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Recap: Hyperplane-based Classification

@ Basic idea: Learn to separate by a hyperplane w'x 4+ b =0

o Predict the label of a test input x, as: J. = sign(w ' x. + b)
@ The hyperplane may be “implied” by the model, or learned directly

e Implied: Prototype-based classification, nearest neighbors, generative classification, etc.
e Directly learned: Logistic regression, Perceptron, Support Vector Machine, etc.

@ The “direct” approach defines a model with parameters w (and optionally b) and learns them by
minimizing a suitable loss function (and doesn't model x, i.e., purely discriminative)

@ The hyperplane need not be linear (e.g., can be made nonlinear using kernel methods - next class)

Intro to Machine Learning (CS771A) SVM (Contd), Multiclass and One-Class SVM



Recap: Hyperplanes and Margin
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Recap: Maximum-Margin Hyperplane
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Hard-margin SVM
(“hard” = want all points to satisfy the margin constraint)
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Recap: Maximum-Margin Hyperplane with Slacks

o Still want a max-margin hyperplane but want to relax the hard constraint y,(wx, + b) > 1

o Let's allow every point x, to “slack the constraint” by a distance &, > 0

Class+1 o 7 Slack
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° o ™ wiz, +h<-14¢, fory, =-1

[ I | l

yn(’le'n + b) > ]-_Em &n 2 0

’ Class -1
@ Points with &, > 0 will be either in the margin region or totally on the wrong side
o New Objective: Maximize the margin while keeping the sum of slacks Z,,:I:1 &, small
@ Note: Can also think of the sum of slacks as the total training error
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Recap: Maximum-Margin Hyperplane with Slacks
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@ This formulation is known as the “soft-margin” SVM

@ Very small C: Large margin but also large training error. :-(

@ Very large C: Small training error but also small margin. :-(

@ C controls the trade-off between large margin and small training error
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Summary: Hard-Margin SVM vs Soft-Margin SVM
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@ Objective for the hard-margin SVM (unknowns are w and b)

|[wl|*
2

arg min
& w,b

subject to yn(wan+b) >1, n=1...,N

@ Objective for the soft-margin SVM (unknowns are w, b, and {&,}V )

||W||2

arg m i +Cz£,,

subject to yn(w Xp+b)>1-¢&, & >0 n=1,...,N

@ In either case, we have to solve a constrained, convex optimization problem
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Solving SVM Objectives
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Solving Hard-Margin SVM

@ The hard-margin SVM optimization problem is:

||wl®
2
subject to 1 — y,,(wa,, +b) <0, n=1...,N

arg min
& w,b

@ A constrained optimization problem. Can solve using Lagrange's method

@ Introduce Lagrange Multipliers o, (n = {1,..., N}), one for each constraint, and solve
min max L(w, b, ) = M+§:a {1 — yo(w" x, + b)}
Wb o0 s Dy 2 < n n n

o Note: a = [a,...,ap] is the vector of Lagrange multipliers

o Note: It is easier (and helpful; we will soon see why) to solve the dual problem: min and then max
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Solving Hard-Margin SVM

@ The dual problem (min then max) is

WTW

max min L(w, b, &) =
a>0 w,b 2

N
+> " {1 — ya(w' x, + b)}
n=1

o Take (partial) derivatives of £ w.r.t. w, b and set them to zero

o _
ow

oL

N N
0= w:Zany,,x,, %:0:>Zany,,:0
n=1 n=1

o Important: Note the form of the solution w - it is simply a weighted sum of all the training inputs
X1,...,xn (and a, is like the “importance” of x,)

@ Substituting w = Zyﬂ anynXn in Lagrangian, we get the dual problem as (verify)

N

N
1
max Lp(a) = E an — > E ama,,y,,,y,,(x;xn)
o

n=1 m,n=1
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Solving Hard-Margin SVM

@ Can write the objective more compactly in vector/matrix form as

1
max Lo(a)=a'l— Za' Ga

where G is an N x N matrix with G,,, = ymy,,x;x,,, and 1 is a vector of 1s

@ Good news: This is maximizing a concave function (or minimizing a convex function - verify that
the Hessian is G, which is p.s.d.). Note that our original SVM objective was also convex

@ Important: Inputs x's only appear as inner products (helps to “kernelize”; more on this later)

e Can solve! the above objective function for a using various methods, e.g.,

e Treating the objective as a Quadratic Program (QP) and running some off-the-shelf QP solver such as
quadprog (MATLAB), CVXOPT, CPLEX, etc.

o Using (projected) gradient methods (projection needed because the a's are constrained). Gradient
methods will usually be much faster than QP methods.

e Using co-ordinate ascent methods (optimize for one a, at a time); often very fast

T1f interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
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Hard-Margin SVM: The Solution

@ Once we have the «a,'s, w and b can be computed as:

w=3" a,y.x, (we already saw this)

b= 7% (min,,:y":Jrl wix, + MaXp.y,=—1 wan) (exercise)

@ A nice property: Most «,'s in the solution will be zero (sparse solution)

wx+b=1
’

de e .: , e Reason: Karush-Kuhn-Tucker (KKT) conditions
[ ]

bl S m o For the optimal ay's

ee " . T _
o oe an{l —yn(w' x,+b)} =0
[ ]

|
[ I ]

, S mom g @ «, is non-zero only if x, lies on one of the two margin boundaries,
4 /| fx +b <= - ; H
. " g i.e., for which y,,(wa,7 +b)=1
wx+b=0 ,
o These examples are called support vectors

Recall the support vectors “support” the margin boundaries
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Solving Soft-Margin SVM

@ Recall the soft-margin SVM optimization problem:

min  f(w, b, €) = M+CXN: &n
w,b, & 2 —~

subject to 1 §yn(wa,,+b)+£n. —£, <0 n=1...,N
@ Note: & =[&,...,&n] is the vector of slack variables
@ Introduce Lagrange Multipliers ap,, 8, (n = {1,..., N}), for constraints, and solve the Lagrangian:

2 N N N
w
max E(W; b, &, o, ;‘3) = % ++C Z En + Z Oz,,{l - }/n(WTXn + b)ffn}* Z Bnén
’ n=1

n=1 n=1

@ Note: The terms in red above were not present in the hard-margin SVM

e Two sets of dual variables & = [avg,...,an] and B = [B1, ..., Bn]. We'll eliminate the primal
variables w, b, £ to get dual problem containing the dual variables (just like in the hard margin case)
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Solving Soft-Margin SVM

@ The Lagrangian problem to solve

max £(w7b,£7a¢%)f—++CZ£H+Zan{1—yn(w Xn + b)—En}— Z B1én

n=1 n=1

@ Take (partial) derivatives of £ w.r.t. w, b, &, and set them to zero

oL N oL oL
= =0 | w= D cnyax | —_0:>§:nn_o =0=C—ap—B,=0
ow YT X ob Y’ o€, an—F

n=1

@ Note: Solution of w again has the same form as in the hard-margin case (weighted sum of all
inputs with «, being the importance of input x,)

@ Note: Using C —a, —f,=0and 5, > 0= «, < C (recall that, for the hard-margin case, « > 0)

@ Substituting these in the Lagrangian £ gives the Dual problem

max L Zan - Z CmQnYimYa(XpXn)

m,n=1
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Solving Soft-Margin SVM

@ Interestingly, the dual variables 3 don't appear in the objective!

@ Just like the hard-margin case, we can write the dual more compactly as

_ T 1 T
<T§>é Lp(a) = 17504 Ga

where G is an N x N matrix with G,,, = ymynx;xn, and 1 is a vector of 1s
@ Like hard-margin case, solving the dual requires concave maximization (or convex minimization)
e Can be solved' the same way as hard-margin SVM (except that o < ()

e Can solve for a using QP solvers or (projected) gradient methods

@ Given a, the solution for w, b has the same form as hard-margin case

@ Note: « is again sparse. Nonzero «,'s correspond to the support vectors

T1f interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
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Support Vectors in Soft-Margin SVM

@ The hard-margin SVM solution had only one type of support vectors

o .. ones that lie on the margin boundaries w'x + b= —1 and w'x + b = +1

@ The soft-margin SVM solution has three types of support vectors

@ Lying on the margin boundaries w'x + b= —1and w' x4+ b =41 (¢, = 0)
@ Lying within the margin region (0 < &, < 1) but still on the correct side
© Lying on the wrong side of the hyperplane (¢, > 1)
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SVMs via Dual Formulation: Some Comments

@ Recall the final dual objectives for hard-margin and soft-margin SVM

1
Hard-Margin SVM: max Lo(a)=a'1l— EaTGa

1
Soft-Margin SVM: max Lo(a)=a'1— EaTGa

@ The dual formulation is nice due to two primary reasons:
e Allows conveniently handling the margin based constraint (via Lagrangians)
e Important: Allows learning nonlinear separators by replacing inner products (e.g., Gmn = ymy,,x,-',;x,,)

by kernelized similarities (kernelized SVMs)

@ However, the dual formulation can be expensive if N is large. Have to solve for N variables
o = [ag,...,ay], and also need to store an N x N matrix G

@ A lot of work! on speeding up SVM in these settings (e.g., can use co-ord. descent for a)

T See: “Support Vector Machine Solvers” by Bottou and Lin
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SVM: The Regularized Loss Function View

@ Maximize the margin subject to constraints led to the soft-margin formulation of SVM

subject to yo(w'x,+b)>1-6, £, >0 n=1...,N

o Note that the slack &, is the same as max{0,1 — y,(w " x, + b)}, i.e., hinge loss for (x,, yn)

@ Another View: Thus the above is equivalent to minimizing the /> regularized hinge loss

N
L(w,b) = Z max{0,1 — y,(w ' x, + b)} + %WTW

n=1

@ Comparing the two: Sum of slacks is like sum of hinge losses, C and A play similar roles
@ Can learn (w, b) directly by minimizing £(w, b) using (stochastic)(sub)gradient descent

e Hinge-loss version preferred for linear SVMs, or with other regularizers on w (e.g., ¢1)
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Multiclass SVM
., wk] (similar to softmax regression)

@ Multiclass SVMs use K weight vectors W = [w1, wo,
Ve = arg max w, x, (predition rule)

@ Just like binary case, we can formulate a maximum-margin problem (without or with slacks)

W = ar miné(M W = ar minEKM—FCENf
a &M 2 B & 2 "
k=1 k=1 n=1
s.t. W;Xn > WZXH +1-¢&, Vk#y,

s.t. W;Xn > Wan +1 Vk#y,
@ Want score w.r.t. correct class to be at least 1 more than score w.r.t. all other classes

@ The version with slack corresponds to minimizing a multi-class hinge loss
(Crammer-Singer multiclass SVM)

L(W) = max{0,1 + maxw/ x, — wyTxn}
kZ#yn §

@ Loss = 0 if score on correct class is at least 1 more than score on next best scoring class

o Can optimize these similar to how we did it for binary SVM
SVM (Contd), Multiclass and One-Class SVM
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Multiclass SVM using Binary SVM?

@ Can use binary classifiers to solve multiclass problems
@ Note: These approaches can be used with other binary classifiers too (e.g., logistic regression)

@ One-vs-All (also called One-vs-Rest): Construct K binary classification problems

One-vs-All
Boundaries

@ All-Pairs: Learn K-choose-2 binary classifiers, one for each pair of classes (j, k)
_ T . .
Ve = arg mfxz W (X (predict k that wins over all others the most)
7k

@ All-Pairs approach can be expensive at training and test time (but ways to speed up)
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@ Can we learn from examples of just one class, say positive examples?

@ May be desirable if there are many types of negative examples

Positive

———— Examples
/,fﬂ \\\\ /
’ N

\
\\ el 4%3\ \
<3
N ~ @ Q Several Types
~ ~o of “Negative”

Examples

e “Outlier/Novelty Detection” problems can also be formulated like this

Figure credit: Refael Chickvashvili




One-Class Classification via SVM-Ilike methods

@ There are two popular SVM-type approaches to solve one-class problems

‘Support Vector Data Description (SVDD) One-Class SVM (OC-SVM)

&

@ Approach 1: Assume positives lie within a ball with smallest possible radius (and allow slacks)

e Known as “Support Vector Data Description” (SVDD). Proposed by [Tax and Duin, 2004]

@ Approach 2: Find a max-marg hyperplane separating positives from origin (representing negatives)
e Known as “One-Class SVM"” (OC-SVM). Proposed by [Schélkopf et al., 2001]

e Optimization problems for both cases can be solved similary as in binary SVM (e.g., via Lagrangian)
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One-Class Classification via SVM-Ilike methods

@ There are two popular SVM-type approaches to solve one-class problems

Support Vector Data Description (SVDD One-Class SVM (OC SVM)
N
in B2+ — 3 ¢ w4 e
arg min fu . arg 111111 w Z -
® Rt vN " vN "
n=1 n=1
s.t. ||$,l - C||2 S R2 -I-é-” Yn s.t. w Ty 2> pP— £n vn
€n >0 &n =0

Prediction Rule: y, = +1 if |j¢, —¢|* - R* <0 Prediction Rule: 3, = +1 if w @, >p

@ Approach 1: Assume positives lie within a ball with smallest possible radius (and allow slacks)

e Known as “Support Vector Data Description” (SVDD). Proposed by [Tax and Duin, 2004]

@ Approach 2: Find a max-marg hyperplane separating positives from origin (representing negatives)
e Known as “One-Class SVM"” (OC-SVM). Proposed by [Schélkopf et al., 2001]

e Optimization problems for both cases can be solved similary as in binary SVM (e.g., via Lagrangian)
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Nonlinear SVM ?

@ A nice property of SVM (and many other models) is that inputs only appear as inner products

@ For example, recall the dual problem for soft-margin SVM had the form
arg ;ngaé Lo(a)=a'1l- %aTch
where G is an N x N matrix with G, = YmynX ) x,, and 1 is a vector of 1s

@ We can replace each inner-product by any general form of inner product, e.g.

k(Xn,Xm) = ¢(Xn)T¢’(Xm)

. where ¢ is some transformation (e.g., a higher-dimensional mapping) of the data

o J°

° |
Ry
/ .

@ Note: Often the mapping ¢ doesn't need to be explicitly computed (“kernel” magic - next class)!
@ Can still learn a linear model in the new space but be nonlinear in the original space (wondeful!)
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SVM: Some Notes

@ A hugely (perhaps the most!) popular classification algorithm

@ Reasonably mature, highly optimized SVM softwares freely available (perhaps the reason why it is
more popular than various other competing algorithms)

e Some popular ones: [ibSVM, LIBLINEAR, scikit-learn also provides SVM
e Lots of work on scaling up SVMs' (both large N and large D)
e Extensions beyond binary classification (e.g., multiclass, one-class, structured outputs)

@ Can even be used for regression problems (Support Vector Regression)

e The e-insensitive loss for regression does precisely that!

@ Nonlinear extensions possible via kernels (next class)

T See: “Support Vector Machine Solvers” by Bottou and Lin
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