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Linear Models

Nice and interpretable but can’t learn “difficult” nonlinear patterns

So, are linear models useless for such problems?

Intro to Machine Learning (CS771A) Making Linear Models Nonlinear via Kernel Methods 2



Linear Models

Nice and interpretable but can’t learn “difficult” nonlinear patterns

So, are linear models useless for such problems?

Intro to Machine Learning (CS771A) Making Linear Models Nonlinear via Kernel Methods 2



Linear Models for Nonlinear Problems!

Consider the following one-dimensional inputs from two classes

Can’t separate using a linear hyperplane
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Linear Models for Nonlinear Problems!

Consider mapping each x to two-dimensions as x → z = [z1, z2] = [x , x2]

Data now becomes linearly separable in the two-dimensional space
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Linear Models for Nonlinear Problems!

Consider this regression problem with one-dimensional inputs

Linear regression won’t work well
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Linear Models for Nonlinear Problems!

Consider mapping each x to two-dimensions as x → z = [z1, z2] = [x , cos(x)]

Now we can fit a linear regression model in two-dimensional input space
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Linear Models for Nonlinear Problems!

Essentially, can use some function φ to map/transform inputs to a “nice” space

.. and then happily apply a linear model in the new space!

Linear in the new space but nonlinear in the original space!
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Not Every Mapping is Helpful

Not every mapping helps in learning nonlinear patterns. Must at least be nonlinear!

For the nonlinear classification problem we saw earlier, consider some possible mappings

Nonlinear Map
     (Helps)

Nonlinear Map
     (Helps)

  Linear Map
 (not helpful)
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How to get these “good” (nonlinear) mappings?

Can try to learn the mapping from the data itself (e.g., using deep learning - later)

There are also pre-defined “good” mappings (e.g., provided by kernel functions - today’s topic)

Looks like I have to compute these mapping using φ. That would be quite expensive!

Thankfully, not always. For example, when using kernels, you get these for (almost) free

A kernel defines an “implicit” mapping for the data
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Kernels as (Implicit) Feature Maps

Consider two data points x = {x1, x2} and z = {z1, z2} (each in 2 dims)

Suppose we have a function k which takes as inputs x and y and computes

k(x, z) = (x>z)2

= (x1z1 + x2z2)
2

= x2
1 z

2
1 + x2

2 z
2
2 + 2x1x2z1z2

= (x2
1 ,
√
2x1x2, x

2
2 )
>(z21 ,

√
2z1z2, z

2
2 )

= φ(x)>φ(z) (an inner product)

k (known as “kernel function”) implicitly defines a mapping φ to a higher-dim space

φ(x) = {x21 ,
√

2x1x2, x
2
2}

.. and computes inner-product based similarity φ(x)>φ(z) in that space

We didn’t need to pre-define/compute the mapping φ to compute k(x , z)

We can simply use the definition of the kernel - (x>z)2 in this case

Also, evaluating k(x , z) = φ(x)>φ(z) is almost as fast as computing the inner product x>z
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Kernel Functions

Every kernel function k implicitly defines a feature mapping φ

φ takes input x ∈ X (input space) and maps it to F (new “feature space”)

The kernel function k can be seen as taking two points as inputs and computing their
inner-product based similarity in the F space

φ : X → F
k : X × X → R, k(x , z) = φ(x)>φ(z)

F needs to be a vector space with a dot product defined on it

Also called a Hilbert Space

Is any function k with k(x , z) = φ(x)>φ(z) for some φ, a kernel function?

No. The function k must satisfy Mercer’s Condition
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Kernel Functions

For k to be a kernel function

k must define a dot product for some Hilbert Space F

Above is true if k is symmetric and positive semi-definite (p.s.d.) function (though there are
exceptions; there are also “indefinite” kernels).

The function k is p.s.d. if the following holds∫ ∫
f (x)k(x , z)f (z)dxdz ≥ 0 (∀f ∈ L2)

.. for all functions f that are “square integrable”, i.e.,
∫
f (x)2dx <∞

This is the Mercer’s Condition

Let k1, k2 be two kernel functions then the following are as well:

k(x , z) = k1(x , z) + k2(x , z): direct sum

k(x , z) = αk1(x , z): scalar product

k(x , z) = k1(x , z)k2(x , z): direct product

Kernels can also be constructed by composing these rules
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Some Examples of Kernel Functions

Linear (trivial) Kernel:

k(x , z) = x>z (mapping function φ is identity)

Quadratic Kernel:
k(x , z) = (x>z)2 or (1 + x>z)2

Polynomial Kernel (of degree d):

k(x , z) = (x>z)d or (1 + x>z)d

Radial Basis Function (RBF) of “Gaussian” Kernel:

k(x , z) = exp[−γ||x − z ||2]

γ is a hyperparameter (also called the kernel bandwidth)

The RBF kernel corresponds to an infinite dimensional feature space F (i.e., you can’t actually write
down or store the map φ(x) explicitly)

Also called “stationary kernel”: only depends on the distance between x and z (translating both by
the same amount won’t change the value of k(x , z))

Kernel hyperparameters (e.g., d , γ) need to be chosen via cross-validation
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RBF Kernel = Infinite Dimensional Mapping

We saw that the RBF/Gaussian kernel is defined as

k(x , z) = exp[−γ||x − z ||2]

Using this kernel corresponds to mapping data to infinite dimensional space

This is explained below (assume x and z to be scalar and γ = 1):

k(x , z) = exp[−(x − z)2]

= exp(−x2) exp(−z2) exp(2xz)

= exp(−x2)exp(−z2)
∞∑
k=1

2kxkzk

k!

= φ(x)>φ(z) (the constants 2k and k! are subsumed in φ)

This shows that φ(x) and φ(z) are infinite dimensional vectors

But we didn’t have to compute these to get k(x , z)
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The Kernel Matrix

The kernel function k defines the Kernel Matrix K over the data

Given N examples {x1, . . . , xN}, the (i , j)-th entry of K is defined as:

Kij = k(x i , x j) = φ(x i )
>φ(x j)

Kij : Similarity between the i-th and j-th example in the feature space F
K: N × N matrix of pairwise similarities between examples in F space

K is a symmetric and positive definite matrix

For a P.D. matrix: z>Kz > 0, ∀z ∈ RN (also, all eigenvalues positive)

The Kernel Matrix K is also known as the Gram Matrix
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Using Kernels

Kernels can turn a linear model into a nonlinear one

Recall: Kernel k(x , z) represents a dot product in some high dimensional feature space F

Any learning model in which, during training and test, inputs only appear as dot products (x>i x j)
can be kernelized (i.e., non-linearlized)

.. by replacing the x>
i x j terms by φ(x i )

>φ(x j) = k(x i , x j)

Most learning algorithms can be easily kernelized

Distance based methods, Perceptron, SVM, linear regression, etc.

Many of the unsupervised learning algorithms too can be kernelized (e.g., K -means clustering,
Principal Component Analysis, etc. - will see later)

Let’s look at two examples: Kernelized SVM and Kernelized Ridge Regression
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Example 1:
Kernel (Nonlinear) SVM

Intro to Machine Learning (CS771A) Making Linear Models Nonlinear via Kernel Methods 17



Kernelized SVM Training

Recall the soft-margin SVM dual problem:

Soft-Margin SVM: max
α≤C

LD (α) = α
>1−

1

2
α
>Gα

.. where we had defined Gmn = ymynx>mxn

Can simply replace Gmn = ymynx>mxn by ymynKmn

.. where Kmn = k(xm, xn) = φ(xm)>φ(xn) for a suitable kernel function k

The problem can be solved just like the linear SVM case

The new SVM learns a linear separator in kernel-induced feature space F
This corresponds to a non-linear separator in the original space X
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Kernelized SVM Prediction

Note that the SVM weight vector for the kernelized case can be written as

w =
N∑

n=1

αnynφ(xn)

Prediction for a new test example x (assume b = 0)

y = sign(w>φ(x)) = sign(
N∑

n=1

αnynφ(xn)>φ(x)) = sign(
N∑

n=1

αnynk(xn, x))

Note: w can be stored explicitly as a vector only if the feature map φ(.) can be explicitly written

In general, kernelized SVMs have to store the training data (at least the support vectors for which
αn’s are nonzero) even at the test time

Thus the prediction time cost of kernel SVM scales linearly in N

For unkernelized version w =
∑N

n=1 αnynxn can be computed and stored as a D × 1 vector. Thus
training data need not be stored and the prediction cost is constant w.r.t. N (w>x can be
computed in O(D) time).
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Example 2:
Kernel (Nonlinear) Ridge Regression
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Ridge Regression: Revisited

Recall the ridge regression problem

w = arg min
w

N∑
n=1

(yn −w>xn)2 + λw>w

The solution to this problem was

w = (
N∑

n=1

xnx
>
n + λID )(

N∑
n=1

ynxn) = (X>X + λID )
−1X>y

Inputs don’t appear as inner-products here . They actually do! :-)

Matrix inversion lemma: (FH−1G− E)−1FH−1 = E−1F(GE−1F−H)−1

The lemma allows us to rewrite w as

w = X>(XX> + λIN )
−1y = X>α =

N∑
n=1

αnxn

where α = (XX> + λIN)−1y = (K + λIN)−1y is an N × 1 vector of dual variables, and
Knm = x>n xm

Note: w =
∑N

n=1 αnxn is known as “dual” form of ridge regression solution. However, so far it is
still a linear model. But now it is easily kernelizable.
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Kernel (Nonlinear) Ridge Regression

With the dual form w =
∑N

n=1 αnxn, we can kernelize ridge regression

Choosing some kernel k with an associated feature map φ, we can write

w =
N∑

n=1

αnφ(xn) =
N∑

n=1

αnk(xn, .)

where α = (K + λIN)−1y and Knm = φ(xn)>φ(xm) = k(xn, xm)

Prediction for a new test input x will be

y = w>φ(x) =
N∑

n=1

αnφ(xn)>φ(x) =
N∑

n=1

αnk(xn, x)

Thus, using the kernel, we effectively learn a nonlinear regression model

Note: Just as in kernel SVM, prediction cost scales in N
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Learning with Kernels: Some Aspects

Choice of the right kernel is important

Some kernels (e.g., RBF) work well for many problems but hyperparameters of the kernel function
may need to be tuned via cross-validation

There is a huge literature on learning the right kernel from data

Learning a combination of multiple kernels (Multiple Kernel Learning)

Bayesian kernel methods (e.g., Gaussian Processes) can learn the kernel hyperparameters from data
(thus can be seen as learning the kernel)

Various other alternatives to learn the “right” data representation

Adaptive Basis Functions (learn basis functions and weights from data)

f (x) =
M∑

m=1

wmφm(x)

.. various methods can be seen as learning adaptive basis functions, e.g., (Deep) Neural Networks,
mixture of experts, Decision Trees, etc.

Kernel methods use a “fixed” set of basis functions or “landmarks”. The basis functions are the
training data points themselves; also see the next slide.
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Kernels: Viewed as Defining Fixed Basis Functions

Consider each row (or column) of the N × N kernel matrix (it’s symmetric)

For each input xn, we can define the following N dimensional vector

K (n, :) = [k(xn, x1) k(xn, x2) . . . k(xn, xN)]

Can think of this as a new feature vector (with N features) for inputs xn. Each feature represents
the similarity of xn with one of the inputs.

Thus these new features are basically defined in terms of similarities of each input with a fixed set
of basis points or “landmarks” x1, x2, . . . , xN

In general, the set of basis points or landmarks can be any set of points (not necessarily the data
points) and can even be learned (which is what Adaptive Basis Function methods basically do).
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Learning with Kernels: Some Aspects (Contd.)

Storage/computational efficiency can be a bottleneck when using kernels

Training phase usually requires computing and keeping the N × N kernel matrix K in memory

O(DN2) to compute K matrix, O(N2) space to store

Need to store training data (or at least support vectors in case of SVMs) at test time

.. just like nearest neighbors methods

Test time prediction can be slow: need to compute
∑N

n=1 αnk(xn, x).

Can be made faster if very few αn’s are nonzero (e.g., in SVM)

There is a huge literature on speeding up kernel methods

Approximating the kernel matrix using a set of kernel-derived new features

Identifying a small set of landmark points in the training data

.. and a lot more

Intro to Machine Learning (CS771A) Making Linear Models Nonlinear via Kernel Methods 25



Learning with Kernels: Some Aspects (Contd.)

Storage/computational efficiency can be a bottleneck when using kernels

Training phase usually requires computing and keeping the N × N kernel matrix K in memory

O(DN2) to compute K matrix, O(N2) space to store

Need to store training data (or at least support vectors in case of SVMs) at test time

.. just like nearest neighbors methods

Test time prediction can be slow: need to compute
∑N

n=1 αnk(xn, x).

Can be made faster if very few αn’s are nonzero (e.g., in SVM)

There is a huge literature on speeding up kernel methods

Approximating the kernel matrix using a set of kernel-derived new features

Identifying a small set of landmark points in the training data

.. and a lot more

Intro to Machine Learning (CS771A) Making Linear Models Nonlinear via Kernel Methods 25



Learning with Kernels: Some Aspects (Contd.)

Storage/computational efficiency can be a bottleneck when using kernels

Training phase usually requires computing and keeping the N × N kernel matrix K in memory

O(DN2) to compute K matrix, O(N2) space to store

Need to store training data (or at least support vectors in case of SVMs) at test time

.. just like nearest neighbors methods

Test time prediction can be slow: need to compute
∑N

n=1 αnk(xn, x).

Can be made faster if very few αn’s are nonzero (e.g., in SVM)

There is a huge literature on speeding up kernel methods

Approximating the kernel matrix using a set of kernel-derived new features

Identifying a small set of landmark points in the training data

.. and a lot more

Intro to Machine Learning (CS771A) Making Linear Models Nonlinear via Kernel Methods 25



Learning with Kernels: Some Aspects (Contd.)

Storage/computational efficiency can be a bottleneck when using kernels

Training phase usually requires computing and keeping the N × N kernel matrix K in memory

O(DN2) to compute K matrix, O(N2) space to store

Need to store training data (or at least support vectors in case of SVMs) at test time

.. just like nearest neighbors methods

Test time prediction can be slow: need to compute
∑N

n=1 αnk(xn, x).

Can be made faster if very few αn’s are nonzero (e.g., in SVM)

There is a huge literature on speeding up kernel methods

Approximating the kernel matrix using a set of kernel-derived new features

Identifying a small set of landmark points in the training data

.. and a lot more

Intro to Machine Learning (CS771A) Making Linear Models Nonlinear via Kernel Methods 25



Learning with Kernels: Some Aspects (Contd.)

Storage/computational efficiency can be a bottleneck when using kernels

Training phase usually requires computing and keeping the N × N kernel matrix K in memory

O(DN2) to compute K matrix, O(N2) space to store

Need to store training data (or at least support vectors in case of SVMs) at test time

.. just like nearest neighbors methods

Test time prediction can be slow: need to compute
∑N

n=1 αnk(xn, x).

Can be made faster if very few αn’s are nonzero (e.g., in SVM)

There is a huge literature on speeding up kernel methods

Approximating the kernel matrix using a set of kernel-derived new features

Identifying a small set of landmark points in the training data

.. and a lot more

Intro to Machine Learning (CS771A) Making Linear Models Nonlinear via Kernel Methods 25



Kernels: Concluding Notes

Kernels give a modular way to learn nonlinear patterns using linear models

All you need to do is replace the inner products with the kernel

All the computations remain as efficient as in the original space

A very general notion of similarity: Can define similarities between objects even though they can’t
be represented as vectors. Many kernels are tailor-made for specific types of data

Strings (string kernels): DNA matching, text classification, etc.

Trees (tree kernels): Comparing parse trees of phrases/sentences
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