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Recap: Subgradient Descent

Use subgradient at non-differentiable points, use gradient elsewhere

(1,0)

Hinge Loss:

(0,1)

(0,0)(0,0)

Left: each entry of (sub)gradient vector for ||w ||1, Right: (sub)gradient vector for hinge loss

td =


−1, for wd < 0

[−1,+1] for wd = 0

+1 for wd > 0

t =


0, for ynw>xn > 1

−ynxn for ynw>xn < 1

kynxn for ynw>xn = 1 (where k ∈ [−1, 0])
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Recap: Constrained Optimization via Lagrangian

Same as       when 
constraint satisfied

Lagrangian:
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Recap: Constrained Optimization via Lagrangian

We minimize the Lagrangian L(w , α) w.r.t. w and maximize w.r.t. α

For certain problems, the order of maximization and minimization does not matter

Approach 1: Can first maximize w.r.t. α and then minimize w.r.t. w

Approach 2: Can first minimize w.r.t. w and then maximize w.r.t. α

Approach 2 is known as optimizing via the dual (popular in SVM solvers; will see today!)

KKT condition: At the optimal solution α̂g(ŵ) = 0

Multiple constraints (inequality/equality) can also be handled likewise
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Recap: Projected Gradient Descent

Same as GD + extra projection step we step out of the constraint set

Projection
    step

In some cases, the projection step is very easy

(1,0)

(0,1)

  Projection
         =
Normalize to
  unit length

  Projection
         =
Set negative
 values to 0

: Unit radius     ball : Set of non-negative reals

Intro to Machine Learning (CS771A) Optimization (Wrap-up), and Hyperplane based Classifiers (Perceptron and SVM) 5



Recap: Projected Gradient Descent

Same as GD + extra projection step we step out of the constraint set

Projection
    step

In some cases, the projection step is very easy

(1,0)

(0,1)

  Projection
         =
Normalize to
  unit length

  Projection
         =
Set negative
 values to 0

: Unit radius     ball : Set of non-negative reals

Intro to Machine Learning (CS771A) Optimization (Wrap-up), and Hyperplane based Classifiers (Perceptron and SVM) 5



Co-ordinate Descent (CD)

Standard GD update for w ∈ RD at each step

w (t+1) = w (t) − ηtg (t)

CD: Each step updates one component (co-ordinate) at a time, keeping all others fixed

w
(t+1)
d = w

(t)
d − ηtg

(t)
d

=
- Order: Random/cyclic

- Can also update in “blocks”

- Cost of update independent of D 
(caching previous computations helps)
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Alternating Optimization

Consider an optimization problems with several variables, say 2 variables w 1 and w 2

{ŵ 1, ŵ 2} = arg min
w1,w2

L(w 1,w 2)

Often, this “joint” optimization is hard/impossible. We can consider an alternating scheme

ALT-OPT

1 Initialize one of the variables, e.g., w 2 = w (0)
2 , t = 0

2 Solve w (t+1)
1 = arg minw1 L(w 1,w (t)

2 ) //w 2 “fixed” at its most recent value w (t)
2

3 Solve w (t+1)
2 = arg minw2 L(w (t+1)

1 ,w 2) //w 1 “fixed” at its most recent value w (t+1)
1

4 t = t + 1. Go to step 2 if not converged yet.

Usually converges to a local optima of L(w 1,w 2). Also connections to EM (will see later)

VERY VERY useful!!! Also extends to more than 2 variables. CD is somewhat like ALT-OPT.
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{ŵ 1, ŵ 2} = arg min
w1,w2

L(w 1,w 2)

Often, this “joint” optimization is hard/impossible. We can consider an alternating scheme

ALT-OPT

1 Initialize one of the variables, e.g., w 2 = w (0)
2 , t = 0

2 Solve w (t+1)
1 = arg minw1 L(w 1,w (t)

2 ) //w 2 “fixed” at its most recent value w (t)
2

3 Solve w (t+1)
2 = arg minw2 L(w (t+1)

1 ,w 2) //w 1 “fixed” at its most recent value w (t+1)
1

4 t = t + 1. Go to step 2 if not converged yet.

Usually converges to a local optima of L(w 1,w 2). Also connections to EM (will see later)

VERY VERY useful!!! Also extends to more than 2 variables. CD is somewhat like ALT-OPT.

Intro to Machine Learning (CS771A) Optimization (Wrap-up), and Hyperplane based Classifiers (Perceptron and SVM) 7



Alternating Optimization

Consider an optimization problems with several variables, say 2 variables w 1 and w 2
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Newton’s Method

Newton’s method uses second-order information (second derivative a.k.a. Hessian)

At each point w (t), minimize the quadratic (second-order) approximation of the function

w (t+1) = arg min
w

{
f (w (t)) +∇f (w (t))>(w − w (t)) +

1

2
(w − w (t))>∇2f (w (t))(w − w (t))

}

Exercise: Verify that w (t+1) = w (t) − (∇2f (w (t)))−1∇f (w (t)). Also no learning rate needed!

Converges much faster than GD. But also expensive due to Hessian computation/inversion.

Many ways to approximate the Hessian (e.g., using previous gradients); also look at L-BFGS etc.
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Converges much faster than GD. But also expensive due to Hessian computation/inversion.

Many ways to approximate the Hessian (e.g., using previous gradients); also look at L-BFGS etc.
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Summary

Gradient methods are simple to understand and implement

More sophisticated optimization methods often use gradient methods

Backpropagation algorithm used in deep neural nets is GD + chain rule of differentiation

Use subgradient methods if function not differentiable

Constrained optimization require methods such as Lagrangian or projected gradient

Second order methods such as Newton’s method are much faster but computationally expensive

But computing all this gradient related stuff looks scary to me. Any help?

Don’t worry. Automatic Differentiation (AD) methods available now

AD only requires specifying the loss function (useful for complex models like deep neural nets)

Many packages such as Tensorflow, PyTorch, etc. provide AD support

But having a good understanding of optimization is still helpful
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Hyperplane based Classification

All linear models for classification are basically about learning hyperplanes!

Already saw logistic regression (probabilistic linear classifier).

Will look at some more today - Perceptron, SVM
(also how some of the optimization methods we saw can be applied in these cases)
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Hyperplanes

Separates a D-dimensional space into two half-spaces (positive and negative)

Defined by normal vector w ∈ RD (pointing towards positive half-space)

Equation of the hyperplane: w>x = 0

Assumption: The hyperplane passes through origin. If not, add a bias term b ∈ R

w>x + b = 0

b > 0 means moving it parallely in the direction of w (b < 0 means moving in opposite direction)

Distance of a point xn from a hyperplane (can be +ve/-ve)

γn =
wTxn + b

||w ||
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A Mistake-Driven Method for Learning Hyperplanes

Let’s ignore the bias term b for now. So the hyperplane is simply w>x = 0

Consider SGD to learn a hyperplane based model with loss: L(w) =
∑N

n=1 max{0,−ynw>xn}
“Perceptron” Loss:

(0,0)

Loss not differentiable at ynw>xn = 0, so we will use subgradients there. The (sub)gradient will be

g n =


0, for ynw>xn > 0

−ynxn for ynw>xn < 0

kynxn for ynw>xn = 0 (where k ∈ [−1, 0])

If we use k = 0 then gn = 0 for ynw>xn ≥ 0, and gn = −ynxn if ynw>xn < 0

Thus gn nonzero only when ynw>xn < 0 (mistake). SGD will update w only in these cases!
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Mistake-Driven Learning of Hyperplanes

The complete SGD algorithm for a model with this loss function will be

Stochastic SubGD

1 Initialize w = w (0), t = 0, set ηt = 1,∀t
2 Pick some (xn, yn) randomly.

3 If current w makes a mistake on (xn, yn), i.e., ynw (t)>xn < 0

w (t+1) = w (t) + ynxn

t = t + 1

4 If not converged, go to step 2.

This is the Perceptron algorithm. An example of an online learning algorithm

Note: Assuming w (0) = 0, easy to see the final w has the form w =
∑N

n=1 αnynxn

.. where αn is total number of mistakes made by the algorithm on example (xn, yn)

As we’ll see, many other models will also lead to w =
∑N

n=1 αnynxn (for some suitable αn’s)
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w (t+1) = w (t) + ynxn

t = t + 1

4 If not converged, go to step 2.

This is the Perceptron algorithm. An example of an online learning algorithm

Note: Assuming w (0) = 0, easy to see the final w has the form w =
∑N

n=1 αnynxn

.. where αn is total number of mistakes made by the algorithm on example (xn, yn)

As we’ll see, many other models will also lead to w =
∑N

n=1 αnynxn (for some suitable αn’s)
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Perceptron: Corrective Updates and Convergence

Suppose true yn = +1 (positive example) and the model mispredicts, i.e., w (t)>xn < 0

After the update w (t+1) = w (t) + ynxn = w (t) + xn

w (t+1)>xn = w (t)>xn + x>n xn

.. which is less negative than w (t)>xn (so the model has improved)

Exercise: Verify that the model also improves after updating on a mistake on negative example

Note: If training data is linearly separable, Perceptron converges in finite iterations

Proof: Block & Novikoff theorem (will provide the proof in a separate note)

What this means: It will eventually classify every training example correctly

Speed of convergence depends on the margin of separation (and on nothing else, such as N, D)

Note: In practice, we might want to stop sooner (to avoid overfitting)
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Perceptron and (Lack of) Margins

Perceptron learns a hyperplane (of many possible) that separates the classes

The one learned will depend on the initial w

Standard Perceptron doesn’t guarantee any “margin” around the hyperplane

Note: Possible to “artificially” introduce a margin in the Perceptron

Simply change the Perceptron mistake condition to

ynwT xn < γ

where γ > 0 is a pre-specified margin. For standard Perceptron, γ = 0

Support Vector Machine (SVM) does this directly by learning the maximum margin hyperplane
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Support Vector Machine (SVM)

SVM is a hyperplane based (linear) classifier that ensures a large margin around the hyperplane

Note: We will assume the hyperplane to be of the form w>x + b = 0 (will keep the bias term b)

Note: SVMs can also learn nonlinear decision boundaries using kernel methods (will see later)

Reason behind the name “Support Vector Machine”?

SVM optimization discovers the most important examples (called “support vectors”) in training data

These examples act as “balancing” the margin boundaries (hence called “support”)

Intro to Machine Learning (CS771A) Optimization (Wrap-up), and Hyperplane based Classifiers (Perceptron and SVM) 16



Support Vector Machine (SVM)

SVM is a hyperplane based (linear) classifier that ensures a large margin around the hyperplane

Note: We will assume the hyperplane to be of the form w>x + b = 0 (will keep the bias term b)

Note: SVMs can also learn nonlinear decision boundaries using kernel methods (will see later)

Reason behind the name “Support Vector Machine”?

SVM optimization discovers the most important examples (called “support vectors”) in training data

These examples act as “balancing” the margin boundaries (hence called “support”)

Intro to Machine Learning (CS771A) Optimization (Wrap-up), and Hyperplane based Classifiers (Perceptron and SVM) 16



Support Vector Machine (SVM)

SVM is a hyperplane based (linear) classifier that ensures a large margin around the hyperplane

Note: We will assume the hyperplane to be of the form w>x + b = 0 (will keep the bias term b)

Note: SVMs can also learn nonlinear decision boundaries using kernel methods (will see later)

Reason behind the name “Support Vector Machine”?

SVM optimization discovers the most important examples (called “support vectors”) in training data

These examples act as “balancing” the margin boundaries (hence called “support”)

Intro to Machine Learning (CS771A) Optimization (Wrap-up), and Hyperplane based Classifiers (Perceptron and SVM) 16



Support Vector Machine (SVM)

SVM is a hyperplane based (linear) classifier that ensures a large margin around the hyperplane

Note: We will assume the hyperplane to be of the form w>x + b = 0 (will keep the bias term b)

Note: SVMs can also learn nonlinear decision boundaries using kernel methods (will see later)

Reason behind the name “Support Vector Machine”?

SVM optimization discovers the most important examples (called “support vectors”) in training data

These examples act as “balancing” the margin boundaries (hence called “support”)

Intro to Machine Learning (CS771A) Optimization (Wrap-up), and Hyperplane based Classifiers (Perceptron and SVM) 16



Support Vector Machine (SVM)

SVM is a hyperplane based (linear) classifier that ensures a large margin around the hyperplane

Note: We will assume the hyperplane to be of the form w>x + b = 0 (will keep the bias term b)

Note: SVMs can also learn nonlinear decision boundaries using kernel methods (will see later)

Reason behind the name “Support Vector Machine”?

SVM optimization discovers the most important examples (called “support vectors”) in training data

These examples act as “balancing” the margin boundaries (hence called “support”)

Intro to Machine Learning (CS771A) Optimization (Wrap-up), and Hyperplane based Classifiers (Perceptron and SVM) 16



Support Vector Machine (SVM)

SVM is a hyperplane based (linear) classifier that ensures a large margin around the hyperplane

Note: We will assume the hyperplane to be of the form w>x + b = 0 (will keep the bias term b)

Note: SVMs can also learn nonlinear decision boundaries using kernel methods (will see later)

Reason behind the name “Support Vector Machine”?

SVM optimization discovers the most important examples (called “support vectors”) in training data

These examples act as “balancing” the margin boundaries (hence called “support”)

Intro to Machine Learning (CS771A) Optimization (Wrap-up), and Hyperplane based Classifiers (Perceptron and SVM) 16



Learning a Maximum Margin Hyperplane

Suppose we want a hyperplane w>x + b = 0 such that

wT xn + b ≥ 1 for yn = +1

wT xn + b ≤ −1 for yn = −1

Equivalently, yn(wT xn + b) ≥ 1 ∀n

Define the margin on each side: γ = min1≤n≤N
|wT xn+b|
||w|| = 1

||w||

Total margin = 2γ = 2
||w||

Want the hyperplane (w , b) that gives the largest possible margin

Note: Can replace yn(wTxn + b) ≥ 1 by yn(wTxn + b) ≥ m for some m > 0. It won’t change the
solution for w , will just scale it by a constant, without changing the direction of w (exercise)
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Hard-Margin SVM

Hard-Margin: Every training example has to fulfil the margin condition yn(wTxn + b) ≥ 1

Also want to maximize the margin γ ∝ 1
||w || . Equivalent to minimizing ||w ||2 or ||w ||

2

2

The objective for hard-margin SVM

min
w,b

f (w , b) =
||w ||2

2

subject to yn(wT xn + b) ≥ 1, n = 1, . . . ,N

Constrained optimization with N inequality constraints (note: function and constraints are convex)
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Soft-Margin SVM (More Commonly Used)

Allow some training examples to fall within the margin region, or be even misclassified (i.e., fall on
the wrong side). Preferable if training data is noisy

Each training example (xn, yn) given a “slack” ξn ≥ 0 (distance by which it “violates” the margin).
If ξn > 1 then xn is totally on the wrong side

Basically, we want a soft-margin condition: yn(wT xn + b) ≥ 1−ξn, ξn ≥ 0
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Basically, we want a soft-margin condition: yn(wT xn + b) ≥ 1−ξn, ξn ≥ 0
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Soft-Margin SVM (More Commonly Used)

Goal: Maximize the margin, while also minimizing the sum of slacks (don’t want too many training
examples violating the margin condition)

The primal objective for soft-margin SVM can thus be written as

min
w,b,ξ

f (w , b, ξ) =
||w ||2

2
+C

N∑
n=1

ξn

subject to yn(wT xn + b) ≥ 1−ξn, ξn ≥ 0 n = 1, . . . ,N

Constrained optimization with 2N inequality constraints

Parameter C controls the trade-off between large margin vs small training error
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Summary: Hard-Margin SVM vs Soft-Margin SVM

Objective for the hard-margin SVM (unknowns are w and b)

min
w,b

f (w , b) =
||w ||2

2

subject to yn(wT xn + b) ≥ 1, n = 1, . . . ,N

Objective for the soft-margin SVM (unknowns are w , b, and {ξn}Nn=1)

min
w,b,ξ

f (w , b, ξ) =
||w ||2

2
+C

N∑
n=1

ξn

subject to yn(wT xn + b) ≥ 1−ξn, ξn ≥ 0 n = 1, . . . ,N

In either case, we have to solve a constrained, convex optimization problem
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Solving Hard-Margin SVM
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Solving Hard-Margin SVM

The hard-margin SVM optimization problem is:

min
w,b

f (w , b) =
||w ||2

2

subject to 1− yn(wT xn + b) ≤ 0, n = 1, . . . ,N

A constrained optimization problem. Can solve using Lagrange’s method

Introduce Lagrange Multipliers αn (n = {1, . . . ,N}), one for each constraint, and solve

min
w,b

max
α≥0

L(w , b,α) =
||w ||2

2
+

N∑
n=1

αn{1− yn(wT xn + b)}

Note: α = [α1, . . . , αN ] is the vector of Lagrange multipliers

Note: It is easier (and helpful; we will soon see why) to solve the dual problem: min and then max
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Solving Hard-Margin SVM

The dual problem (min then max) is

max
α≥0

min
w,b
L(w , b,α) =

w>w
2

+
N∑

n=1

αn{1− yn(wT xn + b)}

Take (partial) derivatives of L w.r.t. w , b and set them to zero

∂L
∂w

= 0⇒ w =
N∑

n=1

αnynxn
∂L
∂b

= 0⇒
N∑

n=1

αnyn = 0

Important: Note the form of the solution w - it is simply a weighted sum of all the training inputs
x1, . . . , xN (and αn is like the “importance” of xn)

Substituting w =
∑N

n=1 αnynxn in Lagrangian, we get the dual problem as (verify)

max
α≥0

LD (α) =
N∑

n=1

αn −
1

2

N∑
m,n=1

αmαnymyn(xT
mxn)
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Solving Hard-Margin SVM

Can write the objective more compactly in vector/matrix form as

max
α≥0

LD (α) = α
>1−

1

2
α
>Gα

where G is an N × N matrix with Gmn = ymynx>mxn, and 1 is a vector of 1s

Good news: This is maximizing a concave function (or minimizing a convex function - verify that
the Hessian is G, which is p.s.d.). Note that our original SVM objective was also convex

Important: Inputs x ’s only appear as inner products (helps to “kernelize”; more when we see
kernel methods)

Can solve† the above objective function for α using various methods, e.g.,

Treating the objective as a Quadratic Program (QP) and running some off-the-shelf QP solver such as
quadprog (MATLAB), CVXOPT, CPLEX, etc.

Using (projected) gradient methods (projection needed because the α’s are constrained). Gradient
methods will usually be much faster than QP methods.

† If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
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Hard-Margin SVM: The Solution

Once we have the αn’s, w and b can be computed as:

w =
∑N

n=1 αnynxn (we already saw this)

b = − 1
2

(
minn:yn=+1 wTxn + maxn:yn=−1 wTxn

)
(exercise)

A nice property: Most αn’s in the solution will be zero (sparse solution)

Reason: Karush-Kuhn-Tucker (KKT) conditions

For the optimal αn’s

αn{1− yn(wT xn + b)} = 0

αn is non-zero only if xn lies on one of the two margin boundaries,
i.e., for which yn(wT xn + b) = 1

These examples are called support vectors

Recall the support vectors “support” the margin boundaries
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Solving Soft-Margin SVM
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Solving Soft-Margin SVM

Recall the soft-margin SVM optimization problem:

min
w,b,ξ

f (w , b, ξ) =
||w ||2

2
+C

N∑
n=1

ξn

subject to 1 ≤ yn(wT xn + b)+ξn, −ξn ≤ 0 n = 1, . . . ,N

Note: ξ = [ξ1, . . . , ξN ] is the vector of slack variables

Introduce Lagrange Multipliers αn, βn (n = {1, . . . ,N}), for constraints, and solve the Lagrangian:

min
w,b,ξ

max
α≥0,β≥0

L(w , b, ξ, α, β) =
||w ||2

2
+ +C

N∑
n=1

ξn +
N∑

n=1

αn{1− yn(wT xn + b)−ξn}−
N∑

n=1

βnξn

Note: The terms in red above were not present in the hard-margin SVM

Two sets of dual variables α = [α1, . . . , αN ] and β = [β1, . . . , βN ]. We’ll eliminate the primal
variables w , b, ξ to get dual problem containing the dual variables (just like in the hard margin case)
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Solving Soft-Margin SVM

The Lagrangian problem to solve

min
w,b,ξ

max
α≥0,β≥0

L(w , b, ξ, α, β) =
w>w

2
+ +C

N∑
n=1

ξn +
N∑

n=1

αn{1− yn(wT xn + b)−ξn}−
N∑

n=1

βnξn

Take (partial) derivatives of L w.r.t. w , b, ξn and set them to zero

∂L
∂w

= 0⇒ w =
N∑

n=1

αnynxn ,
∂L
∂b

= 0⇒
N∑

n=1

αnyn = 0,
∂L
∂ξn

= 0⇒ C − αn − βn = 0

Note: Solution of w again has the same form as in the hard-margin case (weighted sum of all
inputs with αn being the importance of input xn)

Note: Using C −αn − βn = 0 and βn ≥ 0⇒ αn ≤ C (recall that, for the hard-margin case, α ≥ 0)

Substituting these in the Lagrangian L gives the Dual problem

max
α≤C,β≥0

LD (α,β) =
N∑

n=1

αn −
1

2

N∑
m,n=1

αmαnymyn(xT
mxn) s.t.

N∑
n=1

αnyn = 0
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Solving Soft-Margin SVM

Interestingly, the dual variables β don’t appear in the objective!

Just like the hard-margin case, we can write the dual more compactly as

max
α≤C

LD (α) = α
>1−

1

2
α
>Gα

where G is an N × N matrix with Gmn = ymynx>mxn, and 1 is a vector of 1s

Like hard-margin case, solving the dual requires concave maximization (or convex minimization)

Can be solved† the same way as hard-margin SVM (except that α ≤ C )

Can solve for α using QP solvers or (projected) gradient methods

Given α, the solution for w , b has the same form as hard-margin case

Note: α is again sparse. Nonzero αn’s correspond to the support vectors

† If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
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Support Vectors in Soft-Margin SVM

The hard-margin SVM solution had only one type of support vectors

.. ones that lie on the margin boundaries wT x + b = −1 and wT x + b = +1

The soft-margin SVM solution has three types of support vectors

1 Lying on the margin boundaries wT x + b = −1 and wT x + b = +1 (ξn = 0)

2 Lying within the margin region (0 < ξn < 1) but still on the correct side

3 Lying on the wrong side of the hyperplane (ξn ≥ 1)
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SVMs via Dual Formulation: Some Comments

Recall the final dual objectives for hard-margin and soft-margin SVM

Hard-Margin SVM: max
α≥0

LD (α) = α
>1−

1

2
α
>Gα

Soft-Margin SVM: max
α≤C

LD (α) = α
>1−

1

2
α
>Gα

The dual formulation is nice due to two primary reasons:

Allows conveniently handling the margin based constraint (via Lagrangians)

Important: Allows learning nonlinear separators by replacing inner products (e.g., Gmn = ymynx>mxn)
by kernelized similarities (kernelized SVMs)

However, the dual formulation can be expensive if N is large. Have to solve for N variables
α = [α1, . . . , αN ], and also need to store an N × N matrix G

A lot of work† on speeding up SVM in these settings (e.g., can use co-ord. descent for α)

†See: “Support Vector Machine Solvers” by Bottou and Lin

Intro to Machine Learning (CS771A) Optimization (Wrap-up), and Hyperplane based Classifiers (Perceptron and SVM) 32



SVMs via Dual Formulation: Some Comments

Recall the final dual objectives for hard-margin and soft-margin SVM

Hard-Margin SVM: max
α≥0

LD (α) = α
>1−

1

2
α
>Gα

Soft-Margin SVM: max
α≤C

LD (α) = α
>1−

1

2
α
>Gα

The dual formulation is nice due to two primary reasons:

Allows conveniently handling the margin based constraint (via Lagrangians)

Important: Allows learning nonlinear separators by replacing inner products (e.g., Gmn = ymynx>mxn)
by kernelized similarities (kernelized SVMs)

However, the dual formulation can be expensive if N is large. Have to solve for N variables
α = [α1, . . . , αN ], and also need to store an N × N matrix G

A lot of work† on speeding up SVM in these settings (e.g., can use co-ord. descent for α)

†See: “Support Vector Machine Solvers” by Bottou and Lin

Intro to Machine Learning (CS771A) Optimization (Wrap-up), and Hyperplane based Classifiers (Perceptron and SVM) 32



SVMs via Dual Formulation: Some Comments

Recall the final dual objectives for hard-margin and soft-margin SVM

Hard-Margin SVM: max
α≥0

LD (α) = α
>1−

1

2
α
>Gα

Soft-Margin SVM: max
α≤C

LD (α) = α
>1−

1

2
α
>Gα

The dual formulation is nice due to two primary reasons:

Allows conveniently handling the margin based constraint (via Lagrangians)

Important: Allows learning nonlinear separators by replacing inner products (e.g., Gmn = ymynx>mxn)
by kernelized similarities (kernelized SVMs)

However, the dual formulation can be expensive if N is large. Have to solve for N variables
α = [α1, . . . , αN ], and also need to store an N × N matrix G

A lot of work† on speeding up SVM in these settings (e.g., can use co-ord. descent for α)

†See: “Support Vector Machine Solvers” by Bottou and Lin

Intro to Machine Learning (CS771A) Optimization (Wrap-up), and Hyperplane based Classifiers (Perceptron and SVM) 32



SVMs via Dual Formulation: Some Comments

Recall the final dual objectives for hard-margin and soft-margin SVM

Hard-Margin SVM: max
α≥0

LD (α) = α
>1−

1

2
α
>Gα

Soft-Margin SVM: max
α≤C

LD (α) = α
>1−

1

2
α
>Gα

The dual formulation is nice due to two primary reasons:

Allows conveniently handling the margin based constraint (via Lagrangians)

Important: Allows learning nonlinear separators by replacing inner products (e.g., Gmn = ymynx>mxn)
by kernelized similarities (kernelized SVMs)

However, the dual formulation can be expensive if N is large. Have to solve for N variables
α = [α1, . . . , αN ], and also need to store an N × N matrix G

A lot of work† on speeding up SVM in these settings (e.g., can use co-ord. descent for α)

†See: “Support Vector Machine Solvers” by Bottou and Lin

Intro to Machine Learning (CS771A) Optimization (Wrap-up), and Hyperplane based Classifiers (Perceptron and SVM) 32



SVMs via Dual Formulation: Some Comments

Recall the final dual objectives for hard-margin and soft-margin SVM

Hard-Margin SVM: max
α≥0

LD (α) = α
>1−

1

2
α
>Gα

Soft-Margin SVM: max
α≤C

LD (α) = α
>1−

1

2
α
>Gα

The dual formulation is nice due to two primary reasons:

Allows conveniently handling the margin based constraint (via Lagrangians)

Important: Allows learning nonlinear separators by replacing inner products (e.g., Gmn = ymynx>mxn)
by kernelized similarities (kernelized SVMs)

However, the dual formulation can be expensive if N is large. Have to solve for N variables
α = [α1, . . . , αN ], and also need to store an N × N matrix G

A lot of work† on speeding up SVM in these settings (e.g., can use co-ord. descent for α)

†See: “Support Vector Machine Solvers” by Bottou and Lin

Intro to Machine Learning (CS771A) Optimization (Wrap-up), and Hyperplane based Classifiers (Perceptron and SVM) 32



SVM: Some Notes

A hugely (perhaps the most!) popular classification algorithm

Reasonably mature, highly optimized SVM softwares freely available (perhaps the reason why it is
more popular than various other competing algorithms)

Some popular ones: libSVM, LIBLINEAR, sklearn also provides SVM

Lots of work on scaling up SVMs† (both large N and large D)

Extensions beyond binary classification (e.g., multiclass, structured outputs)

Can even be used for regression problems (Support Vector Regression)

Nonlinear extensions possible via kernels

†See: “Support Vector Machine Solvers” by Bottou and Lin
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