
Speeding Up Kernel Methods, and
Intro to Unsupervised Learning

Piyush Rai

Introduction to Machine Learning (CS771A)

September 11, 2018

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 1

Recap: Nonlinear Mappings

Idea: Use a nonlinear mapping φ : RD → RM to map original data to a high-dim space, e.g.,

Learn a linear model in the new space using the mapped inputs φ(x1), . . . , φ(xN)

Equivalent to learning a nonlinear model on the original data x1, . . . , xN

The mappings can be explicitly defined, or implicitly defined via a kernel function k, s.t.

k(xn, xm) = φ(xn)>φ(xm)

Benefit of using kernels: Don’t need to explicitly compute the mappings (M can be very large)

Many ML algos only have data appearing as inner products. Can kernelize such algos

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 2

Recap: Nonlinear Mappings

Idea: Use a nonlinear mapping φ : RD → RM to map original data to a high-dim space, e.g.,

Learn a linear model in the new space using the mapped inputs φ(x1), . . . , φ(xN)

Equivalent to learning a nonlinear model on the original data x1, . . . , xN

The mappings can be explicitly defined, or implicitly defined via a kernel function k, s.t.

k(xn, xm) = φ(xn)>φ(xm)

Benefit of using kernels: Don’t need to explicitly compute the mappings (M can be very large)

Many ML algos only have data appearing as inner products. Can kernelize such algos

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 2

Recap: Nonlinear Mappings

Idea: Use a nonlinear mapping φ : RD → RM to map original data to a high-dim space, e.g.,

Learn a linear model in the new space using the mapped inputs φ(x1), . . . , φ(xN)

Equivalent to learning a nonlinear model on the original data x1, . . . , xN

The mappings can be explicitly defined, or implicitly defined via a kernel function k, s.t.

k(xn, xm) = φ(xn)>φ(xm)

Benefit of using kernels: Don’t need to explicitly compute the mappings (M can be very large)

Many ML algos only have data appearing as inner products. Can kernelize such algos

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 2

Recap: Nonlinear Mappings

Idea: Use a nonlinear mapping φ : RD → RM to map original data to a high-dim space, e.g.,

Learn a linear model in the new space using the mapped inputs φ(x1), . . . , φ(xN)

Equivalent to learning a nonlinear model on the original data x1, . . . , xN

The mappings can be explicitly defined, or implicitly defined via a kernel function k, s.t.

k(xn, xm) = φ(xn)>φ(xm)

Benefit of using kernels: Don’t need to explicitly compute the mappings (M can be very large)

Many ML algos only have data appearing as inner products. Can kernelize such algos

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 2

Recap: Nonlinear Mappings

Idea: Use a nonlinear mapping φ : RD → RM to map original data to a high-dim space, e.g.,

Learn a linear model in the new space using the mapped inputs φ(x1), . . . , φ(xN)

Equivalent to learning a nonlinear model on the original data x1, . . . , xN

The mappings can be explicitly defined, or implicitly defined via a kernel function k, s.t.

k(xn, xm) = φ(xn)>φ(xm)

Benefit of using kernels: Don’t need to explicitly compute the mappings (M can be very large)

Many ML algos only have data appearing as inner products. Can kernelize such algos

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 2

Recap: Nonlinear Mappings

Idea: Use a nonlinear mapping φ : RD → RM to map original data to a high-dim space, e.g.,

Learn a linear model in the new space using the mapped inputs φ(x1), . . . , φ(xN)

Equivalent to learning a nonlinear model on the original data x1, . . . , xN

The mappings can be explicitly defined, or implicitly defined via a kernel function k, s.t.

k(xn, xm) = φ(xn)>φ(xm)

Benefit of using kernels: Don’t need to explicitly compute the mappings (M can be very large)

Many ML algos only have data appearing as inner products. Can kernelize such algos

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 2

Recap: Nonlinear Mappings

Idea: Use a nonlinear mapping φ : RD → RM to map original data to a high-dim space, e.g.,

Learn a linear model in the new space using the mapped inputs φ(x1), . . . , φ(xN)

Equivalent to learning a nonlinear model on the original data x1, . . . , xN

The mappings can be explicitly defined, or implicitly defined via a kernel function k, s.t.

k(xn, xm) = φ(xn)>φ(xm)

Benefit of using kernels: Don’t need to explicitly compute the mappings (M can be very large)

Many ML algos only have data appearing as inner products. Can kernelize such algos

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 2

Recap: Nonlinear Mappings and Kernels

A kernel function k(xn, xm) = φ(xn)>φ(xm) defines inner-product similarity between two inputs

This is a Euclidean similarity in φ space but a “nonlinear” similarity in original space

Some popular examples of kernel functions

k(xn, xm) = x>n xm (Linear kernel)

k(xn, xm) = (1 + x>n xm)2 (Quadratic kernel)

k(xn, xm) = (1 + x>n xm)d (Polynomial kernel of degree d)

k(xn, xm) = exp[−γ||xn − xm||2] (RBF/Gaussian kernel)

Each of these kernels have an associated feature mapping φ : RD → RM , e.g.,

Quadratic kernel: φ(x) = [1,
√

2x1, . . . ,
√

2x1x2, . . . , x
2
1 , . . .]. Here M = O(D + D2) dimensional

RBF kernel: φ(x) is infinite dimensional (saw in the last class). Here M =∞

Again, remember that when using kernels, we don’t have to compute φ explicitly

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 3

Recap: Nonlinear Mappings and Kernels

A kernel function k(xn, xm) = φ(xn)>φ(xm) defines inner-product similarity between two inputs

This is a Euclidean similarity in φ space but a “nonlinear” similarity in original space

Some popular examples of kernel functions

k(xn, xm) = x>n xm (Linear kernel)

k(xn, xm) = (1 + x>n xm)2 (Quadratic kernel)

k(xn, xm) = (1 + x>n xm)d (Polynomial kernel of degree d)

k(xn, xm) = exp[−γ||xn − xm||2] (RBF/Gaussian kernel)

Each of these kernels have an associated feature mapping φ : RD → RM , e.g.,

Quadratic kernel: φ(x) = [1,
√

2x1, . . . ,
√

2x1x2, . . . , x
2
1 , . . .]. Here M = O(D + D2) dimensional

RBF kernel: φ(x) is infinite dimensional (saw in the last class). Here M =∞

Again, remember that when using kernels, we don’t have to compute φ explicitly

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 3

Recap: Nonlinear Mappings and Kernels

A kernel function k(xn, xm) = φ(xn)>φ(xm) defines inner-product similarity between two inputs

This is a Euclidean similarity in φ space but a “nonlinear” similarity in original space

Some popular examples of kernel functions

k(xn, xm) = x>n xm (Linear kernel)

k(xn, xm) = (1 + x>n xm)2 (Quadratic kernel)

k(xn, xm) = (1 + x>n xm)d (Polynomial kernel of degree d)

k(xn, xm) = exp[−γ||xn − xm||2] (RBF/Gaussian kernel)

Each of these kernels have an associated feature mapping φ : RD → RM

, e.g.,

Quadratic kernel: φ(x) = [1,
√

2x1, . . . ,
√

2x1x2, . . . , x
2
1 , . . .]. Here M = O(D + D2) dimensional

RBF kernel: φ(x) is infinite dimensional (saw in the last class). Here M =∞

Again, remember that when using kernels, we don’t have to compute φ explicitly

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 3

Recap: Nonlinear Mappings and Kernels

A kernel function k(xn, xm) = φ(xn)>φ(xm) defines inner-product similarity between two inputs

This is a Euclidean similarity in φ space but a “nonlinear” similarity in original space

Some popular examples of kernel functions

k(xn, xm) = x>n xm (Linear kernel)

k(xn, xm) = (1 + x>n xm)2 (Quadratic kernel)

k(xn, xm) = (1 + x>n xm)d (Polynomial kernel of degree d)

k(xn, xm) = exp[−γ||xn − xm||2] (RBF/Gaussian kernel)

Each of these kernels have an associated feature mapping φ : RD → RM , e.g.,

Quadratic kernel: φ(x) = [1,
√

2x1, . . . ,
√

2x1x2, . . . , x
2
1 , . . .]

. Here M = O(D + D2) dimensional

RBF kernel: φ(x) is infinite dimensional (saw in the last class). Here M =∞

Again, remember that when using kernels, we don’t have to compute φ explicitly

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 3

Recap: Nonlinear Mappings and Kernels

A kernel function k(xn, xm) = φ(xn)>φ(xm) defines inner-product similarity between two inputs

This is a Euclidean similarity in φ space but a “nonlinear” similarity in original space

Some popular examples of kernel functions

k(xn, xm) = x>n xm (Linear kernel)

k(xn, xm) = (1 + x>n xm)2 (Quadratic kernel)

k(xn, xm) = (1 + x>n xm)d (Polynomial kernel of degree d)

k(xn, xm) = exp[−γ||xn − xm||2] (RBF/Gaussian kernel)

Each of these kernels have an associated feature mapping φ : RD → RM , e.g.,

Quadratic kernel: φ(x) = [1,
√

2x1, . . . ,
√

2x1x2, . . . , x
2
1 , . . .]. Here M = O(D + D2) dimensional

RBF kernel: φ(x) is infinite dimensional (saw in the last class). Here M =∞

Again, remember that when using kernels, we don’t have to compute φ explicitly

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 3

Recap: Nonlinear Mappings and Kernels

A kernel function k(xn, xm) = φ(xn)>φ(xm) defines inner-product similarity between two inputs

This is a Euclidean similarity in φ space but a “nonlinear” similarity in original space

Some popular examples of kernel functions

k(xn, xm) = x>n xm (Linear kernel)

k(xn, xm) = (1 + x>n xm)2 (Quadratic kernel)

k(xn, xm) = (1 + x>n xm)d (Polynomial kernel of degree d)

k(xn, xm) = exp[−γ||xn − xm||2] (RBF/Gaussian kernel)

Each of these kernels have an associated feature mapping φ : RD → RM , e.g.,

Quadratic kernel: φ(x) = [1,
√

2x1, . . . ,
√

2x1x2, . . . , x
2
1 , . . .]. Here M = O(D + D2) dimensional

RBF kernel: φ(x) is infinite dimensional (saw in the last class). Here M =∞

Again, remember that when using kernels, we don’t have to compute φ explicitly

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 3

Recap: Nonlinear Mappings and Kernels

A kernel function k(xn, xm) = φ(xn)>φ(xm) defines inner-product similarity between two inputs

This is a Euclidean similarity in φ space but a “nonlinear” similarity in original space

Some popular examples of kernel functions

k(xn, xm) = x>n xm (Linear kernel)

k(xn, xm) = (1 + x>n xm)2 (Quadratic kernel)

k(xn, xm) = (1 + x>n xm)d (Polynomial kernel of degree d)

k(xn, xm) = exp[−γ||xn − xm||2] (RBF/Gaussian kernel)

Each of these kernels have an associated feature mapping φ : RD → RM , e.g.,

Quadratic kernel: φ(x) = [1,
√

2x1, . . . ,
√

2x1x2, . . . , x
2
1 , . . .]. Here M = O(D + D2) dimensional

RBF kernel: φ(x) is infinite dimensional (saw in the last class). Here M =∞

Again, remember that when using kernels, we don’t have to compute φ explicitly

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 3

Recap: Nonlinear Mappings and Kernels

Not every high-dim mapping is helpful. The mapping φ must be nonlinear

Nonlinear Map
 (Helps)

Nonlinear Map
 (Helps)

 Linear Map
 (not helpful)

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 4

Kernel Methods can be Slow

N x N size

Training phase can be slow (if N is very large)

Storing the learned model may be expensive

Testing (prediction) phase can be slow (scales in N or at least the number of support vectors)

 Possibly very
high-dimensional

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 5

Kernel Methods can be Slow

N x N size

Training phase can be slow (if N is very large)

Storing the learned model may be expensive

Testing (prediction) phase can be slow (scales in N or at least the number of support vectors)

 Possibly very
high-dimensional

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 5

Kernel Methods can be Slow

N x N size

Training phase can be slow (if N is very large)

Storing the learned model may be expensive

Testing (prediction) phase can be slow (scales in N or at least the number of support vectors)

 Possibly very
high-dimensional

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 5

Kernel Methods can be Slow

N x N size (also need to invert it)

Training phase can be slow (if N is very large)

Storing the learned model may be expensive

Testing (prediction) phase can be slow (scales in N)

 Possibly very high-dimensional

Dual form of Ridge Regression:

Kernelized Ridge Regression:

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 6

Speeding Up Kernel Methods

Kernel methods are slow at training and test time

Would have been nice if we could easily compute the mapping φ(x) associated with kernel k

Then we could apply linear models directly on φ(x) without having to kernelize

But this is in general not possible since φ(x) is very high dimensional

Instead of a high-dim φ(x), can we get a good set of low-dim features ψ(x) ∈ RL using the kernel?

If ψ(x) is a good approximation of φ(x), then we can just use ψ(x) in a linear model

“Goodness” Criterion: ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

i.e., we want ψ(xn)>ψ(xm) ≈ k(xn, xm)

We will see two popular approaches: Landmarks and Random Features

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 7

Speeding Up Kernel Methods

Kernel methods are slow at training and test time

Would have been nice if we could easily compute the mapping φ(x) associated with kernel k

Then we could apply linear models directly on φ(x) without having to kernelize

But this is in general not possible since φ(x) is very high dimensional

Instead of a high-dim φ(x), can we get a good set of low-dim features ψ(x) ∈ RL using the kernel?

If ψ(x) is a good approximation of φ(x), then we can just use ψ(x) in a linear model

“Goodness” Criterion: ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

i.e., we want ψ(xn)>ψ(xm) ≈ k(xn, xm)

We will see two popular approaches: Landmarks and Random Features

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 7

Speeding Up Kernel Methods

Kernel methods are slow at training and test time

Would have been nice if we could easily compute the mapping φ(x) associated with kernel k

Then we could apply linear models directly on φ(x) without having to kernelize

But this is in general not possible since φ(x) is very high dimensional

Instead of a high-dim φ(x), can we get a good set of low-dim features ψ(x) ∈ RL using the kernel?

If ψ(x) is a good approximation of φ(x), then we can just use ψ(x) in a linear model

“Goodness” Criterion: ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

i.e., we want ψ(xn)>ψ(xm) ≈ k(xn, xm)

We will see two popular approaches: Landmarks and Random Features

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 7

Speeding Up Kernel Methods

Kernel methods are slow at training and test time

Would have been nice if we could easily compute the mapping φ(x) associated with kernel k

Then we could apply linear models directly on φ(x) without having to kernelize

But this is in general not possible since φ(x) is very high dimensional

Instead of a high-dim φ(x), can we get a good set of low-dim features ψ(x) ∈ RL using the kernel?

If ψ(x) is a good approximation of φ(x), then we can just use ψ(x) in a linear model

“Goodness” Criterion: ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

i.e., we want ψ(xn)>ψ(xm) ≈ k(xn, xm)

We will see two popular approaches: Landmarks and Random Features

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 7

Speeding Up Kernel Methods

Kernel methods are slow at training and test time

Would have been nice if we could easily compute the mapping φ(x) associated with kernel k

Then we could apply linear models directly on φ(x) without having to kernelize

But this is in general not possible since φ(x) is very high dimensional

Instead of a high-dim φ(x), can we get a good set of low-dim features ψ(x) ∈ RL using the kernel?

If ψ(x) is a good approximation of φ(x), then we can just use ψ(x) in a linear model

“Goodness” Criterion: ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

i.e., we want ψ(xn)>ψ(xm) ≈ k(xn, xm)

We will see two popular approaches: Landmarks and Random Features

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 7

Speeding Up Kernel Methods

Kernel methods are slow at training and test time

Would have been nice if we could easily compute the mapping φ(x) associated with kernel k

Then we could apply linear models directly on φ(x) without having to kernelize

But this is in general not possible since φ(x) is very high dimensional

Instead of a high-dim φ(x), can we get a good set of low-dim features ψ(x) ∈ RL using the kernel?

If ψ(x) is a good approximation of φ(x), then we can just use ψ(x) in a linear model

“Goodness” Criterion: ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

i.e., we want ψ(xn)>ψ(xm) ≈ k(xn, xm)

We will see two popular approaches: Landmarks and Random Features

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 7

Speeding Up Kernel Methods

Kernel methods are slow at training and test time

Would have been nice if we could easily compute the mapping φ(x) associated with kernel k

Then we could apply linear models directly on φ(x) without having to kernelize

But this is in general not possible since φ(x) is very high dimensional

Instead of a high-dim φ(x), can we get a good set of low-dim features ψ(x) ∈ RL using the kernel?

If ψ(x) is a good approximation of φ(x), then we can just use ψ(x) in a linear model

“Goodness” Criterion: ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

i.e., we want ψ(xn)>ψ(xm) ≈ k(xn, xm)

We will see two popular approaches: Landmarks and Random Features

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 7

Speeding Up Kernel Methods

Kernel methods are slow at training and test time

Would have been nice if we could easily compute the mapping φ(x) associated with kernel k

Then we could apply linear models directly on φ(x) without having to kernelize

But this is in general not possible since φ(x) is very high dimensional

Instead of a high-dim φ(x), can we get a good set of low-dim features ψ(x) ∈ RL using the kernel?

If ψ(x) is a good approximation of φ(x), then we can just use ψ(x) in a linear model

“Goodness” Criterion: ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

i.e., we want ψ(xn)>ψ(xm) ≈ k(xn, xm)

We will see two popular approaches: Landmarks and Random Features

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 7

Speeding Up Kernel Methods

Kernel methods are slow at training and test time

Would have been nice if we could easily compute the mapping φ(x) associated with kernel k

Then we could apply linear models directly on φ(x) without having to kernelize

But this is in general not possible since φ(x) is very high dimensional

Instead of a high-dim φ(x), can we get a good set of low-dim features ψ(x) ∈ RL using the kernel?

If ψ(x) is a good approximation of φ(x), then we can just use ψ(x) in a linear model

“Goodness” Criterion: ψ(xn)>ψ(xm) ≈ φ(xn)>φ(xm)

i.e., we want ψ(xn)>ψ(xm) ≈ k(xn, xm)

We will see two popular approaches: Landmarks and Random Features

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 7

Using Kernels to “Extract” Good Features: Landmarks

Suppose we choose a small set of L “landmark” inputs z1, . . . , zL in the training data

For each input xn, using a kernel k , define an L-dimensional feature vector as follows

ψ(xn) = [k(z1, xn), k(z2, xn), . . . , k(zL, xn)]

ψ(xn) ∈ RL is such that k(xn, xm) = φ(xn)>φ(xm) ≈ ψ(xn)>ψ(xm)

Can now apply a linear model on the ψ representation (L-dimensional now) of the inputs

This will be fast both at training as well as test time if L is small

No need to kernelize the linear model and work with kernels (but still reap their benefits :-))

Note: The landmarks need not be actual inputs. Can even be learned from data.

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 8

Using Kernels to “Extract” Good Features: Landmarks

Suppose we choose a small set of L “landmark” inputs z1, . . . , zL in the training data

For each input xn, using a kernel k , define an L-dimensional feature vector as follows

ψ(xn) = [k(z1, xn), k(z2, xn), . . . , k(zL, xn)]

ψ(xn) ∈ RL is such that k(xn, xm) = φ(xn)>φ(xm) ≈ ψ(xn)>ψ(xm)

Can now apply a linear model on the ψ representation (L-dimensional now) of the inputs

This will be fast both at training as well as test time if L is small

No need to kernelize the linear model and work with kernels (but still reap their benefits :-))

Note: The landmarks need not be actual inputs. Can even be learned from data.

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 8

Using Kernels to “Extract” Good Features: Landmarks

Suppose we choose a small set of L “landmark” inputs z1, . . . , zL in the training data

For each input xn, using a kernel k , define an L-dimensional feature vector as follows

ψ(xn) = [k(z1, xn), k(z2, xn), . . . , k(zL, xn)]

ψ(xn) ∈ RL is such that k(xn, xm) = φ(xn)>φ(xm) ≈ ψ(xn)>ψ(xm)

Can now apply a linear model on the ψ representation (L-dimensional now) of the inputs

This will be fast both at training as well as test time if L is small

No need to kernelize the linear model and work with kernels (but still reap their benefits :-))

Note: The landmarks need not be actual inputs. Can even be learned from data.

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 8

Using Kernels to “Extract” Good Features: Landmarks

Suppose we choose a small set of L “landmark” inputs z1, . . . , zL in the training data

For each input xn, using a kernel k , define an L-dimensional feature vector as follows

ψ(xn) = [k(z1, xn), k(z2, xn), . . . , k(zL, xn)]

ψ(xn) ∈ RL is such that k(xn, xm) = φ(xn)>φ(xm) ≈ ψ(xn)>ψ(xm)

Can now apply a linear model on the ψ representation (L-dimensional now) of the inputs

This will be fast both at training as well as test time if L is small

No need to kernelize the linear model and work with kernels (but still reap their benefits :-))

Note: The landmarks need not be actual inputs. Can even be learned from data.

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 8

Using Kernels to “Extract” Good Features: Landmarks

Suppose we choose a small set of L “landmark” inputs z1, . . . , zL in the training data

For each input xn, using a kernel k , define an L-dimensional feature vector as follows

ψ(xn) = [k(z1, xn), k(z2, xn), . . . , k(zL, xn)]

ψ(xn) ∈ RL is such that k(xn, xm) = φ(xn)>φ(xm) ≈ ψ(xn)>ψ(xm)

Can now apply a linear model on the ψ representation (L-dimensional now) of the inputs

This will be fast both at training as well as test time if L is small

No need to kernelize the linear model and work with kernels (but still reap their benefits :-))

Note: The landmarks need not be actual inputs. Can even be learned from data.

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 8

Using Kernels to “Extract” Good Features: Landmarks

Suppose we choose a small set of L “landmark” inputs z1, . . . , zL in the training data

For each input xn, using a kernel k , define an L-dimensional feature vector as follows

ψ(xn) = [k(z1, xn), k(z2, xn), . . . , k(zL, xn)]

ψ(xn) ∈ RL is such that k(xn, xm) = φ(xn)>φ(xm) ≈ ψ(xn)>ψ(xm)

Can now apply a linear model on the ψ representation (L-dimensional now) of the inputs

This will be fast both at training as well as test time if L is small

No need to kernelize the linear model and work with kernels (but still reap their benefits :-))

Note: The landmarks need not be actual inputs. Can even be learned from data.

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 8

Using Kernels to “Extract” Good Features: Random Features

Many kernel functions can be written as†

k(xn, xm) = φ(xn)>φ(xm) = Ew∼p(w)[tw (xn)tw (xm)]

where tw (.) is a scalar-valued function with parameters w ∈ RD from some distribution p(w)

Example: For the RBF kernel, tw (.) is cosine function and p(w) is zero mean Gausssian

k(xn, xm) = Ew∼p(w)[cos(w>xn) cos(w>xm)]

Given w 1 . . . ,wL drawn from p(w), using Monte-Carlo approximation of expectation above

k(xn, xm) ≈ 1

L

L∑
`=1

cos(w>` xn) cos(w>` xm) = ψ(xn)>ψ(xm)

where ψ(xn) = 1√
L

[cos(w>1 xn), . . . , cos(w>L xn)] is an L-dim. feature vector (L needs to be set)

Can apply a linear model on this L-dim representation of the data (no need to kernelize)

Such techniques exist for several kernels (RBF, polynomial, etc)

†Random Features for Large-Scale Kernel Machines (Ben and Retch, NIPS 2007. Note: This paper actually won the test-of-time award at NIPS 2017)

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 9

Using Kernels to “Extract” Good Features: Random Features

Many kernel functions can be written as†

k(xn, xm) = φ(xn)>φ(xm) = Ew∼p(w)[tw (xn)tw (xm)]

where tw (.) is a scalar-valued function with parameters w ∈ RD from some distribution p(w)

Example: For the RBF kernel, tw (.) is cosine function and p(w) is zero mean Gausssian

k(xn, xm) = Ew∼p(w)[cos(w>xn) cos(w>xm)]

Given w 1 . . . ,wL drawn from p(w), using Monte-Carlo approximation of expectation above

k(xn, xm) ≈ 1

L

L∑
`=1

cos(w>` xn) cos(w>` xm) = ψ(xn)>ψ(xm)

where ψ(xn) = 1√
L

[cos(w>1 xn), . . . , cos(w>L xn)] is an L-dim. feature vector (L needs to be set)

Can apply a linear model on this L-dim representation of the data (no need to kernelize)

Such techniques exist for several kernels (RBF, polynomial, etc)

†Random Features for Large-Scale Kernel Machines (Ben and Retch, NIPS 2007. Note: This paper actually won the test-of-time award at NIPS 2017)

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 9

Using Kernels to “Extract” Good Features: Random Features

Many kernel functions can be written as†

k(xn, xm) = φ(xn)>φ(xm) = Ew∼p(w)[tw (xn)tw (xm)]

where tw (.) is a scalar-valued function with parameters w ∈ RD from some distribution p(w)

Example: For the RBF kernel, tw (.) is cosine function and p(w) is zero mean Gausssian

k(xn, xm) = Ew∼p(w)[cos(w>xn) cos(w>xm)]

Given w 1 . . . ,wL drawn from p(w), using Monte-Carlo approximation of expectation above

k(xn, xm) ≈ 1

L

L∑
`=1

cos(w>` xn) cos(w>` xm) = ψ(xn)>ψ(xm)

where ψ(xn) = 1√
L

[cos(w>1 xn), . . . , cos(w>L xn)] is an L-dim. feature vector (L needs to be set)

Can apply a linear model on this L-dim representation of the data (no need to kernelize)

Such techniques exist for several kernels (RBF, polynomial, etc)

†Random Features for Large-Scale Kernel Machines (Ben and Retch, NIPS 2007. Note: This paper actually won the test-of-time award at NIPS 2017)

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 9

Using Kernels to “Extract” Good Features: Random Features

Many kernel functions can be written as†

k(xn, xm) = φ(xn)>φ(xm) = Ew∼p(w)[tw (xn)tw (xm)]

where tw (.) is a scalar-valued function with parameters w ∈ RD from some distribution p(w)

Example: For the RBF kernel, tw (.) is cosine function and p(w) is zero mean Gausssian

k(xn, xm) = Ew∼p(w)[cos(w>xn) cos(w>xm)]

Given w 1 . . . ,wL drawn from p(w), using Monte-Carlo approximation of expectation above

k(xn, xm) ≈ 1

L

L∑
`=1

cos(w>` xn) cos(w>` xm)

= ψ(xn)>ψ(xm)

where ψ(xn) = 1√
L

[cos(w>1 xn), . . . , cos(w>L xn)] is an L-dim. feature vector (L needs to be set)

Can apply a linear model on this L-dim representation of the data (no need to kernelize)

Such techniques exist for several kernels (RBF, polynomial, etc)

†Random Features for Large-Scale Kernel Machines (Ben and Retch, NIPS 2007. Note: This paper actually won the test-of-time award at NIPS 2017)

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 9

Using Kernels to “Extract” Good Features: Random Features

Many kernel functions can be written as†

k(xn, xm) = φ(xn)>φ(xm) = Ew∼p(w)[tw (xn)tw (xm)]

where tw (.) is a scalar-valued function with parameters w ∈ RD from some distribution p(w)

Example: For the RBF kernel, tw (.) is cosine function and p(w) is zero mean Gausssian

k(xn, xm) = Ew∼p(w)[cos(w>xn) cos(w>xm)]

Given w 1 . . . ,wL drawn from p(w), using Monte-Carlo approximation of expectation above

k(xn, xm) ≈ 1

L

L∑
`=1

cos(w>` xn) cos(w>` xm) = ψ(xn)>ψ(xm)

where ψ(xn) = 1√
L

[cos(w>1 xn), . . . , cos(w>L xn)] is an L-dim. feature vector (L needs to be set)

Can apply a linear model on this L-dim representation of the data (no need to kernelize)

Such techniques exist for several kernels (RBF, polynomial, etc)

†Random Features for Large-Scale Kernel Machines (Ben and Retch, NIPS 2007. Note: This paper actually won the test-of-time award at NIPS 2017)

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 9

Using Kernels to “Extract” Good Features: Random Features

Many kernel functions can be written as†

k(xn, xm) = φ(xn)>φ(xm) = Ew∼p(w)[tw (xn)tw (xm)]

where tw (.) is a scalar-valued function with parameters w ∈ RD from some distribution p(w)

Example: For the RBF kernel, tw (.) is cosine function and p(w) is zero mean Gausssian

k(xn, xm) = Ew∼p(w)[cos(w>xn) cos(w>xm)]

Given w 1 . . . ,wL drawn from p(w), using Monte-Carlo approximation of expectation above

k(xn, xm) ≈ 1

L

L∑
`=1

cos(w>` xn) cos(w>` xm) = ψ(xn)>ψ(xm)

where ψ(xn) = 1√
L

[cos(w>1 xn), . . . , cos(w>L xn)] is an L-dim. feature vector (L needs to be set)

Can apply a linear model on this L-dim representation of the data (no need to kernelize)

Such techniques exist for several kernels (RBF, polynomial, etc)

†Random Features for Large-Scale Kernel Machines (Ben and Retch, NIPS 2007. Note: This paper actually won the test-of-time award at NIPS 2017)

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 9

Using Kernels to “Extract” Good Features: Random Features

Many kernel functions can be written as†

k(xn, xm) = φ(xn)>φ(xm) = Ew∼p(w)[tw (xn)tw (xm)]

where tw (.) is a scalar-valued function with parameters w ∈ RD from some distribution p(w)

Example: For the RBF kernel, tw (.) is cosine function and p(w) is zero mean Gausssian

k(xn, xm) = Ew∼p(w)[cos(w>xn) cos(w>xm)]

Given w 1 . . . ,wL drawn from p(w), using Monte-Carlo approximation of expectation above

k(xn, xm) ≈ 1

L

L∑
`=1

cos(w>` xn) cos(w>` xm) = ψ(xn)>ψ(xm)

where ψ(xn) = 1√
L

[cos(w>1 xn), . . . , cos(w>L xn)] is an L-dim. feature vector (L needs to be set)

Can apply a linear model on this L-dim representation of the data (no need to kernelize)

Such techniques exist for several kernels (RBF, polynomial, etc)

†Random Features for Large-Scale Kernel Machines (Ben and Retch, NIPS 2007. Note: This paper actually won the test-of-time award at NIPS 2017)

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 9

Using Kernels to “Extract” Good Features: Random Features

Many kernel functions can be written as†

k(xn, xm) = φ(xn)>φ(xm) = Ew∼p(w)[tw (xn)tw (xm)]

where tw (.) is a scalar-valued function with parameters w ∈ RD from some distribution p(w)

Example: For the RBF kernel, tw (.) is cosine function and p(w) is zero mean Gausssian

k(xn, xm) = Ew∼p(w)[cos(w>xn) cos(w>xm)]

Given w 1 . . . ,wL drawn from p(w), using Monte-Carlo approximation of expectation above

k(xn, xm) ≈ 1

L

L∑
`=1

cos(w>` xn) cos(w>` xm) = ψ(xn)>ψ(xm)

where ψ(xn) = 1√
L

[cos(w>1 xn), . . . , cos(w>L xn)] is an L-dim. feature vector (L needs to be set)

Can apply a linear model on this L-dim representation of the data (no need to kernelize)

Such techniques exist for several kernels (RBF, polynomial, etc)

†Random Features for Large-Scale Kernel Machines (Ben and Retch, NIPS 2007. Note: This paper actually won the test-of-time award at NIPS 2017)

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 9

Other Techniques for Speeding Up Kernel Methods

Reducing the number of support vectors (for SVM based models), For example,

Learn the kernelized SV. Identify the support vectors.

Cluster the support vectors

Pick one SV from each cluster, retrain SVM using the chosen SVs

Low-rank approximations of kernel matrix (Nyström approximation)

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 10

Other Techniques for Speeding Up Kernel Methods

Reducing the number of support vectors (for SVM based models), For example,

Learn the kernelized SV. Identify the support vectors.

Cluster the support vectors

Pick one SV from each cluster, retrain SVM using the chosen SVs

Low-rank approximations of kernel matrix (Nyström approximation)

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 10

Kernel Methods: Some Final Comments

Sometimes, even linear models can be trained via kernelization (but with linear kernel)

Benefit? Well, this may be beneficial sometimes due to computational reasons

For example, ridge regression requires solving

w = (X>X + λI)−1X>y

.. where we learn w by inverting a D × D matrix

Instead, the dual version of Ridge Regression, as we saw earlier, requires solving

w = X>(XX> + λIN)−1y = X>α =
N∑

n=1

αnxn

.. where we learn w in terms of α by inverting N × N matrix

Even when working with linear model, if D > N, the latter way may be preferable

Similar considerations apply to other kernelizable models too (e.g., SVM)

If linear model is what you want, still makes sense to look at the relative values of N and D to
decide whether to go for the dual (kernelized) formulation of the problem with a linear kernel

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 11

Kernel Methods: Some Final Comments

Sometimes, even linear models can be trained via kernelization (but with linear kernel)

Benefit? Well, this may be beneficial sometimes due to computational reasons

For example, ridge regression requires solving

w = (X>X + λI)−1X>y

.. where we learn w by inverting a D × D matrix

Instead, the dual version of Ridge Regression, as we saw earlier, requires solving

w = X>(XX> + λIN)−1y = X>α =
N∑

n=1

αnxn

.. where we learn w in terms of α by inverting N × N matrix

Even when working with linear model, if D > N, the latter way may be preferable

Similar considerations apply to other kernelizable models too (e.g., SVM)

If linear model is what you want, still makes sense to look at the relative values of N and D to
decide whether to go for the dual (kernelized) formulation of the problem with a linear kernel

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 11

Kernel Methods: Some Final Comments

Sometimes, even linear models can be trained via kernelization (but with linear kernel)

Benefit? Well, this may be beneficial sometimes due to computational reasons

For example, ridge regression requires solving

w = (X>X + λI)−1X>y

.. where we learn w by inverting a D × D matrix

Instead, the dual version of Ridge Regression, as we saw earlier, requires solving

w = X>(XX> + λIN)−1y = X>α =
N∑

n=1

αnxn

.. where we learn w in terms of α by inverting N × N matrix

Even when working with linear model, if D > N, the latter way may be preferable

Similar considerations apply to other kernelizable models too (e.g., SVM)

If linear model is what you want, still makes sense to look at the relative values of N and D to
decide whether to go for the dual (kernelized) formulation of the problem with a linear kernel

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 11

Kernel Methods: Some Final Comments

Sometimes, even linear models can be trained via kernelization (but with linear kernel)

Benefit? Well, this may be beneficial sometimes due to computational reasons

For example, ridge regression requires solving

w = (X>X + λI)−1X>y

.. where we learn w by inverting a D × D matrix

Instead, the dual version of Ridge Regression, as we saw earlier, requires solving

w = X>(XX> + λIN)−1y

= X>α =
N∑

n=1

αnxn

.. where we learn w in terms of α by inverting N × N matrix

Even when working with linear model, if D > N, the latter way may be preferable

Similar considerations apply to other kernelizable models too (e.g., SVM)

If linear model is what you want, still makes sense to look at the relative values of N and D to
decide whether to go for the dual (kernelized) formulation of the problem with a linear kernel

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 11

Kernel Methods: Some Final Comments

Sometimes, even linear models can be trained via kernelization (but with linear kernel)

Benefit? Well, this may be beneficial sometimes due to computational reasons

For example, ridge regression requires solving

w = (X>X + λI)−1X>y

.. where we learn w by inverting a D × D matrix

Instead, the dual version of Ridge Regression, as we saw earlier, requires solving

w = X>(XX> + λIN)−1y = X>α =
N∑

n=1

αnxn

.. where we learn w in terms of α by inverting N × N matrix

Even when working with linear model, if D > N, the latter way may be preferable

Similar considerations apply to other kernelizable models too (e.g., SVM)

If linear model is what you want, still makes sense to look at the relative values of N and D to
decide whether to go for the dual (kernelized) formulation of the problem with a linear kernel

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 11

Kernel Methods: Some Final Comments

Sometimes, even linear models can be trained via kernelization (but with linear kernel)

Benefit? Well, this may be beneficial sometimes due to computational reasons

For example, ridge regression requires solving

w = (X>X + λI)−1X>y

.. where we learn w by inverting a D × D matrix

Instead, the dual version of Ridge Regression, as we saw earlier, requires solving

w = X>(XX> + λIN)−1y = X>α =
N∑

n=1

αnxn

.. where we learn w in terms of α by inverting N × N matrix

Even when working with linear model, if D > N, the latter way may be preferable

Similar considerations apply to other kernelizable models too (e.g., SVM)

If linear model is what you want, still makes sense to look at the relative values of N and D to
decide whether to go for the dual (kernelized) formulation of the problem with a linear kernel

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 11

Kernel Methods: Some Final Comments

Sometimes, even linear models can be trained via kernelization (but with linear kernel)

Benefit? Well, this may be beneficial sometimes due to computational reasons

For example, ridge regression requires solving

w = (X>X + λI)−1X>y

.. where we learn w by inverting a D × D matrix

Instead, the dual version of Ridge Regression, as we saw earlier, requires solving

w = X>(XX> + λIN)−1y = X>α =
N∑

n=1

αnxn

.. where we learn w in terms of α by inverting N × N matrix

Even when working with linear model, if D > N, the latter way may be preferable

Similar considerations apply to other kernelizable models too (e.g., SVM)

If linear model is what you want, still makes sense to look at the relative values of N and D to
decide whether to go for the dual (kernelized) formulation of the problem with a linear kernel

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 11

Kernel Methods: Some Final Comments

Sometimes, even linear models can be trained via kernelization (but with linear kernel)

Benefit? Well, this may be beneficial sometimes due to computational reasons

For example, ridge regression requires solving

w = (X>X + λI)−1X>y

.. where we learn w by inverting a D × D matrix

Instead, the dual version of Ridge Regression, as we saw earlier, requires solving

w = X>(XX> + λIN)−1y = X>α =
N∑

n=1

αnxn

.. where we learn w in terms of α by inverting N × N matrix

Even when working with linear model, if D > N, the latter way may be preferable

Similar considerations apply to other kernelizable models too (e.g., SVM)

If linear model is what you want, still makes sense to look at the relative values of N and D to
decide whether to go for the dual (kernelized) formulation of the problem with a linear kernel

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 11

Kernel Methods: Some Final Comments

Kernel methods give us good features to make learning easier

However, these features are pre-defined (due to the choice of kernel)

Example: Consider the quadratic kernel applied to input x = [x1, x2]

φ(x) = [1,
√

2x1, x
2
1 ,
√

2x1x2, x2, x
2
2 ,
√

2x2] (fixed definition for φ)

Another alternative is to learn good features from data

We will revisit this when we talk about deep neural networks

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 12

Kernel Methods: Some Final Comments

Kernel methods give us good features to make learning easier

However, these features are pre-defined (due to the choice of kernel)

Example: Consider the quadratic kernel applied to input x = [x1, x2]

φ(x) = [1,
√

2x1, x
2
1 ,
√

2x1x2, x2, x
2
2 ,
√

2x2] (fixed definition for φ)

Another alternative is to learn good features from data

We will revisit this when we talk about deep neural networks

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 12

Kernel Methods: Some Final Comments

Kernel methods give us good features to make learning easier

However, these features are pre-defined (due to the choice of kernel)

Example: Consider the quadratic kernel applied to input x = [x1, x2]

φ(x) = [1,
√

2x1, x
2
1 ,
√

2x1x2, x2, x
2
2 ,
√

2x2] (fixed definition for φ)

Another alternative is to learn good features from data

We will revisit this when we talk about deep neural networks

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 12

Unsupervised Learning

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 13

Unsupervised Learning

Roughly speaking, it is about learning interesting structures in the data (unsupervisedly!)

There is no supervision (no labels/responses), only inputs x1, . . . , xN

Some examples of unsupervised learning

Clustering: Grouping similar inputs together (and dissimilar ones far apart)

Dimensionality Reduction: Reducing the data dimensionality

Estimating the probability density of data (which distribution “generated” the data)

Most unsupervised learning algos can also be seen as learning a new representation of data

Typically a compressed representation, e.g., clustering can be used to get a one-hot representation

00 0 1 0 00 0

K = 6 clusters

A one-hot (quantized) rep.

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 14

Unsupervised Learning

Roughly speaking, it is about learning interesting structures in the data (unsupervisedly!)

There is no supervision (no labels/responses), only inputs x1, . . . , xN

Some examples of unsupervised learning

Clustering: Grouping similar inputs together (and dissimilar ones far apart)

Dimensionality Reduction: Reducing the data dimensionality

Estimating the probability density of data (which distribution “generated” the data)

Most unsupervised learning algos can also be seen as learning a new representation of data

Typically a compressed representation, e.g., clustering can be used to get a one-hot representation

00 0 1 0 00 0

K = 6 clusters

A one-hot (quantized) rep.

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 14

Unsupervised Learning

Roughly speaking, it is about learning interesting structures in the data (unsupervisedly!)

There is no supervision (no labels/responses), only inputs x1, . . . , xN

Some examples of unsupervised learning

Clustering: Grouping similar inputs together (and dissimilar ones far apart)

Dimensionality Reduction: Reducing the data dimensionality

Estimating the probability density of data (which distribution “generated” the data)

Most unsupervised learning algos can also be seen as learning a new representation of data

Typically a compressed representation, e.g., clustering can be used to get a one-hot representation

00 0 1 0 00 0

K = 6 clusters

A one-hot (quantized) rep.

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 14

Unsupervised Learning

Roughly speaking, it is about learning interesting structures in the data (unsupervisedly!)

There is no supervision (no labels/responses), only inputs x1, . . . , xN

Some examples of unsupervised learning

Clustering: Grouping similar inputs together (and dissimilar ones far apart)

Dimensionality Reduction: Reducing the data dimensionality

Estimating the probability density of data (which distribution “generated” the data)

Most unsupervised learning algos can also be seen as learning a new representation of data

Typically a compressed representation, e.g., clustering can be used to get a one-hot representation

00 0 1 0 00 0

K = 6 clusters

A one-hot (quantized) rep.

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 14

Unsupervised Learning

Roughly speaking, it is about learning interesting structures in the data (unsupervisedly!)

There is no supervision (no labels/responses), only inputs x1, . . . , xN

Some examples of unsupervised learning

Clustering: Grouping similar inputs together (and dissimilar ones far apart)

Dimensionality Reduction: Reducing the data dimensionality

Estimating the probability density of data (which distribution “generated” the data)

Most unsupervised learning algos can also be seen as learning a new representation of data

Typically a compressed representation, e.g., clustering can be used to get a one-hot representation

00 0 1 0 00 0

K = 6 clusters

A one-hot (quantized) rep.

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 14

Unsupervised Learning

Roughly speaking, it is about learning interesting structures in the data (unsupervisedly!)

There is no supervision (no labels/responses), only inputs x1, . . . , xN

Some examples of unsupervised learning

Clustering: Grouping similar inputs together (and dissimilar ones far apart)

Dimensionality Reduction: Reducing the data dimensionality

Estimating the probability density of data (which distribution “generated” the data)

Most unsupervised learning algos can also be seen as learning a new representation of data

Typically a compressed representation, e.g., clustering can be used to get a one-hot representation

00 0 1 0 00 0

K = 6 clusters

A one-hot (quantized) rep.

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 14

Unsupervised Learning

Roughly speaking, it is about learning interesting structures in the data (unsupervisedly!)

There is no supervision (no labels/responses), only inputs x1, . . . , xN

Some examples of unsupervised learning

Clustering: Grouping similar inputs together (and dissimilar ones far apart)

Dimensionality Reduction: Reducing the data dimensionality

Estimating the probability density of data (which distribution “generated” the data)

Most unsupervised learning algos can also be seen as learning a new representation of data

Typically a compressed representation, e.g., clustering can be used to get a one-hot representation

00 0 1 0 00 0

K = 6 clusters

A one-hot (quantized) rep.

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 14

Clustering

Given: N unlabeled examples {x1, . . . , xN}; no. of desired partitions K

Goal: Group the examples into K “homogeneous” partitions

Picture courtesy: “Data Clustering: 50 Years Beyond K-Means”, A.K. Jain (2008)

Loosely speaking, it is classification without ground truth labels

A good clustering is one that achieves:

High within-cluster similarity

Low inter-cluster similarity

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 15

Clustering

Given: N unlabeled examples {x1, . . . , xN}; no. of desired partitions K

Goal: Group the examples into K “homogeneous” partitions

Picture courtesy: “Data Clustering: 50 Years Beyond K-Means”, A.K. Jain (2008)

Loosely speaking, it is classification without ground truth labels

A good clustering is one that achieves:

High within-cluster similarity

Low inter-cluster similarity

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 15

Clustering

Given: N unlabeled examples {x1, . . . , xN}; no. of desired partitions K

Goal: Group the examples into K “homogeneous” partitions

Picture courtesy: “Data Clustering: 50 Years Beyond K-Means”, A.K. Jain (2008)

Loosely speaking, it is classification without ground truth labels

A good clustering is one that achieves:

High within-cluster similarity

Low inter-cluster similarity

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 15

Clustering

Given: N unlabeled examples {x1, . . . , xN}; no. of desired partitions K

Goal: Group the examples into K “homogeneous” partitions

Picture courtesy: “Data Clustering: 50 Years Beyond K-Means”, A.K. Jain (2008)

Loosely speaking, it is classification without ground truth labels

A good clustering is one that achieves:

High within-cluster similarity

Low inter-cluster similarity

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 15

Similarity can be Subjective

Clustering only looks at similarities, no labels are given

Without labels, similarity can be hard to define

Thus using the right distance/similarity is very important in clustering

Also important to define/ask: “Clustering based on what”?

Picture courtesy: http://www.guy-sports.com/humor/videos/powerpoint presentation dogs.htm

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 16

Similarity can be Subjective

Clustering only looks at similarities, no labels are given

Without labels, similarity can be hard to define

Thus using the right distance/similarity is very important in clustering

Also important to define/ask: “Clustering based on what”?

Picture courtesy: http://www.guy-sports.com/humor/videos/powerpoint presentation dogs.htm

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 16

Similarity can be Subjective

Clustering only looks at similarities, no labels are given

Without labels, similarity can be hard to define

Thus using the right distance/similarity is very important in clustering

Also important to define/ask: “Clustering based on what”?

Picture courtesy: http://www.guy-sports.com/humor/videos/powerpoint presentation dogs.htm

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 16

Similarity can be Subjective

Clustering only looks at similarities, no labels are given

Without labels, similarity can be hard to define

Thus using the right distance/similarity is very important in clustering

Also important to define/ask: “Clustering based on what”?

Picture courtesy: http://www.guy-sports.com/humor/videos/powerpoint presentation dogs.htm

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 16

Clustering: Some Examples

Document/Image/Webpage Clustering

Image Segmentation (clustering pixels)

Clustering web-search results

Clustering (people) nodes in (social) networks/graphs

.. and many more..

Picture courtesy: http://people.cs.uchicago.edu/∼pff/segment/

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 17

Types of Clustering

1 Flat or Partitional clustering

Partitions are independent of each other

2 Hierarchical clustering

Partitions can be visualized using a tree structure (a dendrogram)

Possible to view partitions at different levels of granularities by “cutting” the tree at some level

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 18

Types of Clustering

1 Flat or Partitional clustering

Partitions are independent of each other

2 Hierarchical clustering

Partitions can be visualized using a tree structure (a dendrogram)

Possible to view partitions at different levels of granularities by “cutting” the tree at some level

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 18

Types of Clustering

1 Flat or Partitional clustering

Partitions are independent of each other

2 Hierarchical clustering

Partitions can be visualized using a tree structure (a dendrogram)

Possible to view partitions at different levels of granularities by “cutting” the tree at some level

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 18

Flat Clustering: K -means algorithm (Lloyd, 1957)

Input: N examples {x1, . . . , xN}; xn ∈ RD ; the number of partitions K

Desired Output: Cluster assignments of these N examples and K cluster means µ1, . . . ,µK

Initialize: K cluster means µ1, . . . ,µK , each µk ∈ RD

Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics
exist (e.g., K -means++, Arthur & Vassilvitskii, 2007)

Iterate:
(Re)-Assign each example xn to its closest cluster center (based on the smallest Euclidean distance)

Ck = {n : k = arg min
k
||xn − µk ||

2}

(Ck is the set of examples assigned to cluster k with center µk)

Update the cluster means

µk = mean(Ck) =
1

|Ck |
∑
n∈Ck

xn

Repeat while not converged

Stop when cluster means or the “loss” does not change by much

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 19

Flat Clustering: K -means algorithm (Lloyd, 1957)

Input: N examples {x1, . . . , xN}; xn ∈ RD ; the number of partitions K

Desired Output: Cluster assignments of these N examples and K cluster means µ1, . . . ,µK

Initialize: K cluster means µ1, . . . ,µK , each µk ∈ RD

Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics
exist (e.g., K -means++, Arthur & Vassilvitskii, 2007)

Iterate:
(Re)-Assign each example xn to its closest cluster center (based on the smallest Euclidean distance)

Ck = {n : k = arg min
k
||xn − µk ||

2}

(Ck is the set of examples assigned to cluster k with center µk)

Update the cluster means

µk = mean(Ck) =
1

|Ck |
∑
n∈Ck

xn

Repeat while not converged

Stop when cluster means or the “loss” does not change by much

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 19

Flat Clustering: K -means algorithm (Lloyd, 1957)

Input: N examples {x1, . . . , xN}; xn ∈ RD ; the number of partitions K

Desired Output: Cluster assignments of these N examples and K cluster means µ1, . . . ,µK

Initialize: K cluster means µ1, . . . ,µK , each µk ∈ RD

Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics
exist (e.g., K -means++, Arthur & Vassilvitskii, 2007)

Iterate:
(Re)-Assign each example xn to its closest cluster center (based on the smallest Euclidean distance)

Ck = {n : k = arg min
k
||xn − µk ||

2}

(Ck is the set of examples assigned to cluster k with center µk)

Update the cluster means

µk = mean(Ck) =
1

|Ck |
∑
n∈Ck

xn

Repeat while not converged

Stop when cluster means or the “loss” does not change by much

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 19

Flat Clustering: K -means algorithm (Lloyd, 1957)

Input: N examples {x1, . . . , xN}; xn ∈ RD ; the number of partitions K

Desired Output: Cluster assignments of these N examples and K cluster means µ1, . . . ,µK

Initialize: K cluster means µ1, . . . ,µK , each µk ∈ RD

Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics
exist (e.g., K -means++, Arthur & Vassilvitskii, 2007)

Iterate:

(Re)-Assign each example xn to its closest cluster center (based on the smallest Euclidean distance)

Ck = {n : k = arg min
k
||xn − µk ||

2}

(Ck is the set of examples assigned to cluster k with center µk)

Update the cluster means

µk = mean(Ck) =
1

|Ck |
∑
n∈Ck

xn

Repeat while not converged

Stop when cluster means or the “loss” does not change by much

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 19

Flat Clustering: K -means algorithm (Lloyd, 1957)

Input: N examples {x1, . . . , xN}; xn ∈ RD ; the number of partitions K

Desired Output: Cluster assignments of these N examples and K cluster means µ1, . . . ,µK

Initialize: K cluster means µ1, . . . ,µK , each µk ∈ RD

Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics
exist (e.g., K -means++, Arthur & Vassilvitskii, 2007)

Iterate:
(Re)-Assign each example xn to its closest cluster center (based on the smallest Euclidean distance)

Ck = {n : k = arg min
k
||xn − µk ||

2}

(Ck is the set of examples assigned to cluster k with center µk)

Update the cluster means

µk = mean(Ck) =
1

|Ck |
∑
n∈Ck

xn

Repeat while not converged

Stop when cluster means or the “loss” does not change by much

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 19

Flat Clustering: K -means algorithm (Lloyd, 1957)

Input: N examples {x1, . . . , xN}; xn ∈ RD ; the number of partitions K

Desired Output: Cluster assignments of these N examples and K cluster means µ1, . . . ,µK

Initialize: K cluster means µ1, . . . ,µK , each µk ∈ RD

Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics
exist (e.g., K -means++, Arthur & Vassilvitskii, 2007)

Iterate:
(Re)-Assign each example xn to its closest cluster center (based on the smallest Euclidean distance)

Ck = {n : k = arg min
k
||xn − µk ||

2}

(Ck is the set of examples assigned to cluster k with center µk)

Update the cluster means

µk = mean(Ck) =
1

|Ck |
∑
n∈Ck

xn

Repeat while not converged

Stop when cluster means or the “loss” does not change by much

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 19

Flat Clustering: K -means algorithm (Lloyd, 1957)

Input: N examples {x1, . . . , xN}; xn ∈ RD ; the number of partitions K

Desired Output: Cluster assignments of these N examples and K cluster means µ1, . . . ,µK

Initialize: K cluster means µ1, . . . ,µK , each µk ∈ RD

Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics
exist (e.g., K -means++, Arthur & Vassilvitskii, 2007)

Iterate:
(Re)-Assign each example xn to its closest cluster center (based on the smallest Euclidean distance)

Ck = {n : k = arg min
k
||xn − µk ||

2}

(Ck is the set of examples assigned to cluster k with center µk)

Update the cluster means

µk = mean(Ck) =
1

|Ck |
∑
n∈Ck

xn

Repeat while not converged

Stop when cluster means or the “loss” does not change by much

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 19

Flat Clustering: K -means algorithm (Lloyd, 1957)

Input: N examples {x1, . . . , xN}; xn ∈ RD ; the number of partitions K

Desired Output: Cluster assignments of these N examples and K cluster means µ1, . . . ,µK

Initialize: K cluster means µ1, . . . ,µK , each µk ∈ RD

Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics
exist (e.g., K -means++, Arthur & Vassilvitskii, 2007)

Iterate:
(Re)-Assign each example xn to its closest cluster center (based on the smallest Euclidean distance)

Ck = {n : k = arg min
k
||xn − µk ||

2}

(Ck is the set of examples assigned to cluster k with center µk)

Update the cluster means

µk = mean(Ck) =
1

|Ck |
∑
n∈Ck

xn

Repeat while not converged

Stop when cluster means or the “loss” does not change by much

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 19

K -means = Prototype Classification
(with unknown labels)

● Guess the means
● Predict the labels
● Recompute the means
● Repeat

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 20

K -means: Initialization (assume K = 2)

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 21

K -means iteration 1: Assigning points

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 22

K -means iteration 1: Recomputing the centers

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 23

K -means iteration 2: Assigning points

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 24

K -means iteration 2: Recomputing the centers

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 25

K -means iteration 3: Assigning points

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 26

K -means iteration 3: Recomputing the centers

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 27

K -means iteration 4: Assigning points

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 28

K -means iteration 4: Recomputing the centers

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 29

What Loss Function is K -means Optimizing?

Let µ1, . . . ,µK be the K cluster centroids (means)

Let znk ∈ {0, 1} be s.t. znk = 1 if xn belongs to cluster k , and 0 otherwise

Note: zn = [zn1 zn2 . . . znK] represents a length K one-hot encoding of xn

Define the distortion or “loss” for the cluster assignment of xn

`(µ, xn, zn) =
K∑

k=1

znk ||xn − µk ||2

Total distortion over all points defines the K -means “loss function”

L(µ,X,Z) =
N∑

n=1

K∑
k=1

znk ||xn − µk ||2 = ||X− Zµ||2F︸ ︷︷ ︸
matrix factorization view

where Z is N × K (row n is zn) and µ is K × D (row k is µk)

The K -means problem is to minimize this objective w.r.t. µ and Z

Alternating optimization would give the K -means (Lloyd’s) algorithm we saw earlier!

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 30

What Loss Function is K -means Optimizing?

Let µ1, . . . ,µK be the K cluster centroids (means)

Let znk ∈ {0, 1} be s.t. znk = 1 if xn belongs to cluster k , and 0 otherwise

Note: zn = [zn1 zn2 . . . znK] represents a length K one-hot encoding of xn

Define the distortion or “loss” for the cluster assignment of xn

`(µ, xn, zn) =
K∑

k=1

znk ||xn − µk ||2

Total distortion over all points defines the K -means “loss function”

L(µ,X,Z) =
N∑

n=1

K∑
k=1

znk ||xn − µk ||2 = ||X− Zµ||2F︸ ︷︷ ︸
matrix factorization view

where Z is N × K (row n is zn) and µ is K × D (row k is µk)

The K -means problem is to minimize this objective w.r.t. µ and Z

Alternating optimization would give the K -means (Lloyd’s) algorithm we saw earlier!

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 30

What Loss Function is K -means Optimizing?

Let µ1, . . . ,µK be the K cluster centroids (means)

Let znk ∈ {0, 1} be s.t. znk = 1 if xn belongs to cluster k , and 0 otherwise

Note: zn = [zn1 zn2 . . . znK] represents a length K one-hot encoding of xn

Define the distortion or “loss” for the cluster assignment of xn

`(µ, xn, zn) =
K∑

k=1

znk ||xn − µk ||2

Total distortion over all points defines the K -means “loss function”

L(µ,X,Z) =
N∑

n=1

K∑
k=1

znk ||xn − µk ||2 = ||X− Zµ||2F︸ ︷︷ ︸
matrix factorization view

where Z is N × K (row n is zn) and µ is K × D (row k is µk)

The K -means problem is to minimize this objective w.r.t. µ and Z

Alternating optimization would give the K -means (Lloyd’s) algorithm we saw earlier!

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 30

What Loss Function is K -means Optimizing?

Let µ1, . . . ,µK be the K cluster centroids (means)

Let znk ∈ {0, 1} be s.t. znk = 1 if xn belongs to cluster k , and 0 otherwise

Note: zn = [zn1 zn2 . . . znK] represents a length K one-hot encoding of xn

Define the distortion or “loss” for the cluster assignment of xn

`(µ, xn, zn) =
K∑

k=1

znk ||xn − µk ||2

Total distortion over all points defines the K -means “loss function”

L(µ,X,Z) =
N∑

n=1

K∑
k=1

znk ||xn − µk ||2 = ||X− Zµ||2F︸ ︷︷ ︸
matrix factorization view

where Z is N × K (row n is zn) and µ is K × D (row k is µk)

The K -means problem is to minimize this objective w.r.t. µ and Z

Alternating optimization would give the K -means (Lloyd’s) algorithm we saw earlier!

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 30

What Loss Function is K -means Optimizing?

Let µ1, . . . ,µK be the K cluster centroids (means)

Let znk ∈ {0, 1} be s.t. znk = 1 if xn belongs to cluster k , and 0 otherwise

Note: zn = [zn1 zn2 . . . znK] represents a length K one-hot encoding of xn

Define the distortion or “loss” for the cluster assignment of xn

`(µ, xn, zn) =
K∑

k=1

znk ||xn − µk ||2

Total distortion over all points defines the K -means “loss function”

L(µ,X,Z) =
N∑

n=1

K∑
k=1

znk ||xn − µk ||2

= ||X− Zµ||2F︸ ︷︷ ︸
matrix factorization view

where Z is N × K (row n is zn) and µ is K × D (row k is µk)

The K -means problem is to minimize this objective w.r.t. µ and Z

Alternating optimization would give the K -means (Lloyd’s) algorithm we saw earlier!

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 30

What Loss Function is K -means Optimizing?

Let µ1, . . . ,µK be the K cluster centroids (means)

Let znk ∈ {0, 1} be s.t. znk = 1 if xn belongs to cluster k , and 0 otherwise

Note: zn = [zn1 zn2 . . . znK] represents a length K one-hot encoding of xn

Define the distortion or “loss” for the cluster assignment of xn

`(µ, xn, zn) =
K∑

k=1

znk ||xn − µk ||2

Total distortion over all points defines the K -means “loss function”

L(µ,X,Z) =
N∑

n=1

K∑
k=1

znk ||xn − µk ||2 = ||X− Zµ||2F︸ ︷︷ ︸
matrix factorization view

where Z is N × K (row n is zn) and µ is K × D (row k is µk)

The K -means problem is to minimize this objective w.r.t. µ and Z

Alternating optimization would give the K -means (Lloyd’s) algorithm we saw earlier!

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 30

What Loss Function is K -means Optimizing?

Let µ1, . . . ,µK be the K cluster centroids (means)

Let znk ∈ {0, 1} be s.t. znk = 1 if xn belongs to cluster k , and 0 otherwise

Note: zn = [zn1 zn2 . . . znK] represents a length K one-hot encoding of xn

Define the distortion or “loss” for the cluster assignment of xn

`(µ, xn, zn) =
K∑

k=1

znk ||xn − µk ||2

Total distortion over all points defines the K -means “loss function”

L(µ,X,Z) =
N∑

n=1

K∑
k=1

znk ||xn − µk ||2 = ||X− Zµ||2F︸ ︷︷ ︸
matrix factorization view

where Z is N × K (row n is zn) and µ is K × D (row k is µk)

The K -means problem is to minimize this objective w.r.t. µ and Z

Alternating optimization would give the K -means (Lloyd’s) algorithm we saw earlier!

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 30

What Loss Function is K -means Optimizing?

Let µ1, . . . ,µK be the K cluster centroids (means)

Let znk ∈ {0, 1} be s.t. znk = 1 if xn belongs to cluster k , and 0 otherwise

Note: zn = [zn1 zn2 . . . znK] represents a length K one-hot encoding of xn

Define the distortion or “loss” for the cluster assignment of xn

`(µ, xn, zn) =
K∑

k=1

znk ||xn − µk ||2

Total distortion over all points defines the K -means “loss function”

L(µ,X,Z) =
N∑

n=1

K∑
k=1

znk ||xn − µk ||2 = ||X− Zµ||2F︸ ︷︷ ︸
matrix factorization view

where Z is N × K (row n is zn) and µ is K × D (row k is µk)

The K -means problem is to minimize this objective w.r.t. µ and Z

Alternating optimization would give the K -means (Lloyd’s) algorithm we saw earlier!

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 30

Next Class: Clustering (Contd.)

Intro to Machine Learning (CS771A) Speeding Up Kernel Methods, and Intro to Unsupervised Learning 31

