Speeding Up Kernel Methods, and Intro to Unsupervised Learning

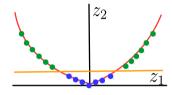
Piyush Rai

Introduction to Machine Learning (CS771A)

September 11, 2018

Recap: Nonlinear Mappings

• Idea: Use a <u>nonlinear</u> mapping $\phi: \mathbb{R}^D \to \mathbb{R}^M$ to map original data to a high-dim space, e.g.,



- ullet Learn a linear model in the new space using the mapped inputs $\phi({m x}_1),\ldots,\phi({m x}_N)$
- Equivalent to learning a nonlinear model on the original data x_1, \ldots, x_N
- The mappings can be explicitly defined, or implicitly defined via a kernel function k, s.t.

$$k(\boldsymbol{x}_n, \boldsymbol{x}_m) = \phi(\boldsymbol{x}_n)^{\top} \phi(\boldsymbol{x}_m)$$

- Benefit of using kernels: Don't need to explicitly compute the mappings (M can be very large)
- Many ML algos only have data appearing as inner products. Can kernelize such algos

Recap: Nonlinear Mappings and Kernels

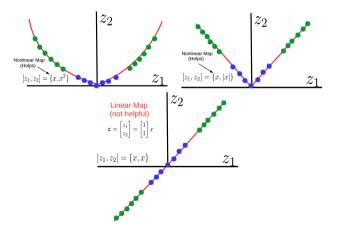
- A kernel function $k(\mathbf{x}_n, \mathbf{x}_m) = \phi(\mathbf{x}_n)^{\top} \phi(\mathbf{x}_m)$ defines inner-product similarity between two inputs
- \bullet This is a Euclidean similarity in ϕ space but a "nonlinear" similarity in original space
- Some popular examples of kernel functions

$$k(\mathbf{x}_n, \mathbf{x}_m) = \mathbf{x}_n^{\top} \mathbf{x}_m$$
 (Linear kernel)
 $k(\mathbf{x}_n, \mathbf{x}_m) = (1 + \mathbf{x}_n^{\top} \mathbf{x}_m)^2$ (Quadratic kernel)
 $k(\mathbf{x}_n, \mathbf{x}_m) = (1 + \mathbf{x}_n^{\top} \mathbf{x}_m)^d$ (Polynomial kernel of degree d)
 $k(\mathbf{x}_n, \mathbf{x}_m) = \exp[-\gamma ||\mathbf{x}_n - \mathbf{x}_m||^2]$ (RBF/Gaussian kernel)

- Each of these kernels have an associated feature mapping $\phi: \mathbb{R}^D \to \mathbb{R}^M$, e.g.,
 - Quadratic kernel: $\phi(\mathbf{x}) = [1, \sqrt{2}x_1, \dots, \sqrt{2}x_1x_2, \dots, x_1^2, \dots]$. Here $M = O(D + D^2)$ dimensional
 - RBF kernel: $\phi(x)$ is infinite dimensional (saw in the last class). Here $M=\infty$
- ullet Again, remember that when using kernels, we don't have to compute ϕ explicitly

Recap: Nonlinear Mappings and Kernels

 \bullet Not every high-dim mapping is helpful. The mapping ϕ must be $\underline{\mathsf{nonlinear}}$



Kernel Methods can be Slow

Training phase can be slow (if N is very large)

Soft-Margin SVM:
$$\max_{\boldsymbol{\alpha} \leq \boldsymbol{C}} \ \mathcal{L}_D(\alpha) = \boldsymbol{\alpha}^\top \mathbf{1} - \frac{1}{2} \boldsymbol{\alpha}^\top \mathbf{G} \boldsymbol{\alpha}$$
Nx N size

Storing the learned model may be expensive

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \phi(\mathbf{x}_n)$$
Possibly very high-dimensional

Testing (prediction) phase can be slow (scales in N or at least the number of support vectors)

$$y = \operatorname{sign}(\mathbf{w}^{\top} \phi(\mathbf{x})) = \operatorname{sign}(\sum_{n=1}^{N} \alpha_n y_n \phi(\mathbf{x}_n)^{\top} \phi(\mathbf{x})) = \operatorname{sign}(\sum_{n=1}^{N} \alpha_n y_n k(\mathbf{x}_n, \mathbf{x}))$$

Kernel Methods can be Slow

Training phase can be slow (if N is very large)

Dual form of Ridge Regression:
$$\mathbf{w} = \mathbf{X}^{\top} (\mathbf{X} \mathbf{X}^{\top} + \lambda \mathbf{I}_{N})^{-1} \mathbf{y} = \mathbf{X}^{\top} \boldsymbol{\alpha} = \sum_{n=1}^{N} \alpha_{n} \mathbf{x}_{n}$$
Kernelized Ridge Regression: $\mathbf{w} = \phi(\mathbf{X})^{\top} (\mathbf{K} + \lambda \mathbf{I}_{N})^{-1} \mathbf{y} = \phi(\mathbf{X})^{\top} \boldsymbol{\alpha} = \sum_{n=1}^{N} \alpha_{n} \phi(\mathbf{x}_{n})$

N x N size (also need to invert it)

Storing the learned model may be expensive

$$\boldsymbol{w} = \sum_{n=1}^{N} \alpha_n \boldsymbol{\phi}(\boldsymbol{x}_n)$$

Possibly very high-dimensional

Testing (prediction) phase can be slow (scales in N)

$$y = \mathbf{w}^{\top} \phi(\mathbf{x}) = \sum_{n=1}^{N} \alpha_n \phi(\mathbf{x}_n)^{\top} \phi(\mathbf{x}) = \sum_{n=1}^{N} \alpha_n k(\mathbf{x}_n, \mathbf{x})$$

Speeding Up Kernel Methods

- Kernel methods are slow at training and test time
- Would have been nice if we could easily compute the mapping $\phi(x)$ associated with kernel k
- Then we could apply linear models directly on $\phi(x)$ without having to kernelize
- But this is in general not possible since $\phi(\mathbf{x})$ is very high dimensional
- Instead of a high-dim $\phi(\mathbf{x})$, can we get a good set of low-dim features $\psi(\mathbf{x}) \in \mathbb{R}^L$ using the kernel?
- If $\psi(\mathbf{x})$ is a good approximation of $\phi(\mathbf{x})$, then we can just use $\psi(\mathbf{x})$ in a linear model

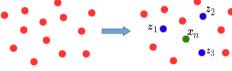
"Goodness" Criterion:
$$\psi(\mathbf{x}_n)^{\top}\psi(\mathbf{x}_m) \approx \phi(\mathbf{x}_n)^{\top}\phi(\mathbf{x}_m)$$

i.e., we want
$$\psi(\boldsymbol{x}_n)^{\top}\psi(\boldsymbol{x}_m) \approx k(\boldsymbol{x}_n, \boldsymbol{x}_m)$$

• We will see two popular approaches: Landmarks and Random Features

Using Kernels to "Extract" Good Features: Landmarks

• Suppose we choose a small set of L "landmark" inputs z_1, \ldots, z_L in the training data



$$\psi(x_n) = [k(z_1, x_n), k(z_2, x_n), k(z_3, x_n)] \in \mathbb{R}^3$$

• For each input x_n , using a kernel k, define an L-dimensional feature vector as follows

$$\psi(\mathbf{x}_n) = [k(\mathbf{z}_1, \mathbf{x}_n), k(\mathbf{z}_2, \mathbf{x}_n), \dots, k(\mathbf{z}_L, \mathbf{x}_n)]$$

- $\psi(\mathbf{x}_n) \in \mathbb{R}^L$ is such that $k(\mathbf{x}_n, \mathbf{x}_m) = \phi(\mathbf{x}_n)^\top \phi(\mathbf{x}_m) \approx \psi(\mathbf{x}_n)^\top \psi(\mathbf{x}_m)$
- ullet Can now apply a linear model on the ψ representation (L-dimensional now) of the inputs
- This will be fast both at training as well as test time if *L* is small
- No need to kernelize the linear model and work with kernels (but still reap their benefits :-))
- Note: The landmarks need not be actual inputs. Can even be learned from data.

Using Kernels to "Extract" Good Features: Random Features

Many kernel functions can be written as[†]

$$k(\boldsymbol{x}_n, \boldsymbol{x}_m) = \phi(\boldsymbol{x}_n)^{\top} \phi(\boldsymbol{x}_m) = \mathbb{E}_{\boldsymbol{w} \sim p(\boldsymbol{w})} [t_{\boldsymbol{w}}(\boldsymbol{x}_n) t_{\boldsymbol{w}}(\boldsymbol{x}_m)]$$

where $t_{\mathbf{w}}(.)$ is a scalar-valued function with parameters $\mathbf{w} \in \mathbb{R}^D$ from some distribution $p(\mathbf{w})$

• Example: For the RBF kernel, $t_w(.)$ is cosine function and p(w) is zero mean Gausssian

$$k(\boldsymbol{x}_n, \boldsymbol{x}_m) = \mathbb{E}_{\boldsymbol{w} \sim p(\boldsymbol{w})}[\cos(\boldsymbol{w}^{\top} \boldsymbol{x}_n) \cos(\boldsymbol{w}^{\top} \boldsymbol{x}_m)]$$

• Given $\mathbf{w}_1 \dots \mathbf{w}_L$ drawn from $p(\mathbf{w})$, using Monte-Carlo approximation of expectation above

$$k(\mathbf{x}_n, \mathbf{x}_m) \approx \frac{1}{L} \sum_{\ell=1}^{L} \cos(\mathbf{w}_{\ell}^{\top} \mathbf{x}_n) \cos(\mathbf{w}_{\ell}^{\top} \mathbf{x}_m) = \psi(\mathbf{x}_n)^{\top} \psi(\mathbf{x}_m)$$

where $\psi(\mathbf{x}_n) = \frac{1}{\sqrt{L}} [\cos(\mathbf{w}_1^{\top} \mathbf{x}_n), \dots, \cos(\mathbf{w}_L^{\top} \mathbf{x}_n)]$ is an *L*-dim. feature vector (*L* needs to be set)

- Can apply a linear model on this L-dim representation of the data (no need to kernelize)
- Such techniques exist for several kernels (RBF, polynomial, etc)

Other Techniques for Speeding Up Kernel Methods

- Reducing the number of support vectors (for SVM based models). For example,
 - Learn the kernelized SV. Identify the support vectors.
 - Cluster the support vectors
 - Pick one SV from each cluster, retrain SVM using the chosen SVs
- Low-rank approximations of kernel matrix (Nyström approximation)

Kernel Methods: Some Final Comments

- Sometimes, even linear models can be trained via kernelization (but with linear kernel)
- Benefit? Well, this may be beneficial sometimes due to computational reasons
- For example, ridge regression requires solving

$$\mathbf{w} = (\mathbf{X}^{ op}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{ op}\mathbf{y}$$

- .. where we learn \boldsymbol{w} by inverting a $D \times D$ matrix
- Instead, the dual version of Ridge Regression, as we saw earlier, requires solving

$$\mathbf{w} = \mathbf{X}^{\top} (\mathbf{X} \mathbf{X}^{\top} + \lambda \mathbf{I}_{N})^{-1} \mathbf{y} = \mathbf{X}^{\top} \boldsymbol{\alpha} = \sum_{n=1}^{N} \alpha_{n} \mathbf{x}_{n}$$

- .. where we learn ${m w}$ in terms of ${m lpha}$ by inverting ${m N} imes {m N}$ matrix
- ullet Even when working with linear model, if D > N, the latter way may be preferable
- Similar considerations apply to other kernelizable models too (e.g., SVM)
- If linear model is what you want, still makes sense to look at the relative values of N and D to decide whether to go for the dual (kernelized) formulation of the problem with a linear kernel

Kernel Methods: Some Final Comments

- Kernel methods give us good features to make learning easier
- However, these features are pre-defined (due to the choice of kernel)
- Example: Consider the quadratic kernel applied to input $\mathbf{x} = [x_1, x_2]$

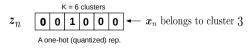
$$\phi(\mathbf{x}) = [1, \sqrt{2}x_1, x_1^2, \sqrt{2}x_1x_2, x_2, x_2^2, \sqrt{2}x_2] \quad \text{(fixed definition for ϕ)}$$

- Another alternative is to learn good features from data
- We will revisit this when we talk about deep neural networks

Unsupervised Learning

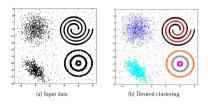
Unsupervised Learning

- Roughly speaking, it is about learning interesting structures in the data (unsupervisedly!)
- There is no supervision (no labels/responses), only inputs x_1, \ldots, x_N
- Some examples of unsupervised learning
 - Clustering: Grouping similar inputs together (and dissimilar ones far apart)
 - Dimensionality Reduction: Reducing the data dimensionality
 - Estimating the probability density of data (which distribution "generated" the data)
- Most unsupervised learning algos can also be seen as learning a new representation of data
 - Typically a compressed representation, e.g., clustering can be used to get a one-hot representation



Clustering

- Given: N unlabeled examples $\{x_1, \dots, x_N\}$; no. of desired partitions K
- Goal: Group the examples into K "homogeneous" partitions



Picture courtesy: "Data Clustering: 50 Years Beyond K-Means", A.K. Jain (2008)

- Loosely speaking, it is classification without ground truth labels
- A good clustering is one that achieves:
 - High within-cluster similarity
 - Low inter-cluster similarity

Similarity can be Subjective

- Clustering only looks at similarities, no labels are given
- Without labels, similarity can be hard to define

- Thus using the right distance/similarity is very important in clustering
- Also important to define/ask: "Clustering based on what"?

Clustering: Some Examples

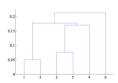
- Document/Image/Webpage Clustering
- Image Segmentation (clustering pixels)

- Clustering web-search results
- Clustering (people) nodes in (social) networks/graphs
- .. and many more..

Types of Clustering

- Flat or Partitional clustering
 - Partitions are independent of each other

- Hierarchical clustering
 - Partitions can be visualized using a tree structure (a dendrogram)



• Possible to view partitions at different levels of granularities by "cutting" the tree at some level

Flat Clustering: K-means algorithm (Lloyd, 1957)

- Input: N examples $\{x_1, \dots, x_N\}$; $x_n \in \mathbb{R}^D$; the number of partitions K
- **Desired Output:** Cluster assignments of these N examples and K cluster means μ_1, \ldots, μ_K
- Initialize: K cluster means μ_1, \ldots, μ_K , each $\mu_k \in \mathbb{R}^D$
 - Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics exist (e.g., K-means++, Arthur & Vassilvitskii, 2007)
- Iterate:
 - (Re)-Assign each example x_n to its closest cluster center (based on the smallest Euclidean distance)

$$C_k = \{n: k = \arg\min_{k} ||x_n - \mu_k||^2\}$$

 $(\mathcal{C}_k$ is the set of examples assigned to cluster k with center μ_k)

• Update the cluster means

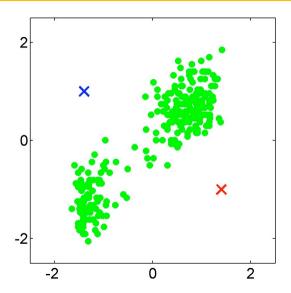
$$oxed{\mu_k = \mathsf{mean}(\mathcal{C}_k) = rac{1}{|\mathcal{C}_k|} \sum_{n \in \mathcal{C}_k} oldsymbol{x}_n}$$

- Repeat while not converged
- Stop when cluster means or the "loss" does not change by much

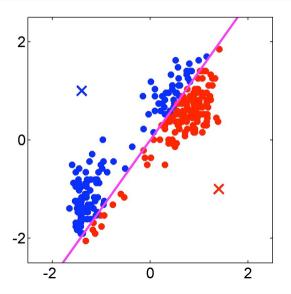
K-means = Prototype Classification (with unknown labels)

- Guess the means
- Predict the labels
- · Recompute the means
- Repeat

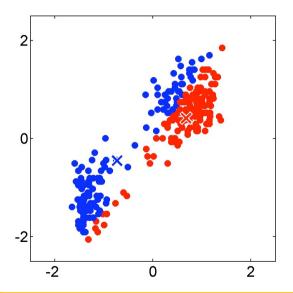
K-means: Initialization (assume K = 2)



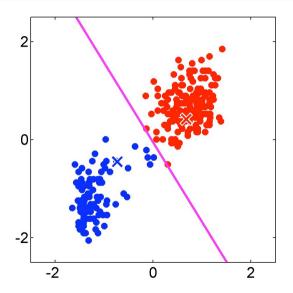
K-means iteration 1: Assigning points



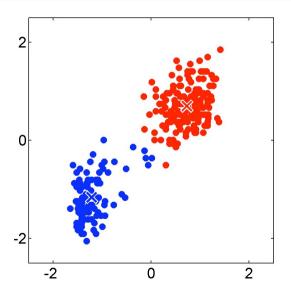
K-means iteration 1: Recomputing the centers



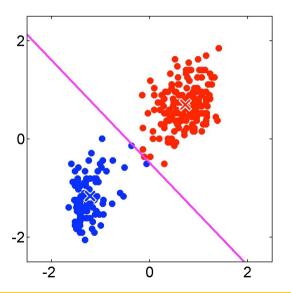
K-means iteration 2: Assigning points



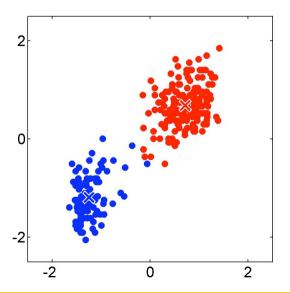
K-means iteration 2: Recomputing the centers



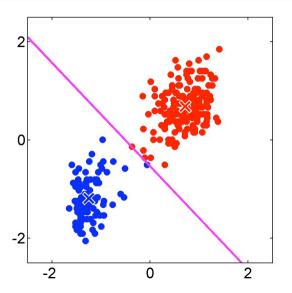
K-means iteration 3: Assigning points



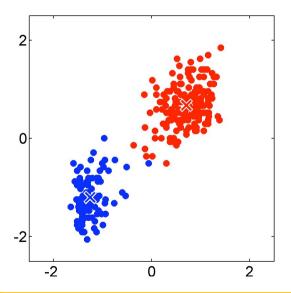
K-means iteration 3: Recomputing the centers



K-means iteration 4: Assigning points



K-means iteration 4: Recomputing the centers



What Loss Function is *K*-means Optimizing?

- Let μ_1, \ldots, μ_K be the K cluster centroids (means)
- Let $z_{nk} \in \{0,1\}$ be s.t. $z_{nk} = 1$ if x_n belongs to cluster k, and 0 otherwise
 - Note: $\mathbf{z}_n = [z_{n1} \ z_{n2} \ \dots \ z_{nK}]$ represents a length K one-hot encoding of \mathbf{x}_n
- Define the distortion or "loss" for the cluster assignment of x_n

$$\ell(\mu, \boldsymbol{x}_n, \boldsymbol{z}_n) = \sum_{k=1}^K z_{nk} ||\boldsymbol{x}_n - \boldsymbol{\mu}_k||^2$$

• Total distortion over all points defines the K-means "loss function"

$$L(\mu, \mathbf{X}, \mathbf{Z}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} ||\mathbf{x}_n - \mu_k||^2 = \underbrace{||\mathbf{X} - \mathbf{Z}\mu||_F^2}_{\text{matrix factorization view}}$$

where **Z** is $N \times K$ (row *n* is z_n) and μ is $K \times D$ (row *k* is μ_k)

- ullet The K-means **problem** is to minimize this objective w.r.t. μ and ${f Z}$
 - Alternating optimization would give the K-means (Lloyd's) algorithm we saw earlier!

Next Class: Clustering (Contd.)

