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Recap: Hyperplane-based Classification

Basic idea: Learn to separate by a hyperplane w>x + b = 0

Predict the label of a test input x∗ as: ŷ∗ = sign(w>x∗ + b)

The hyperplane may be “implied” by the model, or learned directly

Implied: Prototype-based classification, nearest neighbors, generative classification, etc.

Directly learned: Logistic regression, Perceptron, Support Vector Machine, etc.

The “direct” approach defines a model with parameters w (and optionally b) and learns them by
minimizing a suitable loss function (and doesn’t model x , i.e., purely discriminative)

The hyperplane need not be linear (e.g., can be made nonlinear using kernel methods - next class)
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The hyperplane may be “implied” by the model, or learned directly

Implied: Prototype-based classification, nearest neighbors, generative classification, etc.

Directly learned: Logistic regression, Perceptron, Support Vector Machine, etc.

The “direct” approach defines a model with parameters w (and optionally b) and learns them by
minimizing a suitable loss function (and doesn’t model x , i.e., purely discriminative)

The hyperplane need not be linear (e.g., can be made nonlinear using kernel methods - next class)

Intro to Machine Learning (CS771A) SVM (Contd), Multiclass and One-Class SVM 2



Recap: Hyperplane-based Classification

Basic idea: Learn to separate by a hyperplane w>x + b = 0

Predict the label of a test input x∗ as: ŷ∗ = sign(w>x∗ + b)
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Recap: Hyperplanes and Margin

Class +1

Class -1

(Margin on each side)
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Recap: Maximum-Margin Hyperplane

(equivalent to)

Total margin 

      Hard-margin SVM 
(“hard” = want all points to satisfy the margin constraint)
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Recap: Maximum-Margin Hyperplane with Slacks

Still want a max-margin hyperplane but want to relax the hard constraint yn(w>xn + b) ≥ 1

Let’s allow every point xn to “slack the constraint” by a distance ξn ≥ 0

Slacks
Class +1

Class -1

Points with ξn ≥ 0 will be either in the margin region or totally on the wrong side

New Objective: Maximize the margin while keeping the sum of slacks
∑N

n=1 ξn small

Note: Can also think of the sum of slacks as the total training error
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Recap: Maximum-Margin Hyperplane with Slacks

Maximize the 
     margin

      Minimize the 
     sum of slacks
     (don’t have too
      many violations)

  Hyperparmeter
to balance the two 

  Slack-relaxed constraints 

This formulation is known as the “soft-margin” SVM

Very small C : Large margin but also large training error. :-(

Very large C : Small training error but also small margin. :-(

C controls the trade-off between large margin and small training error
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Summary: Hard-Margin SVM vs Soft-Margin SVM

Objective for the hard-margin SVM (unknowns are w and b)

arg min
w,b

||w ||2

2

subject to yn(w
T xn + b) ≥ 1, n = 1, . . . ,N

Objective for the soft-margin SVM (unknowns are w , b, and {ξn}Nn=1)

arg min
w,b,ξ

||w ||2

2
+C

N∑
n=1

ξn

subject to yn(w
T xn + b) ≥ 1−ξn, ξn ≥ 0 n = 1, . . . ,N

In either case, we have to solve a constrained, convex optimization problem
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Solving SVM Objectives
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Solving Hard-Margin SVM

The hard-margin SVM optimization problem is:

arg min
w,b

||w ||2

2

subject to 1− yn(w
T xn + b) ≤ 0, n = 1, . . . ,N

A constrained optimization problem. Can solve using Lagrange’s method

Introduce Lagrange Multipliers αn (n = {1, . . . ,N}), one for each constraint, and solve

min
w,b

max
α≥0

L(w , b,α) =
||w ||2

2
+

N∑
n=1

αn{1− yn(w
T xn + b)}

Note: α = [α1, . . . , αN ] is the vector of Lagrange multipliers

Note: It is easier (and helpful; we will soon see why) to solve the dual problem: min and then max
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Solving Hard-Margin SVM

The dual problem (min then max) is

max
α≥0

min
w,b
L(w , b,α) =

w>w
2

+
N∑

n=1

αn{1− yn(w
T xn + b)}

Take (partial) derivatives of L w.r.t. w , b and set them to zero

∂L
∂w

= 0⇒ w =
N∑

n=1

αnynxn
∂L
∂b

= 0⇒
N∑

n=1

αnyn = 0

Important: Note the form of the solution w - it is simply a weighted sum of all the training inputs
x1, . . . , xN (and αn is like the “importance” of xn)

Substituting w =
∑N

n=1 αnynxn in Lagrangian, we get the dual problem as (verify)

max
α≥0

LD (α) =
N∑

n=1

αn −
1

2

N∑
m,n=1

αmαnymyn(x
T
mxn)
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Solving Hard-Margin SVM

Can write the objective more compactly in vector/matrix form as

max
α≥0

LD (α) = α
>1−

1

2
α
>Gα

where G is an N × N matrix with Gmn = ymynx>mxn, and 1 is a vector of 1s

Good news: This is maximizing a concave function (or minimizing a convex function - verify that
the Hessian is G, which is p.s.d.). Note that our original SVM objective was also convex

Important: Inputs x ’s only appear as inner products (helps to “kernelize”; more on this later)

Can solve† the above objective function for α using various methods, e.g.,

Treating the objective as a Quadratic Program (QP) and running some off-the-shelf QP solver such as
quadprog (MATLAB), CVXOPT, CPLEX, etc.

Using (projected) gradient methods (projection needed because the α’s are constrained). Gradient
methods will usually be much faster than QP methods.

Using co-ordinate ascent methods (optimize for one αn at a time); often very fast

† If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
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Can solve† the above objective function for α using various methods, e.g.,

Treating the objective as a Quadratic Program (QP) and running some off-the-shelf QP solver such as
quadprog (MATLAB), CVXOPT, CPLEX, etc.

Using (projected) gradient methods (projection needed because the α’s are constrained). Gradient
methods will usually be much faster than QP methods.

Using co-ordinate ascent methods (optimize for one αn at a time); often very fast

† If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
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Hard-Margin SVM: The Solution

Once we have the αn’s, w and b can be computed as:

w =
∑N

n=1 αnynxn (we already saw this)

b = − 1
2

(
minn:yn=+1 wTxn + maxn:yn=−1 wTxn

)
(exercise)

A nice property: Most αn’s in the solution will be zero (sparse solution)

Reason: Karush-Kuhn-Tucker (KKT) conditions

For the optimal αn’s

αn{1− yn(wT xn + b)} = 0

αn is non-zero only if xn lies on one of the two margin boundaries,
i.e., for which yn(wT xn + b) = 1

These examples are called support vectors

Recall the support vectors “support” the margin boundaries
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Solving Soft-Margin SVM
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Solving Soft-Margin SVM

Recall the soft-margin SVM optimization problem:

min
w,b,ξ

f (w , b, ξ) =
||w ||2

2
+C

N∑
n=1

ξn

subject to 1 ≤ yn(w
T xn + b)+ξn, −ξn ≤ 0 n = 1, . . . ,N

Note: ξ = [ξ1, . . . , ξN ] is the vector of slack variables

Introduce Lagrange Multipliers αn, βn (n = {1, . . . ,N}), for constraints, and solve the Lagrangian:

min
w,b,ξ

max
α≥0,β≥0

L(w , b, ξ, α, β) =
||w ||2

2
+ +C

N∑
n=1

ξn +
N∑

n=1

αn{1− yn(w
T xn + b)−ξn}−

N∑
n=1

βnξn

Note: The terms in red above were not present in the hard-margin SVM

Two sets of dual variables α = [α1, . . . , αN ] and β = [β1, . . . , βN ]. We’ll eliminate the primal
variables w , b, ξ to get dual problem containing the dual variables (just like in the hard margin case)
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Solving Soft-Margin SVM

The Lagrangian problem to solve

min
w,b,ξ

max
α≥0,β≥0

L(w , b, ξ, α, β) =
w>w

2
+ +C

N∑
n=1

ξn +
N∑

n=1

αn{1− yn(w
T xn + b)−ξn}−

N∑
n=1

βnξn

Take (partial) derivatives of L w.r.t. w , b, ξn and set them to zero

∂L
∂w

= 0⇒ w =
N∑

n=1

αnynxn ,
∂L
∂b

= 0⇒
N∑

n=1

αnyn = 0,
∂L
∂ξn

= 0⇒ C − αn − βn = 0

Note: Solution of w again has the same form as in the hard-margin case (weighted sum of all
inputs with αn being the importance of input xn)

Note: Using C −αn − βn = 0 and βn ≥ 0⇒ αn ≤ C (recall that, for the hard-margin case, α ≥ 0)

Substituting these in the Lagrangian L gives the Dual problem

max
α≤C,β≥0

LD (α,β) =
N∑

n=1

αn −
1

2

N∑
m,n=1

αmαnymyn(x
T
mxn)
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Solving Soft-Margin SVM

Interestingly, the dual variables β don’t appear in the objective!

Just like the hard-margin case, we can write the dual more compactly as

max
α≤C

LD (α) = α
>1−

1

2
α
>Gα

where G is an N × N matrix with Gmn = ymynx>mxn, and 1 is a vector of 1s

Like hard-margin case, solving the dual requires concave maximization (or convex minimization)

Can be solved† the same way as hard-margin SVM (except that α ≤ C )

Can solve for α using QP solvers or (projected) gradient methods

Given α, the solution for w , b has the same form as hard-margin case

Note: α is again sparse. Nonzero αn’s correspond to the support vectors

† If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
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Support Vectors in Soft-Margin SVM

The hard-margin SVM solution had only one type of support vectors

.. ones that lie on the margin boundaries wT x + b = −1 and wT x + b = +1

The soft-margin SVM solution has three types of support vectors

1 Lying on the margin boundaries wT x + b = −1 and wT x + b = +1 (ξn = 0)

2 Lying within the margin region (0 < ξn < 1) but still on the correct side

3 Lying on the wrong side of the hyperplane (ξn ≥ 1)
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SVMs via Dual Formulation: Some Comments

Recall the final dual objectives for hard-margin and soft-margin SVM

Hard-Margin SVM: max
α≥0

LD (α) = α
>1−

1

2
α
>Gα

Soft-Margin SVM: max
α≤C

LD (α) = α
>1−

1

2
α
>Gα

The dual formulation is nice due to two primary reasons:

Allows conveniently handling the margin based constraint (via Lagrangians)

Important: Allows learning nonlinear separators by replacing inner products (e.g., Gmn = ymynx>
mxn)

by kernelized similarities (kernelized SVMs)

However, the dual formulation can be expensive if N is large. Have to solve for N variables
α = [α1, . . . , αN ], and also need to store an N × N matrix G

A lot of work† on speeding up SVM in these settings (e.g., can use co-ord. descent for α)

†See: “Support Vector Machine Solvers” by Bottou and Lin
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SVM: The Regularized Loss Function View

Maximize the margin subject to constraints led to the soft-margin formulation of SVM

arg min
w,b,ξ

||w ||2

2
+C

N∑
n=1

ξn

subject to yn(wT xn + b) ≥ 1−ξn, ξn ≥ 0 n = 1, . . . ,N

Note that the slack ξn is the same as max{0, 1− yn(w>xn + b)}, i.e., hinge loss for (xn, yn)

Another View: Thus the above is equivalent to minimizing the `2 regularized hinge loss

L(w , b) =
N∑

n=1

max{0, 1− yn(w>xn + b)}+
λ

2
w>w

Comparing the two: Sum of slacks is like sum of hinge losses, C and λ play similar roles

Can learn (w , b) directly by minimizing L(w , b) using (stochastic)(sub)gradient descent

Hinge-loss version preferred for linear SVMs, or with other regularizers on w (e.g., `1)
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Multiclass SVM

Multiclass SVMs use K weight vectors W = [w 1,w 2, . . . ,wK ] (similar to softmax regression)

ŷ∗ = arg max
k

w>k xn (predition rule)

Just like binary case, we can formulate a maximum-margin problem (without or with slacks)

Ŵ = arg min
W

K∑
k=1

||w k ||2

2

s.t. w>ynxn ≥ w>k xn + 1 ∀k 6= yn

Ŵ = arg min
W

K∑
k=1

||w k ||2

2
+ C

N∑
n=1

ξn

s.t. w>ynxn ≥ w>k xn + 1− ξn ∀k 6= yn

Want score w.r.t. correct class to be at least 1 more than score w.r.t. all other classes

The version with slack corresponds to minimizing a multi-class hinge loss

L(W) = max{0, 1 + max
k 6=yn

w>k xn −w>ynxn} (Crammer-Singer multiclass SVM)

Loss = 0 if score on correct class is at least 1 more than score on next best scoring class

Can optimize these similar to how we did it for binary SVM
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ŷ∗ = arg max
k

w>k xn (predition rule)

Just like binary case, we can formulate a maximum-margin problem (without or with slacks)
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Multiclass SVM using Binary SVM?

Can use binary classifiers to solve multiclass problems

Note: These approaches can be used with other binary classifiers too (e.g., logistic regression)

One-vs-All (also called One-vs-Rest): Construct K binary classification problems

All-Pairs: Learn K -choose-2 binary classifiers, one for each pair of classes (j , k)

y∗ = arg max
k

∑
j 6=k

w>j,kx∗ (predict k that wins over all others the most)

All-Pairs approach can be expensive at training and test time (but ways to speed up)
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One-Class Classification

Can we learn from examples of just one class, say positive examples?

May be desirable if there are many types of negative examples

“Novel
”

“Novel
”

“Novel
”

“Norma
l”
 Positive 
Examples

Several Types
 of “Negative” 
    Examples 

“Outlier/Novelty Detection” problems can also be formulated like this

Figure credit: Refael Chickvashvili
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One-Class Classification via SVM-like methods

There are two popular SVM-type approaches to solve one-class problems

Origin

Support Vector Data Description (SVDD) One-Class SVM (OC-SVM)

Approach 1: Assume positives lie within a ball with smallest possible radius (and allow slacks)

Known as “Support Vector Data Description” (SVDD). Proposed by [Tax and Duin, 2004]

Approach 2: Find a max-marg hyperplane separating positives from origin (representing negatives)

Known as “One-Class SVM” (OC-SVM). Proposed by [Schölkopf et al., 2001]

Optimization problems for both cases can be solved similary as in binary SVM (e.g., via Lagrangian)
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Nonlinear SVM ?

A nice property of SVM (and many other models) is that inputs only appear as inner products

For example, recall the dual problem for soft-margin SVM had the form

arg max
α≤C

LD (α) = α
>1−

1

2
α
>Gα

where G is an N × N matrix with Gmn = ymynx>mxn, and 1 is a vector of 1s

We can replace each inner-product by any general form of inner product, e.g.

k(xn, xm) = φ(xn)>φ(xm)

.. where φ is some transformation (e.g., a higher-dimensional mapping) of the data

Original Input Space Transformed (Higher-Dim)
          Input Space

Note: Often the mapping φ doesn’t need to be explicitly computed (“kernel” magic - next class)!

Can still learn a linear model in the new space but be nonlinear in the original space (wondeful!)
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SVM: Some Notes

A hugely (perhaps the most!) popular classification algorithm

Reasonably mature, highly optimized SVM softwares freely available (perhaps the reason why it is
more popular than various other competing algorithms)

Some popular ones: libSVM, LIBLINEAR, scikit-learn also provides SVM

Lots of work on scaling up SVMs† (both large N and large D)

Extensions beyond binary classification (e.g., multiclass, one-class, structured outputs)

Can even be used for regression problems (Support Vector Regression)

The ε-insensitive loss for regression does precisely that!

Nonlinear extensions possible via kernels (next class)

†See: “Support Vector Machine Solvers” by Bottou and Lin
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