Very widely used, guaranteed to converge (to a local minima; will see a proof)

Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)

Has some shortcomings (as we will see) but can be improved upon

Some of the many improvements (some of which we will see)

Can be kernelized (using kernels or using kernel-based landmarks/random features)

More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)

Soft-clustering (fractional/probabilistic memberships): zn is a probability vector

Overlapping clustering - a point can belong to multiple clusters: zn is a binary vector

.. even deep learning based K -means :-)

.. so it is worth looking a bit deeply into what K -means is doing

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 5

The K -means Algorithm: Some Comments

One of the most popular clustering algorithms

Very widely used, guaranteed to converge (to a local minima; will see a proof)

Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)

Has some shortcomings (as we will see) but can be improved upon

Some of the many improvements (some of which we will see)

Can be kernelized (using kernels or using kernel-based landmarks/random features)

More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)

Soft-clustering (fractional/probabilistic memberships): zn is a probability vector

Overlapping clustering - a point can belong to multiple clusters: zn is a binary vector

.. even deep learning based K -means :-)

.. so it is worth looking a bit deeply into what K -means is doing

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 5

The K -means Algorithm: Some Comments

One of the most popular clustering algorithms

Very widely used, guaranteed to converge (to a local minima; will see a proof)

Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)

Has some shortcomings (as we will see) but can be improved upon

Some of the many improvements (some of which we will see)

Can be kernelized (using kernels or using kernel-based landmarks/random features)

More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)

Soft-clustering (fractional/probabilistic memberships): zn is a probability vector

Overlapping clustering - a point can belong to multiple clusters: zn is a binary vector

.. even deep learning based K -means :-)

.. so it is worth looking a bit deeply into what K -means is doing

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 5

The K -means Algorithm: Some Comments

One of the most popular clustering algorithms

Very widely used, guaranteed to converge (to a local minima; will see a proof)

Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)

Has some shortcomings (as we will see) but can be improved upon

Some of the many improvements (some of which we will see)

Can be kernelized (using kernels or using kernel-based landmarks/random features)

More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)

Soft-clustering (fractional/probabilistic memberships): zn is a probability vector

Overlapping clustering - a point can belong to multiple clusters: zn is a binary vector

.. even deep learning based K -means :-)

.. so it is worth looking a bit deeply into what K -means is doing

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 5

The K -means Algorithm: Some Comments

One of the most popular clustering algorithms

Very widely used, guaranteed to converge (to a local minima; will see a proof)

Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)

Has some shortcomings (as we will see) but can be improved upon

Some of the many improvements (some of which we will see)

Can be kernelized (using kernels or using kernel-based landmarks/random features)

More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)

Soft-clustering (fractional/probabilistic memberships): zn is a probability vector

Overlapping clustering - a point can belong to multiple clusters: zn is a binary vector

.. even deep learning based K -means :-)

.. so it is worth looking a bit deeply into what K -means is doing

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 5

The K -means Algorithm: Some Comments

One of the most popular clustering algorithms

Very widely used, guaranteed to converge (to a local minima; will see a proof)

Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)

Has some shortcomings (as we will see) but can be improved upon

Some of the many improvements (some of which we will see)

Can be kernelized (using kernels or using kernel-based landmarks/random features)

More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)

Soft-clustering (fractional/probabilistic memberships): zn is a probability vector

Overlapping clustering - a point can belong to multiple clusters: zn is a binary vector

.. even deep learning based K -means :-)

.. so it is worth looking a bit deeply into what K -means is doing

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 5

The K -means Algorithm: Some Comments

One of the most popular clustering algorithms

Very widely used, guaranteed to converge (to a local minima; will see a proof)

Can also be used as a sub-routine in graph clustering (in the Spectral Clustering algorithm)

Has some shortcomings (as we will see) but can be improved upon

Some of the many improvements (some of which we will see)

Can be kernelized (using kernels or using kernel-based landmarks/random features)

More flexible cluster sizes/shapes via probabilistic models (e.g., every cluster is a Gaussian)

Soft-clustering (fractional/probabilistic memberships): zn is a probability vector

Overlapping clustering - a point can belong to multiple clusters: zn is a binary vector

.. even deep learning based K -means :-)

.. so it is worth looking a bit deeply into what K -means is doing

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 5

K -means Loss Function: Several Forms, Same Meaning!

Notation: X is N × D, Z is N × K (each row is a one-hot zn), µ is K × D (each row is a µk)

Note: Most unsup. learning algos try to minimize the distortion or reconstruction error of X from Z

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 6

K -means Loss Function: Several Forms, Same Meaning!

Notation: X is N × D, Z is N × K (each row is a one-hot zn), µ is K × D (each row is a µk)

Note: Most unsup. learning algos try to minimize the distortion or reconstruction error of X from Z

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 6

K -means Loss Function: Several Forms, Same Meaning!

Notation: X is N × D, Z is N × K (each row is a one-hot zn), µ is K × D (each row is a µk)

Note: Most unsup. learning algos try to minimize the distortion or reconstruction error of X from Z

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 6

K -means Loss Function: Several Forms, Same Meaning!

Notation: X is N × D, Z is N × K (each row is a one-hot zn), µ is K × D (each row is a µk)

Note: Most unsup. learning algos try to minimize the distortion or reconstruction error of X from Z

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 6

K -means Loss Function: Several Forms, Same Meaning!

Notation: X is N × D, Z is N × K (each row is a one-hot zn), µ is K × D (each row is a µk)

Note: Most unsup. learning algos try to minimize the distortion or reconstruction error of X from Z

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 6

K -means Loss Function: Several Forms, Same Meaning!

Notation: X is N × D, Z is N × K (each row is a one-hot zn), µ is K × D (each row is a µk)

Note: Most unsup. learning algos try to minimize the distortion or reconstruction error of X from Z

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 6

K -means Loss Function: Several Forms, Same Meaning!

Notation: X is N × D, Z is N × K (each row is a one-hot zn), µ is K × D (each row is a µk)

Note: Most unsup. learning algos try to minimize the distortion or reconstruction error of X from Z

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 6

K -means Loss Function: Several Forms, Same Meaning!

Notation: X is N × D, Z is N × K (each row is a one-hot zn), µ is K × D (each row is a µk)

 Total “distortion” or
reconstruction error

 “distortion” on assignment to
 cluster z

n

Note: Most unsup. learning algos try to minimize the distortion or reconstruction error of X from Z

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 6

Optimizing the K -means Loss Function

So the K -means problem is

{Ẑ, µ̂} = arg min
Z,µ
L(X,Z,µ) = arg min

Z,µ

N∑
n=1

K∑
k=1

znk ||xn − µk ||2

Can’t optimize it jointly for Z and µ. Let’s try alternating optimization for Z and µ

Alternating Optimization for K -means Problem

1 Fix µ as µ̂ and find the optimal Z as

Ẑ = arg min
Z
L(X,Z, µ̂) (still not easy - next slide)

2 Fix Z as Ẑ and find the optimal µ as

µ̂ = arg min
µ
L(X, Ẑ,µ)

3 Go to step 1 if not yet converged

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 7

Optimizing the K -means Loss Function

So the K -means problem is

{Ẑ, µ̂} = arg min
Z,µ
L(X,Z,µ) = arg min

Z,µ

N∑
n=1

K∑
k=1

znk ||xn − µk ||2

Can’t optimize it jointly for Z and µ. Let’s try alternating optimization for Z and µ

Alternating Optimization for K -means Problem

1 Fix µ as µ̂ and find the optimal Z as

Ẑ = arg min
Z
L(X,Z, µ̂) (still not easy - next slide)

2 Fix Z as Ẑ and find the optimal µ as

µ̂ = arg min
µ
L(X, Ẑ,µ)

3 Go to step 1 if not yet converged

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 7

Optimizing the K -means Loss Function

So the K -means problem is

{Ẑ, µ̂} = arg min
Z,µ
L(X,Z,µ) = arg min

Z,µ

N∑
n=1

K∑
k=1

znk ||xn − µk ||2

Can’t optimize it jointly for Z and µ. Let’s try alternating optimization for Z and µ

Alternating Optimization for K -means Problem

1 Fix µ as µ̂ and find the optimal Z as

Ẑ = arg min
Z
L(X,Z, µ̂) (still not easy - next slide)

2 Fix Z as Ẑ and find the optimal µ as

µ̂ = arg min
µ
L(X, Ẑ,µ)

3 Go to step 1 if not yet converged

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 7

Optimizing the K -means Loss Function

So the K -means problem is

{Ẑ, µ̂} = arg min
Z,µ
L(X,Z,µ) = arg min

Z,µ

N∑
n=1

K∑
k=1

znk ||xn − µk ||2

Can’t optimize it jointly for Z and µ. Let’s try alternating optimization for Z and µ

Alternating Optimization for K -means Problem

1 Fix µ as µ̂ and find the optimal Z as

Ẑ = arg min
Z
L(X,Z, µ̂) (still not easy - next slide)

2 Fix Z as Ẑ and find the optimal µ as

µ̂ = arg min
µ
L(X, Ẑ,µ)

3 Go to step 1 if not yet converged

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 7

Optimizing the K -means Loss Function

So the K -means problem is

{Ẑ, µ̂} = arg min
Z,µ
L(X,Z,µ) = arg min

Z,µ

N∑
n=1

K∑
k=1

znk ||xn − µk ||2

Can’t optimize it jointly for Z and µ. Let’s try alternating optimization for Z and µ

Alternating Optimization for K -means Problem

1 Fix µ as µ̂ and find the optimal Z as

Ẑ = arg min
Z
L(X,Z, µ̂) (still not easy - next slide)

2 Fix Z as Ẑ and find the optimal µ as

µ̂ = arg min
µ
L(X, Ẑ,µ)

3 Go to step 1 if not yet converged

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 7

Optimizing the K -means Loss Function

So the K -means problem is

{Ẑ, µ̂} = arg min
Z,µ
L(X,Z,µ) = arg min

Z,µ

N∑
n=1

K∑
k=1

znk ||xn − µk ||2

Can’t optimize it jointly for Z and µ. Let’s try alternating optimization for Z and µ

Alternating Optimization for K -means Problem

1 Fix µ as µ̂ and find the optimal Z as

Ẑ = arg min
Z
L(X,Z, µ̂) (still not easy - next slide)

2 Fix Z as Ẑ and find the optimal µ as

µ̂ = arg min
µ
L(X, Ẑ,µ)

3 Go to step 1 if not yet converged

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 7

Solving for Z

Solving for Z with µ fixed at µ̂

Ẑ = arg min
Z
L(X,Z, µ̂) = arg min

Z

N∑
n=1

K∑
k=1

znk ||xn − µ̂k ||2

Still not easy. Since Z is discrete, it is an NP-hard problem

Combinatorial optimization: KN possibilities for Z (N × K matrix with one-hot rows)

A greedy approach: Optimize Z one row (zn) at a time keeping all others zn’s (and µ) fixed

ẑn = arg min
zn

K∑
k=1

znk ||xn − µ̂k ||2 = arg min
zn
||xn − µ̂zn ||2

Easy to see that this is minimized by assigning xn to the closest mean

This is exactly what the K -means algo does!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 8

Solving for Z

Solving for Z with µ fixed at µ̂

Ẑ = arg min
Z
L(X,Z, µ̂) = arg min

Z

N∑
n=1

K∑
k=1

znk ||xn − µ̂k ||2

Still not easy. Since Z is discrete, it is an NP-hard problem

Combinatorial optimization: KN possibilities for Z (N × K matrix with one-hot rows)

A greedy approach: Optimize Z one row (zn) at a time keeping all others zn’s (and µ) fixed

ẑn = arg min
zn

K∑
k=1

znk ||xn − µ̂k ||2 = arg min
zn
||xn − µ̂zn ||2

Easy to see that this is minimized by assigning xn to the closest mean

This is exactly what the K -means algo does!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 8

Solving for Z

Solving for Z with µ fixed at µ̂

Ẑ = arg min
Z
L(X,Z, µ̂) = arg min

Z

N∑
n=1

K∑
k=1

znk ||xn − µ̂k ||2

Still not easy. Since Z is discrete, it is an NP-hard problem

Combinatorial optimization: KN possibilities for Z (N × K matrix with one-hot rows)

A greedy approach: Optimize Z one row (zn) at a time keeping all others zn’s (and µ) fixed

ẑn = arg min
zn

K∑
k=1

znk ||xn − µ̂k ||2 = arg min
zn
||xn − µ̂zn ||2

Easy to see that this is minimized by assigning xn to the closest mean

This is exactly what the K -means algo does!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 8

Solving for Z

Solving for Z with µ fixed at µ̂

Ẑ = arg min
Z
L(X,Z, µ̂) = arg min

Z

N∑
n=1

K∑
k=1

znk ||xn − µ̂k ||2

Still not easy. Since Z is discrete, it is an NP-hard problem

Combinatorial optimization: KN possibilities for Z (N × K matrix with one-hot rows)

A greedy approach: Optimize Z one row (zn) at a time keeping all others zn’s (and µ) fixed

ẑn = arg min
zn

K∑
k=1

znk ||xn − µ̂k ||2

= arg min
zn
||xn − µ̂zn ||2

Easy to see that this is minimized by assigning xn to the closest mean

This is exactly what the K -means algo does!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 8

Solving for Z

Solving for Z with µ fixed at µ̂

Ẑ = arg min
Z
L(X,Z, µ̂) = arg min

Z

N∑
n=1

K∑
k=1

znk ||xn − µ̂k ||2

Still not easy. Since Z is discrete, it is an NP-hard problem

Combinatorial optimization: KN possibilities for Z (N × K matrix with one-hot rows)

A greedy approach: Optimize Z one row (zn) at a time keeping all others zn’s (and µ) fixed

ẑn = arg min
zn

K∑
k=1

znk ||xn − µ̂k ||2 = arg min
zn
||xn − µ̂zn ||2

Easy to see that this is minimized by assigning xn to the closest mean

This is exactly what the K -means algo does!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 8

Solving for Z

Solving for Z with µ fixed at µ̂

Ẑ = arg min
Z
L(X,Z, µ̂) = arg min

Z

N∑
n=1

K∑
k=1

znk ||xn − µ̂k ||2

Still not easy. Since Z is discrete, it is an NP-hard problem

Combinatorial optimization: KN possibilities for Z (N × K matrix with one-hot rows)

A greedy approach: Optimize Z one row (zn) at a time keeping all others zn’s (and µ) fixed

ẑn = arg min
zn

K∑
k=1

znk ||xn − µ̂k ||2 = arg min
zn
||xn − µ̂zn ||2

Easy to see that this is minimized by assigning xn to the closest mean

This is exactly what the K -means algo does!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 8

Solving for Z

Solving for Z with µ fixed at µ̂

Ẑ = arg min
Z
L(X,Z, µ̂) = arg min

Z

N∑
n=1

K∑
k=1

znk ||xn − µ̂k ||2

Still not easy. Since Z is discrete, it is an NP-hard problem

Combinatorial optimization: KN possibilities for Z (N × K matrix with one-hot rows)

A greedy approach: Optimize Z one row (zn) at a time keeping all others zn’s (and µ) fixed

ẑn = arg min
zn

K∑
k=1

znk ||xn − µ̂k ||2 = arg min
zn
||xn − µ̂zn ||2

Easy to see that this is minimized by assigning xn to the closest mean

This is exactly what the K -means algo does!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 8

Solving for µ

Solving for µ with Z fixed at Ẑ

µ̂ = arg min
µ
L(X, Ẑ,µ) = arg min

µ

K∑
k=1

∑
n:ẑn=k

||xn − µk ||2

This is not that hard to solve (µk ’s are real-valued vectors, can optimize easily)

Note that each µk can be optimized independently

µ̂k = arg min
µk

∑
n:ẑn=k

||xn − µk ||2

(Verify) This is minimized by setting µ̂k to be mean of points currently in cluster k

This is exactly what the K -means algo does!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 9

Solving for µ

Solving for µ with Z fixed at Ẑ

µ̂ = arg min
µ
L(X, Ẑ,µ) = arg min

µ

K∑
k=1

∑
n:ẑn=k

||xn − µk ||2

This is not that hard to solve (µk ’s are real-valued vectors, can optimize easily)

Note that each µk can be optimized independently

µ̂k = arg min
µk

∑
n:ẑn=k

||xn − µk ||2

(Verify) This is minimized by setting µ̂k to be mean of points currently in cluster k

This is exactly what the K -means algo does!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 9

Solving for µ

Solving for µ with Z fixed at Ẑ

µ̂ = arg min
µ
L(X, Ẑ,µ) = arg min

µ

K∑
k=1

∑
n:ẑn=k

||xn − µk ||2

This is not that hard to solve (µk ’s are real-valued vectors, can optimize easily)

Note that each µk can be optimized independently

µ̂k = arg min
µk

∑
n:ẑn=k

||xn − µk ||2

(Verify) This is minimized by setting µ̂k to be mean of points currently in cluster k

This is exactly what the K -means algo does!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 9

Solving for µ

Solving for µ with Z fixed at Ẑ

µ̂ = arg min
µ
L(X, Ẑ,µ) = arg min

µ

K∑
k=1

∑
n:ẑn=k

||xn − µk ||2

This is not that hard to solve (µk ’s are real-valued vectors, can optimize easily)

Note that each µk can be optimized independently

µ̂k = arg min
µk

∑
n:ẑn=k

||xn − µk ||2

(Verify) This is minimized by setting µ̂k to be mean of points currently in cluster k

This is exactly what the K -means algo does!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 9

Solving for µ

Solving for µ with Z fixed at Ẑ

µ̂ = arg min
µ
L(X, Ẑ,µ) = arg min

µ

K∑
k=1

∑
n:ẑn=k

||xn − µk ||2

This is not that hard to solve (µk ’s are real-valued vectors, can optimize easily)

Note that each µk can be optimized independently

µ̂k = arg min
µk

∑
n:ẑn=k

||xn − µk ||2

(Verify) This is minimized by setting µ̂k to be mean of points currently in cluster k

This is exactly what the K -means algo does!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 9

Convergence of K -means Algorithm

Each step (updating Z or µ) can never increase the K -means loss

When we update Z from Z(t−1) to Z(t)

L(X,Z(t)
,µ

(t−1)) ≤ L(X,Z(t−1)
,µ

(t−1))

because the new Z(t) = arg minZ L(X,Z,µ(t−1))

When we update µ from µ(t−1) to µ(t)

L(X,Z(t)
,µ

(t)) ≤ L(X,Z(t)
,µ

(t−1))

because the new µ(t) = arg minµ L(X,Z(t),µ)

Thus the K -means algorithm monotonically decreases the objective

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 10

Convergence of K -means Algorithm

Each step (updating Z or µ) can never increase the K -means loss

When we update Z from Z(t−1) to Z(t)

L(X,Z(t)
,µ

(t−1)) ≤ L(X,Z(t−1)
,µ

(t−1))

because the new Z(t) = arg minZ L(X,Z,µ(t−1))

When we update µ from µ(t−1) to µ(t)

L(X,Z(t)
,µ

(t)) ≤ L(X,Z(t)
,µ

(t−1))

because the new µ(t) = arg minµ L(X,Z(t),µ)

Thus the K -means algorithm monotonically decreases the objective

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 10

Convergence of K -means Algorithm

Each step (updating Z or µ) can never increase the K -means loss

When we update Z from Z(t−1) to Z(t)

L(X,Z(t)
,µ

(t−1)) ≤ L(X,Z(t−1)
,µ

(t−1))

because the new Z(t) = arg minZ L(X,Z,µ(t−1))

When we update µ from µ(t−1) to µ(t)

L(X,Z(t)
,µ

(t)) ≤ L(X,Z(t)
,µ

(t−1))

because the new µ(t) = arg minµ L(X,Z(t),µ)

Thus the K -means algorithm monotonically decreases the objective

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 10

Convergence of K -means Algorithm

Each step (updating Z or µ) can never increase the K -means loss

When we update Z from Z(t−1) to Z(t)

L(X,Z(t)
,µ

(t−1)) ≤ L(X,Z(t−1)
,µ

(t−1))

because the new Z(t) = arg minZ L(X,Z,µ(t−1))

When we update µ from µ(t−1) to µ(t)

L(X,Z(t)
,µ

(t)) ≤ L(X,Z(t)
,µ

(t−1))

because the new µ(t) = arg minµ L(X,Z(t),µ)

Thus the K -means algorithm monotonically decreases the objective

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 10

Convergence of K -means Algorithm

Each step (updating Z or µ) can never increase the K -means loss

When we update Z from Z(t−1) to Z(t)

L(X,Z(t)
,µ

(t−1)) ≤ L(X,Z(t−1)
,µ

(t−1))

because the new Z(t) = arg minZ L(X,Z,µ(t−1))

When we update µ from µ(t−1) to µ(t)

L(X,Z(t)
,µ

(t)) ≤ L(X,Z(t)
,µ

(t−1))

because the new µ(t) = arg minµ L(X,Z(t),µ)

Thus the K -means algorithm monotonically decreases the objective

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 10

Convergence of K -means Algorithm

Each step (updating Z or µ) can never increase the K -means loss

When we update Z from Z(t−1) to Z(t)

L(X,Z(t)
,µ

(t−1)) ≤ L(X,Z(t−1)
,µ

(t−1))

because the new Z(t) = arg minZ L(X,Z,µ(t−1))

When we update µ from µ(t−1) to µ(t)

L(X,Z(t)
,µ

(t)) ≤ L(X,Z(t)
,µ

(t−1))

because the new µ(t) = arg minµ L(X,Z(t),µ)

Thus the K -means algorithm monotonically decreases the objective

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 10

K -means: Choosing K

One way to select K for the K -means algorithm is to try different values of K , plot the K -means
objective versus K , and look at the “elbow-point”

For the above plot, K = 6 is the elbow point

Can also information criterion such as AIC (Akaike Information Criterion)

AIC = 2L(µ̂,X, Ẑ) + KD

.. and choose the K that has the smallest AIC (discourages large K)

Several other approaches when using probabilistic models for clustering, e.g., comparing marginal
likelihood p(X|K), using nonparametric Bayesian models, etc.

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 11

K -means: Choosing K

One way to select K for the K -means algorithm is to try different values of K , plot the K -means
objective versus K , and look at the “elbow-point”

For the above plot, K = 6 is the elbow point

Can also information criterion such as AIC (Akaike Information Criterion)

AIC = 2L(µ̂,X, Ẑ) + KD

.. and choose the K that has the smallest AIC (discourages large K)

Several other approaches when using probabilistic models for clustering, e.g., comparing marginal
likelihood p(X|K), using nonparametric Bayesian models, etc.

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 11

K -means: Choosing K

One way to select K for the K -means algorithm is to try different values of K , plot the K -means
objective versus K , and look at the “elbow-point”

For the above plot, K = 6 is the elbow point

Can also information criterion such as AIC (Akaike Information Criterion)

AIC = 2L(µ̂,X, Ẑ) + KD

.. and choose the K that has the smallest AIC (discourages large K)

Several other approaches when using probabilistic models for clustering, e.g., comparing marginal
likelihood p(X|K), using nonparametric Bayesian models, etc.

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 11

K -means: Choosing K

One way to select K for the K -means algorithm is to try different values of K , plot the K -means
objective versus K , and look at the “elbow-point”

For the above plot, K = 6 is the elbow point

Can also information criterion such as AIC (Akaike Information Criterion)

AIC = 2L(µ̂,X, Ẑ) + KD

.. and choose the K that has the smallest AIC (discourages large K)

Several other approaches when using probabilistic models for clustering, e.g., comparing marginal
likelihood p(X|K), using nonparametric Bayesian models, etc.

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 11

K -means: Hard vs Soft Assignments

Makes hard assignments of points to clusters

A point either completely belongs to a cluster or doesn’t belong at all

No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for
some point xn, p1 = 0.7, p2 = 0.2, p3 = 0.1)

Hard-assignment okay Hard-assignment tricky

A heuristic to get soft assignments: Transform distances from clusters into probabilities

γnk =
exp(−||xn − µk ||2)∑K
`=1 exp(−||xn − µ`||2)

(prob. that xn belongs to cluster k)

These heuristics are used in “fuzzy” or “soft” K -means algorithms

Soft K -means µk updates are slightly different: µk =
∑N

n=1 γnkxn∑N
n=1 γnk

(all points used, but fractionally)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 12

K -means: Hard vs Soft Assignments

Makes hard assignments of points to clusters

A point either completely belongs to a cluster or doesn’t belong at all

No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for
some point xn, p1 = 0.7, p2 = 0.2, p3 = 0.1)

Hard-assignment okay Hard-assignment tricky

A heuristic to get soft assignments: Transform distances from clusters into probabilities

γnk =
exp(−||xn − µk ||2)∑K
`=1 exp(−||xn − µ`||2)

(prob. that xn belongs to cluster k)

These heuristics are used in “fuzzy” or “soft” K -means algorithms

Soft K -means µk updates are slightly different: µk =
∑N

n=1 γnkxn∑N
n=1 γnk

(all points used, but fractionally)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 12

K -means: Hard vs Soft Assignments

Makes hard assignments of points to clusters

A point either completely belongs to a cluster or doesn’t belong at all

No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for
some point xn, p1 = 0.7, p2 = 0.2, p3 = 0.1)

Hard-assignment okay Hard-assignment tricky

A heuristic to get soft assignments: Transform distances from clusters into probabilities

γnk =
exp(−||xn − µk ||2)∑K
`=1 exp(−||xn − µ`||2)

(prob. that xn belongs to cluster k)

These heuristics are used in “fuzzy” or “soft” K -means algorithms

Soft K -means µk updates are slightly different: µk =
∑N

n=1 γnkxn∑N
n=1 γnk

(all points used, but fractionally)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 12

K -means: Hard vs Soft Assignments

Makes hard assignments of points to clusters

A point either completely belongs to a cluster or doesn’t belong at all

No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for
some point xn, p1 = 0.7, p2 = 0.2, p3 = 0.1)

Hard-assignment okay Hard-assignment tricky

A heuristic to get soft assignments: Transform distances from clusters into probabilities

γnk =
exp(−||xn − µk ||2)∑K
`=1 exp(−||xn − µ`||2)

(prob. that xn belongs to cluster k)

These heuristics are used in “fuzzy” or “soft” K -means algorithms

Soft K -means µk updates are slightly different: µk =
∑N

n=1 γnkxn∑N
n=1 γnk

(all points used, but fractionally)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 12

K -means: Hard vs Soft Assignments

Makes hard assignments of points to clusters

A point either completely belongs to a cluster or doesn’t belong at all

No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for
some point xn, p1 = 0.7, p2 = 0.2, p3 = 0.1)

Hard-assignment okay Hard-assignment tricky

A heuristic to get soft assignments: Transform distances from clusters into probabilities

γnk =
exp(−||xn − µk ||2)∑K
`=1 exp(−||xn − µ`||2)

(prob. that xn belongs to cluster k)

These heuristics are used in “fuzzy” or “soft” K -means algorithms

Soft K -means µk updates are slightly different: µk =
∑N

n=1 γnkxn∑N
n=1 γnk

(all points used, but fractionally)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 12

K -means: Hard vs Soft Assignments

Makes hard assignments of points to clusters

A point either completely belongs to a cluster or doesn’t belong at all

No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for
some point xn, p1 = 0.7, p2 = 0.2, p3 = 0.1)

Hard-assignment okay Hard-assignment tricky

A heuristic to get soft assignments: Transform distances from clusters into probabilities

γnk =
exp(−||xn − µk ||2)∑K
`=1 exp(−||xn − µ`||2)

(prob. that xn belongs to cluster k)

These heuristics are used in “fuzzy” or “soft” K -means algorithms

Soft K -means µk updates are slightly different: µk =
∑N

n=1 γnkxn∑N
n=1 γnk

(all points used, but fractionally)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 12

K -means: Hard vs Soft Assignments

Makes hard assignments of points to clusters

A point either completely belongs to a cluster or doesn’t belong at all

No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for
some point xn, p1 = 0.7, p2 = 0.2, p3 = 0.1)

Hard-assignment okay Hard-assignment tricky

A heuristic to get soft assignments: Transform distances from clusters into probabilities

γnk =
exp(−||xn − µk ||2)∑K
`=1 exp(−||xn − µ`||2)

(prob. that xn belongs to cluster k)

These heuristics are used in “fuzzy” or “soft” K -means algorithms

Soft K -means µk updates are slightly different: µk =
∑N

n=1 γnkxn∑N
n=1 γnk

(all points used, but fractionally)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 12

K -means: Decision Boundaries and Cluster Sizes/Shapes

K -mean assumes that the decision boundary between any two clusters is linear

Reason: The K -means loss function implies assumes equal-sized, spherical clusters

Assumes clusters to be roughly equi-populated, and convex-shaped. Otherwise, may do badly

Kernel K -means can help address some of these issues. Probabilistic models is another option

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 13

K -means: Decision Boundaries and Cluster Sizes/Shapes

K -mean assumes that the decision boundary between any two clusters is linear

Reason: The K -means loss function implies assumes equal-sized, spherical clusters

Assumes clusters to be roughly equi-populated, and convex-shaped. Otherwise, may do badly

Kernel K -means can help address some of these issues. Probabilistic models is another option

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 13

K -means: Decision Boundaries and Cluster Sizes/Shapes

K -mean assumes that the decision boundary between any two clusters is linear

Reason: The K -means loss function implies assumes equal-sized, spherical clusters

Assumes clusters to be roughly equi-populated, and convex-shaped. Otherwise, may do badly

Kernel K -means can help address some of these issues. Probabilistic models is another option

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 13

K -means: Decision Boundaries and Cluster Sizes/Shapes

K -mean assumes that the decision boundary between any two clusters is linear

Reason: The K -means loss function implies assumes equal-sized, spherical clusters

Assumes clusters to be roughly equi-populated, and convex-shaped. Otherwise, may do badly

Kernel K -means can help address some of these issues. Probabilistic models is another option

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 13

Kernel K -means

Basic idea: Replace the Euclidean distances in K -means by the kernelized versions

||φ(xn)− φ(µk)||2 = ||φ(xn)||2 + ||φ(µk)||2 − 2φ(xn)>φ(µk)

= k(xn, xn) + k(µk ,µk)− 2k(xn,µk)

Here k(., .) denotes the kernel function and φ is its (implicit) feature map

Note: φ(µk) is the average of φ’s the data points assigned to cluster k

Can also use landmark or random features approach to make it faster

Can then simply run the basic K -means on those features!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 14

Kernel K -means

Basic idea: Replace the Euclidean distances in K -means by the kernelized versions

||φ(xn)− φ(µk)||2

= ||φ(xn)||2 + ||φ(µk)||2 − 2φ(xn)>φ(µk)

= k(xn, xn) + k(µk ,µk)− 2k(xn,µk)

Here k(., .) denotes the kernel function and φ is its (implicit) feature map

Note: φ(µk) is the average of φ’s the data points assigned to cluster k

Can also use landmark or random features approach to make it faster

Can then simply run the basic K -means on those features!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 14

Kernel K -means

Basic idea: Replace the Euclidean distances in K -means by the kernelized versions

||φ(xn)− φ(µk)||2 = ||φ(xn)||2 + ||φ(µk)||2 − 2φ(xn)>φ(µk)

= k(xn, xn) + k(µk ,µk)− 2k(xn,µk)

Here k(., .) denotes the kernel function and φ is its (implicit) feature map

Note: φ(µk) is the average of φ’s the data points assigned to cluster k

Can also use landmark or random features approach to make it faster

Can then simply run the basic K -means on those features!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 14

Kernel K -means

Basic idea: Replace the Euclidean distances in K -means by the kernelized versions

||φ(xn)− φ(µk)||2 = ||φ(xn)||2 + ||φ(µk)||2 − 2φ(xn)>φ(µk)

= k(xn, xn) + k(µk ,µk)− 2k(xn,µk)

Here k(., .) denotes the kernel function and φ is its (implicit) feature map

Note: φ(µk) is the average of φ’s the data points assigned to cluster k

Can also use landmark or random features approach to make it faster

Can then simply run the basic K -means on those features!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 14

Kernel K -means

Basic idea: Replace the Euclidean distances in K -means by the kernelized versions

||φ(xn)− φ(µk)||2 = ||φ(xn)||2 + ||φ(µk)||2 − 2φ(xn)>φ(µk)

= k(xn, xn) + k(µk ,µk)− 2k(xn,µk)

Here k(., .) denotes the kernel function and φ is its (implicit) feature map

Note: φ(µk) is the average of φ’s the data points assigned to cluster k

Can also use landmark or random features approach to make it faster

Can then simply run the basic K -means on those features!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 14

Kernel K -means

Basic idea: Replace the Euclidean distances in K -means by the kernelized versions

||φ(xn)− φ(µk)||2 = ||φ(xn)||2 + ||φ(µk)||2 − 2φ(xn)>φ(µk)

= k(xn, xn) + k(µk ,µk)− 2k(xn,µk)

Here k(., .) denotes the kernel function and φ is its (implicit) feature map

Note: φ(µk) is the average of φ’s the data points assigned to cluster k

Can also use landmark or random features approach to make it faster

Can then simply run the basic K -means on those features!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 14

Kernel K -means

Basic idea: Replace the Euclidean distances in K -means by the kernelized versions

||φ(xn)− φ(µk)||2 = ||φ(xn)||2 + ||φ(µk)||2 − 2φ(xn)>φ(µk)

= k(xn, xn) + k(µk ,µk)− 2k(xn,µk)

Here k(., .) denotes the kernel function and φ is its (implicit) feature map

Note: φ(µk) is the average of φ’s the data points assigned to cluster k

Can also use landmark or random features approach to make it faster

Can then simply run the basic K -means on those features!

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 14

Going the Probabilistic Way..

Assume a generative model for the inputs. Suppose Θ denotes all the unknown parameters

Clustering then boils down to computing p(zn|xn,Θ) for each xn, where zn is a latent variable

Using the Bayes rule, we can write p(zn|xn,Θ) as

p(zn = k|xn,Θ) =
p(zn = k|Θ)p(xn|zn = k,Θ)

p(xn|Θ)

Assuming p(z |Θ) as multinoulli(π) and each cluster as Gaussian p(x |z = k,Θ) = N (x |µk ,Σk)

Cluster assignment prob now
depends on the number of
points in cluster k

Different clusters can
have different shapes
(covariances)

We know how to estimate Θ for such problems.. if zn is known (recall generative classification)

The tricky part here is that we don’t know zn. How do we estimate Θ then?

A solution: Take an alternating approach (like K -means)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 15

Going the Probabilistic Way..

Assume a generative model for the inputs. Suppose Θ denotes all the unknown parameters

Clustering then boils down to computing p(zn|xn,Θ) for each xn, where zn is a latent variable

Using the Bayes rule, we can write p(zn|xn,Θ) as

p(zn = k|xn,Θ) =
p(zn = k|Θ)p(xn|zn = k,Θ)

p(xn|Θ)

Assuming p(z |Θ) as multinoulli(π) and each cluster as Gaussian p(x |z = k,Θ) = N (x |µk ,Σk)

Cluster assignment prob now
depends on the number of
points in cluster k

Different clusters can
have different shapes
(covariances)

We know how to estimate Θ for such problems.. if zn is known (recall generative classification)

The tricky part here is that we don’t know zn. How do we estimate Θ then?

A solution: Take an alternating approach (like K -means)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 15

Going the Probabilistic Way..

Assume a generative model for the inputs. Suppose Θ denotes all the unknown parameters

Clustering then boils down to computing p(zn|xn,Θ) for each xn, where zn is a latent variable

Using the Bayes rule, we can write p(zn|xn,Θ) as

p(zn = k|xn,Θ) =
p(zn = k|Θ)p(xn|zn = k,Θ)

p(xn|Θ)

Assuming p(z |Θ) as multinoulli(π) and each cluster as Gaussian p(x |z = k,Θ) = N (x |µk ,Σk)

Cluster assignment prob now
depends on the number of
points in cluster k

Different clusters can
have different shapes
(covariances)

We know how to estimate Θ for such problems.. if zn is known (recall generative classification)

The tricky part here is that we don’t know zn. How do we estimate Θ then?

A solution: Take an alternating approach (like K -means)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 15

Going the Probabilistic Way..

Assume a generative model for the inputs. Suppose Θ denotes all the unknown parameters

Clustering then boils down to computing p(zn|xn,Θ) for each xn, where zn is a latent variable

Using the Bayes rule, we can write p(zn|xn,Θ) as

p(zn = k|xn,Θ) =
p(zn = k|Θ)p(xn|zn = k,Θ)

p(xn|Θ)

Assuming p(z |Θ) as multinoulli(π) and each cluster as Gaussian p(x |z = k,Θ) = N (x |µk ,Σk)

Cluster assignment prob now
depends on the number of
points in cluster k

Different clusters can
have different shapes
(covariances)

We know how to estimate Θ for such problems.. if zn is known (recall generative classification)

The tricky part here is that we don’t know zn. How do we estimate Θ then?

A solution: Take an alternating approach (like K -means)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 15

Going the Probabilistic Way..

Assume a generative model for the inputs. Suppose Θ denotes all the unknown parameters

Clustering then boils down to computing p(zn|xn,Θ) for each xn, where zn is a latent variable

Using the Bayes rule, we can write p(zn|xn,Θ) as

p(zn = k|xn,Θ) =
p(zn = k|Θ)p(xn|zn = k,Θ)

p(xn|Θ)

Assuming p(z |Θ) as multinoulli(π) and each cluster as Gaussian p(x |z = k,Θ) = N (x |µk ,Σk)

Cluster assignment prob now
depends on the number of
points in cluster k

Different clusters can
have different shapes
(covariances)

We know how to estimate Θ for such problems.. if zn is known (recall generative classification)

The tricky part here is that we don’t know zn. How do we estimate Θ then?

A solution: Take an alternating approach (like K -means)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 15

Going the Probabilistic Way..

Assume a generative model for the inputs. Suppose Θ denotes all the unknown parameters

Clustering then boils down to computing p(zn|xn,Θ) for each xn, where zn is a latent variable

Using the Bayes rule, we can write p(zn|xn,Θ) as

p(zn = k|xn,Θ) =
p(zn = k|Θ)p(xn|zn = k,Θ)

p(xn|Θ)

Assuming p(z |Θ) as multinoulli(π) and each cluster as Gaussian p(x |z = k,Θ) = N (x |µk ,Σk)

Cluster assignment prob now
depends on the number of
points in cluster k

Different clusters can
have different shapes
(covariances)

We know how to estimate Θ for such problems.. if zn is known (recall generative classification)

The tricky part here is that we don’t know zn. How do we estimate Θ then?

A solution: Take an alternating approach (like K -means)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 15

Going the Probabilistic Way..

Assume a generative model for the inputs. Suppose Θ denotes all the unknown parameters

Clustering then boils down to computing p(zn|xn,Θ) for each xn, where zn is a latent variable

Using the Bayes rule, we can write p(zn|xn,Θ) as

p(zn = k|xn,Θ) =
p(zn = k|Θ)p(xn|zn = k,Θ)

p(xn|Θ)

Assuming p(z |Θ) as multinoulli(π) and each cluster as Gaussian p(x |z = k,Θ) = N (x |µk ,Σk)

Cluster assignment prob now
depends on the number of
points in cluster k

Different clusters can
have different shapes
(covariances)

We know how to estimate Θ for such problems.. if zn is known (recall generative classification)

The tricky part here is that we don’t know zn. How do we estimate Θ then?

A solution: Take an alternating approach (like K -means)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 15

Going the Probabilistic Way..

At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

1 Initialize the model parameters Θ somehow

2 Given the current Θ, estimate Z (cluster assignments) in a soft/hard way

p(zn = k|xn,Θ) = γnk =
p(zn = k|Θ)p(xn|zn = k,Θ)

p(xn|Θ)
, k = 1, . . . ,K

OR ẑn = arg maxk∈{1,...,K}γnk

3 Use {ẑn}Nn=1 (hard cluster labels) or {γnk}N,Kn,k=1 (soft labels) to update Θ via
MLE/MAP (similar to how we do for gen. classification where the labels are known)

4 Note: The soft-label based Θ updates slightly more involved (wait until we see EM)

5 Go to step 2 if not converged yet.

The above algorithm is an instance of a more general Expectation Maximization (EM) algorithm
for latent variable models (we will see this post mid-sem)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 16

Going the Probabilistic Way..

At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

1 Initialize the model parameters Θ somehow

2 Given the current Θ, estimate Z (cluster assignments) in a soft/hard way

p(zn = k|xn,Θ) = γnk =
p(zn = k|Θ)p(xn|zn = k,Θ)

p(xn|Θ)
, k = 1, . . . ,K

OR ẑn = arg maxk∈{1,...,K}γnk

3 Use {ẑn}Nn=1 (hard cluster labels) or {γnk}N,Kn,k=1 (soft labels) to update Θ via
MLE/MAP (similar to how we do for gen. classification where the labels are known)

4 Note: The soft-label based Θ updates slightly more involved (wait until we see EM)

5 Go to step 2 if not converged yet.

The above algorithm is an instance of a more general Expectation Maximization (EM) algorithm
for latent variable models (we will see this post mid-sem)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 16

Going the Probabilistic Way..

At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

1 Initialize the model parameters Θ somehow

2 Given the current Θ, estimate Z (cluster assignments) in a soft/hard way

p(zn = k|xn,Θ) = γnk =
p(zn = k|Θ)p(xn|zn = k,Θ)

p(xn|Θ)
, k = 1, . . . ,K

OR ẑn = arg maxk∈{1,...,K}γnk

3 Use {ẑn}Nn=1 (hard cluster labels) or {γnk}N,Kn,k=1 (soft labels) to update Θ via
MLE/MAP (similar to how we do for gen. classification where the labels are known)

4 Note: The soft-label based Θ updates slightly more involved (wait until we see EM)

5 Go to step 2 if not converged yet.

The above algorithm is an instance of a more general Expectation Maximization (EM) algorithm
for latent variable models (we will see this post mid-sem)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 16

Going the Probabilistic Way..

At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

1 Initialize the model parameters Θ somehow

2 Given the current Θ, estimate Z (cluster assignments) in a soft/hard way

p(zn = k|xn,Θ) = γnk =
p(zn = k|Θ)p(xn|zn = k,Θ)

p(xn|Θ)
, k = 1, . . . ,K

OR ẑn = arg maxk∈{1,...,K}γnk

3 Use {ẑn}Nn=1 (hard cluster labels) or {γnk}N,Kn,k=1 (soft labels) to update Θ via
MLE/MAP (similar to how we do for gen. classification where the labels are known)

4 Note: The soft-label based Θ updates slightly more involved (wait until we see EM)

5 Go to step 2 if not converged yet.

The above algorithm is an instance of a more general Expectation Maximization (EM) algorithm
for latent variable models (we will see this post mid-sem)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 16

Going the Probabilistic Way..

At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

1 Initialize the model parameters Θ somehow

2 Given the current Θ, estimate Z (cluster assignments) in a soft/hard way

p(zn = k|xn,Θ) = γnk =
p(zn = k|Θ)p(xn|zn = k,Θ)

p(xn|Θ)
, k = 1, . . . ,K

OR ẑn = arg maxk∈{1,...,K}γnk

3 Use {ẑn}Nn=1 (hard cluster labels) or {γnk}N,Kn,k=1 (soft labels) to update Θ via
MLE/MAP (similar to how we do for gen. classification where the labels are known)

4 Note: The soft-label based Θ updates slightly more involved (wait until we see EM)

5 Go to step 2 if not converged yet.

The above algorithm is an instance of a more general Expectation Maximization (EM) algorithm
for latent variable models (we will see this post mid-sem)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 16

Going the Probabilistic Way..

At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

1 Initialize the model parameters Θ somehow

2 Given the current Θ, estimate Z (cluster assignments) in a soft/hard way

p(zn = k|xn,Θ) = γnk =
p(zn = k|Θ)p(xn|zn = k,Θ)

p(xn|Θ)
, k = 1, . . . ,K

OR ẑn = arg maxk∈{1,...,K}γnk

3 Use {ẑn}Nn=1 (hard cluster labels) or {γnk}N,Kn,k=1 (soft labels) to update Θ via
MLE/MAP (similar to how we do for gen. classification where the labels are known)

4 Note: The soft-label based Θ updates slightly more involved (wait until we see EM)

5 Go to step 2 if not converged yet.

The above algorithm is an instance of a more general Expectation Maximization (EM) algorithm
for latent variable models (we will see this post mid-sem)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 16

Going the Probabilistic Way..

At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

1 Initialize the model parameters Θ somehow

2 Given the current Θ, estimate Z (cluster assignments) in a soft/hard way

p(zn = k|xn,Θ) = γnk =
p(zn = k|Θ)p(xn|zn = k,Θ)

p(xn|Θ)
, k = 1, . . . ,K

OR ẑn = arg maxk∈{1,...,K}γnk

3 Use {ẑn}Nn=1 (hard cluster labels) or {γnk}N,Kn,k=1 (soft labels) to update Θ via
MLE/MAP (similar to how we do for gen. classification where the labels are known)

4 Note: The soft-label based Θ updates slightly more involved (wait until we see EM)

5 Go to step 2 if not converged yet.

The above algorithm is an instance of a more general Expectation Maximization (EM) algorithm
for latent variable models (we will see this post mid-sem)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 16

Going the Probabilistic Way..

At a high-level, a probabilistic clustering algorithm would look somewhat like this

Sketch of a Probabilistic Clustering Algorithm

1 Initialize the model parameters Θ somehow

2 Given the current Θ, estimate Z (cluster assignments) in a soft/hard way

p(zn = k|xn,Θ) = γnk =
p(zn = k|Θ)p(xn|zn = k,Θ)

p(xn|Θ)
, k = 1, . . . ,K

OR ẑn = arg maxk∈{1,...,K}γnk

3 Use {ẑn}Nn=1 (hard cluster labels) or {γnk}N,Kn,k=1 (soft labels) to update Θ via
MLE/MAP (similar to how we do for gen. classification where the labels are known)

4 Note: The soft-label based Θ updates slightly more involved (wait until we see EM)

5 Go to step 2 if not converged yet.

The above algorithm is an instance of a more general Expectation Maximization (EM) algorithm
for latent variable models (we will see this post mid-sem)

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 16

Clustering vs Classification

Any clustering model typically learns two type of quantities

Parameters Θ of the clustering model (e.g., cluster means µ = {µ1, . . . , µK} in K -means)

Cluster assignments Z = {z1, . . . , zN} for the points

If the cluster assignments Z are known, learning the parameters Θ is just like learning the
parameters of a classification model (typically generative classification) using labeled data

Therefore it helps to think of clustering as (generative) classification with unknown labels

This equivalence is very important and makes it possible to solve clustering problems

Therefore many clustering problems are typically solved in the following fashion

1 Initialize Θ somehow

2 Predict Z given current estimate of Θ

3 Use the predicted Z to improve the estimate of Θ (like learning a generative classification model)

4 Go to step 2 if not converged yet

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 17

Clustering vs Classification

Any clustering model typically learns two type of quantities

Parameters Θ of the clustering model (e.g., cluster means µ = {µ1, . . . , µK} in K -means)

Cluster assignments Z = {z1, . . . , zN} for the points

If the cluster assignments Z are known, learning the parameters Θ is just like learning the
parameters of a classification model (typically generative classification) using labeled data

Therefore it helps to think of clustering as (generative) classification with unknown labels

This equivalence is very important and makes it possible to solve clustering problems

Therefore many clustering problems are typically solved in the following fashion

1 Initialize Θ somehow

2 Predict Z given current estimate of Θ

3 Use the predicted Z to improve the estimate of Θ (like learning a generative classification model)

4 Go to step 2 if not converged yet

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 17

Clustering vs Classification

Any clustering model typically learns two type of quantities

Parameters Θ of the clustering model (e.g., cluster means µ = {µ1, . . . , µK} in K -means)

Cluster assignments Z = {z1, . . . , zN} for the points

If the cluster assignments Z are known, learning the parameters Θ is just like learning the
parameters of a classification model (typically generative classification) using labeled data

Therefore it helps to think of clustering as (generative) classification with unknown labels

This equivalence is very important and makes it possible to solve clustering problems

Therefore many clustering problems are typically solved in the following fashion

1 Initialize Θ somehow

2 Predict Z given current estimate of Θ

3 Use the predicted Z to improve the estimate of Θ (like learning a generative classification model)

4 Go to step 2 if not converged yet

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 17

Clustering vs Classification

Any clustering model typically learns two type of quantities

Parameters Θ of the clustering model (e.g., cluster means µ = {µ1, . . . , µK} in K -means)

Cluster assignments Z = {z1, . . . , zN} for the points

If the cluster assignments Z are known, learning the parameters Θ is just like learning the
parameters of a classification model (typically generative classification) using labeled data

Therefore it helps to think of clustering as (generative) classification with unknown labels

This equivalence is very important and makes it possible to solve clustering problems

Therefore many clustering problems are typically solved in the following fashion

1 Initialize Θ somehow

2 Predict Z given current estimate of Θ

3 Use the predicted Z to improve the estimate of Θ (like learning a generative classification model)

4 Go to step 2 if not converged yet

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 17

Clustering vs Classification

Any clustering model typically learns two type of quantities

Parameters Θ of the clustering model (e.g., cluster means µ = {µ1, . . . , µK} in K -means)

Cluster assignments Z = {z1, . . . , zN} for the points

If the cluster assignments Z are known, learning the parameters Θ is just like learning the
parameters of a classification model (typically generative classification) using labeled data

Therefore it helps to think of clustering as (generative) classification with unknown labels

This equivalence is very important and makes it possible to solve clustering problems

Therefore many clustering problems are typically solved in the following fashion

1 Initialize Θ somehow

2 Predict Z given current estimate of Θ

3 Use the predicted Z to improve the estimate of Θ (like learning a generative classification model)

4 Go to step 2 if not converged yet

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 17

Clustering vs Classification

Any clustering model typically learns two type of quantities

Parameters Θ of the clustering model (e.g., cluster means µ = {µ1, . . . , µK} in K -means)

Cluster assignments Z = {z1, . . . , zN} for the points

If the cluster assignments Z are known, learning the parameters Θ is just like learning the
parameters of a classification model (typically generative classification) using labeled data

Therefore it helps to think of clustering as (generative) classification with unknown labels

This equivalence is very important and makes it possible to solve clustering problems

Therefore many clustering problems are typically solved in the following fashion

1 Initialize Θ somehow

2 Predict Z given current estimate of Θ

3 Use the predicted Z to improve the estimate of Θ (like learning a generative classification model)

4 Go to step 2 if not converged yet

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 17

Clustering vs Classification

Any clustering model typically learns two type of quantities

Parameters Θ of the clustering model (e.g., cluster means µ = {µ1, . . . , µK} in K -means)

Cluster assignments Z = {z1, . . . , zN} for the points

If the cluster assignments Z are known, learning the parameters Θ is just like learning the
parameters of a classification model (typically generative classification) using labeled data

Therefore it helps to think of clustering as (generative) classification with unknown labels

This equivalence is very important and makes it possible to solve clustering problems

Therefore many clustering problems are typically solved in the following fashion

1 Initialize Θ somehow

2 Predict Z given current estimate of Θ

3 Use the predicted Z to improve the estimate of Θ (like learning a generative classification model)

4 Go to step 2 if not converged yet

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 17

Clustering vs Classification

Any clustering model typically learns two type of quantities

Parameters Θ of the clustering model (e.g., cluster means µ = {µ1, . . . , µK} in K -means)

Cluster assignments Z = {z1, . . . , zN} for the points

If the cluster assignments Z are known, learning the parameters Θ is just like learning the
parameters of a classification model (typically generative classification) using labeled data

Therefore it helps to think of clustering as (generative) classification with unknown labels

This equivalence is very important and makes it possible to solve clustering problems

Therefore many clustering problems are typically solved in the following fashion

1 Initialize Θ somehow

2 Predict Z given current estimate of Θ

3 Use the predicted Z to improve the estimate of Θ (like learning a generative classification model)

4 Go to step 2 if not converged yet

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 17

Clustering vs Classification

Any clustering model typically learns two type of quantities

Parameters Θ of the clustering model (e.g., cluster means µ = {µ1, . . . , µK} in K -means)

Cluster assignments Z = {z1, . . . , zN} for the points

If the cluster assignments Z are known, learning the parameters Θ is just like learning the
parameters of a classification model (typically generative classification) using labeled data

Therefore it helps to think of clustering as (generative) classification with unknown labels

This equivalence is very important and makes it possible to solve clustering problems

Therefore many clustering problems are typically solved in the following fashion

1 Initialize Θ somehow

2 Predict Z given current estimate of Θ

3 Use the predicted Z to improve the estimate of Θ (like learning a generative classification model)

4 Go to step 2 if not converged yet

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 17

Clustering can help supervised learning, too

Often “difficult” supervised learning problems can be seen as mixture of simpler models

Example: Nonlinear regression or nonlinear classification as mixture of linear models

Mixture of two linear regression models
Mixture of two linear classification models

An alternative to kernel methods and deep learning :-)

Don’t know which point belongs to which linear model ⇒ Clustering problem

Can therefore solve such problems as follows

1 Initialize each linear model somehow (maybe randomly)

2 Cluster the data by assigning each point to its “closest” linear model

3 (Re-)Learn a linear model for each cluster’s data. Go to step 2 if not converged.

Often called Mixture of Experts models. Will look at these more formally after mid-sem

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 18

Clustering can help supervised learning, too

Often “difficult” supervised learning problems can be seen as mixture of simpler models

Example: Nonlinear regression or nonlinear classification as mixture of linear models

Mixture of two linear regression models
Mixture of two linear classification models

An alternative to kernel methods and deep learning :-)

Don’t know which point belongs to which linear model ⇒ Clustering problem

Can therefore solve such problems as follows

1 Initialize each linear model somehow (maybe randomly)

2 Cluster the data by assigning each point to its “closest” linear model

3 (Re-)Learn a linear model for each cluster’s data. Go to step 2 if not converged.

Often called Mixture of Experts models. Will look at these more formally after mid-sem

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 18

Clustering can help supervised learning, too

Often “difficult” supervised learning problems can be seen as mixture of simpler models

Example: Nonlinear regression or nonlinear classification as mixture of linear models

Mixture of two linear regression models
Mixture of two linear classification models

An alternative to kernel methods and deep learning :-)

Don’t know which point belongs to which linear model ⇒ Clustering problem

Can therefore solve such problems as follows

1 Initialize each linear model somehow (maybe randomly)

2 Cluster the data by assigning each point to its “closest” linear model

3 (Re-)Learn a linear model for each cluster’s data. Go to step 2 if not converged.

Often called Mixture of Experts models. Will look at these more formally after mid-sem

Intro to Machine Learning (CS771A) K -means Clustering and Extensions 18

