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These notes address (approximate) solutions to linear equations by least

squares. We deal with the ‘easy’ case wherein the system matrix is full

rank. If the system matrix is rank deficient, then other methods are

needed, e.g., QR decomposition, singular value decomposition, or the

pseudo-inverse, [2, 3].

In these notes, least squares is illustrated by applying it to several basic

problems in signal processing:

1. Linear prediction

2. Smoothing

3. Deconvolution

4. System identification

5. Estimating missing data

For the use of least squares in filter design, see [1].

1 Notation

We denote vectors in lower-case bold, i.e.,

x =


x1

x2
...

xN

 . (1)

We denote matrices in upper-case bold. The transpose of a vector or matrix

in indicated by a superscript T , i.e., xT is the transpose of x.

The notation ‖x‖2 refers to the Euclidian length of the vector x, i.e.,

‖x‖2 =

√
|x1|2 + |x2|2 + · · ·+ |xN |2. (2)
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Matlab software to reproduce the examples in these notes is available on the web or

from the author. http://eeweb.poly.edu/iselesni/lecture_notes/

Last edit: November 26, 2013

The ‘sum of squares’ of x is denoted by ‖x‖22, i.e.,

‖x‖22 =
∑
n

|x(n)|2 = xTx. (3)

The ‘energy’ of a vector x refers to ‖x‖22.

In these notes, it is assumed that all vectors and matrices are real-valued.

In the complex-valued case, the conjugate transpose should be used in place

of the transpose, etc.

2 Overdetermined equations

Consider the system of linear equations

y = Hx.

If there is no solution to this system of equations, then the system is

‘overdetermined’. This frequently happens when H is a ‘tall’ matrix (more

rows than columns) with linearly independent columns.

In this case, it is common to seek a solution x minimizing the energy of

the error:

J(x) = ‖y −Hx‖22.

Expanding J(x) gives

J(x) = (y −Hx)T (y −Hx) (4)

= yTy − yTHx− xTHTy + xTHTHx (5)

= yTy − 2yTHx + xTHTHx. (6)

Note that each of the four terms in (5) are scalars. Note also that the scalar

xTHTy is the transpose of the scalar yTHx, and hence xTHTy = yTHx.

Taking the derivative (see Appendix A), gives

∂

∂x
J(x) = −2HTy + 2HTHx

Setting the derivative to zero,

∂

∂x
J(x) = 0 =⇒ HTHx = HTy
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Let us assume that HTH is invertible. Then the solution is given by

x = (HTH)−1HTy.

This is the ‘least squares’ solution.

min
x
‖y −Hx‖22 =⇒ x = (HTH)−1HTy (7)

In some situations, it is desirable to minimize the weighted square error,

i.e.,
∑

n wn r
2
n where r is the residual, or error, r = y −Hx, and wn are

positive weights. This corresponds to minimizing ‖W1/2(y−Hx)‖22 where

W is the diagonal matrix, [W]n,n = wn. Using (7) gives

min
x
‖W1/2(y −Hx)‖22 =⇒ x = (HTWH)−1HTWy (8)

where we have used the fact that W is symmetric.

3 Underdetermined equations

Consider the system of linear equations

y = Hx.

If there are many solutions, then the system is ‘underdetermined’. This

frequently happens when H is a ‘wide’ matrix (more columns than rows)

with linearly independent rows.

In this case, it is common to seek a solution x with minimum norm. That

is, we would like to solve the optimization problem

min
x
‖x‖22 (9)

such that y = Hx. (10)

Minimization with constraints can be done with Lagrange multipliers. So,

define the Lagrangian:

L(x,µ) = ‖x‖22 + µT (y −Hx)

Take the derivatives of the Lagrangian:

∂

∂x
L(x) = 2x−HTµ

∂

∂µ
L(x) = y −Hx

Set the derivatives to zero to get:

x =
1

2
HTµ (11)

y = Hx (12)

Plugging (11) into (12) gives

y =
1

2
HHTµ.

Let us assume HHT is invertible. Then

µ = 2(HHT )−1y. (13)

Plugging (13) into (11) gives the ‘least squares’ solution:

x = HT (HHT )−1y.

We can verify that x in this formula does in fact satisfy y = Hx by plugging

in:

Hx = H
[
HT (HHT )−1y

]
= (HHT )(HHT )−1y = y X

So,

min
x
‖x‖22 s.t. y = Hx =⇒ x = HT (HHT )−1y. (14)

In some situations, it is desirable to minimize the weighted energy, i.e.,∑
n wn x

2
n, where wn are positive weights. This corresponds to minimizing

‖W1/2 x‖22 where W is the diagonal matrix, [W]n,n = wn. The derivation

of the solution is similar, and gives

min
x
‖W1/2x‖22 s.t. y = Hx =⇒ x = W−1 HT

(
HW−1HT

)−1
y

(15)

This solution is also derived below, see (25).

4 Regularization

In the overdetermined case, we minimized ‖y −Hx‖22. In the underde-

termined case, we minimized ‖x‖22. Another approach is to minimize the
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weighted sum: c1 ‖y −Hx‖22 + c2 ‖x‖22. The solution x depends on the

ratio c2/c1, not on c1 and c2 individually.

A common approach to obtain an inexact solution to a linear system is

to minimize the objective function:

J(x) = ‖y −Hx‖22 + λ ‖x‖22 (16)

where λ > 0. Taking the derivative, we get

∂

∂x
J(x) = 2HT (Hx− y) + 2λx

Setting the derivative to zero,

∂

∂x
J(x) = 0 =⇒ HTHx + λx = HTy

=⇒ (HTH + λI) x = HTy

So the solution is given by

x = (HTH + λI)−1HTy

So,

min
x
‖y −Hx‖22 + λ ‖x‖22 =⇒ x = (HTH + λI)−1HTy (17)

This is referred to as ‘diagonal loading’ because a constant, λ, is added

to the diagonal elements of HTH. The approach also avoids the problem

of rank deficiency because HTH + λI is invertible even if HTH is not. In

addition, the solution (17) can be used in both cases: when H is tall and

when H is wide.

5 Weighted regularization

A more general form of the regularized objective function (16) is:

J(x) = ‖y −Hx‖22 + λ ‖Ax‖22

where λ > 0. Taking the derivative, we get

∂

∂x
J(x) = 2HT (Hx− y) + 2λATAx

Setting the derivative to zero,

∂

∂x
J(x) = 0 =⇒ HTHx + λATAx = HTy

=⇒ (HTH + λATA) x = HTy

So the solution is given by

x = (HTH + λATA)−1HTy

So,

min
x
‖y −Hx‖22 + λ ‖Ax‖22

=⇒ x = (HTH + λATA)−1HTy
(18)

Note that if A is the identity matrix, then equation (18) becomes (17).

6 Constrained least squares

Constrained least squares refers to the problem of finding a least squares

solution that exactly satisfies additional constraints. If the additional

constraints are a set of linear equations, then the solution is obtained as

follows.

The constrained least squares problem is of the form:

min
x
‖y −Hx‖22 (19)

such that Cx = b (20)

Define the Lagrangian,

L(x,µ) = ‖y −Hx‖22 + µT (Cx− b).

The derivatives are:

∂

∂x
L(x) = 2HT (Hx− y) + CTµ

∂

∂µ
L(x) = Cx− b
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Setting the derivatives to zero,

∂

∂x
L(x) = 0 =⇒ x = (HTH)−1(HTy − 0.5CTµ) (21)

∂

∂µ
L(x) = 0 =⇒ Cx = b (22)

Multiplying (21) on the left by C gives Cx, which from (22) is b, so we

have

C(HTH)−1(HTy − 0.5CTµ) = b

or, expanding,

C(HTH)−1HTy − 0.5C(HTH)−1CTµ = b.

Solving for µ gives

µ = 2
(
C(HTH)−1CT

)−1 (
C(HTH)−1HTy − b

)
Plugging µ into (21) gives

x = (HTH)−1
(
HTy −CT

(
C(HTH)−1CT

)−1 (
C(HTH)−1HTy − b

))
Let us verify that x in this formula does in fact satisfy Cx = b,

Cx = C(HTH)−1
(
HTy−

CT
(
C(HTH)−1CT

)−1 (
C(HTH)−1HTy − b

))
= C(HTH)−1HTy−

C(HTH)−1CT
(
C(HTH)−1CT

)−1 (
C(HTH)−1HTy − b

)
= C(HTH)−1HTy −

(
C(HTH)−1HTy − b

)
= b X

So,

min
x
‖y −Hx‖22 s.t. Cx = b =⇒

x = (HTH)−1
(
HTy −CT

(
C(HTH)−1CT

)−1 (
C(HTH)−1HTy − b

))
(23)

6.1 Special cases

Simpler forms of (23) are frequently useful. For example, if H = I and

b = 0 in (23), then we get

min
x
‖y − x‖22 s.t. Cx = 0

=⇒ x = y −CT
(
CCT

)−1
Cy

(24)

If y = 0 in (23), then we get

min
x
‖Hx‖22 s.t. Cx = b

=⇒ x = (HTH)−1 CT
(
C(HTH)−1CT

)−1
b

(25)

If y = 0 and H = I in (23), then we get

min
x
‖x‖22 s.t. Cx = b =⇒ x = CT

(
CCT

)−1
b (26)

which is the same as (14).

7 Note

The expressions above involve matrix inverses. For example, (7) involves

(HTH)−1. However, it must be emphasized that finding the least square

solution does not require computing the inverse of HTH even though the

inverse appears in the formula. Instead, x in (7) should be obtained, in

practice, by solving the system Ax = b where A = HTH and b = HTy.

The most direct way to solve a linear system of equations is by Gaussian

elimination. Gaussian elimination is much faster than computing the inverse

of the matrix A.

8 Examples

8.1 Polynomial approximation

An important example of least squares is fitting a low-order polynomial to

data. Suppose the N -point data is of the form (ti, yi) for 1 ≤ i ≤ N . The

goal is to find a polynomial that approximates the data by minimizing the

energy of the residual:

E =
∑
i

(yi − p(ti))2
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Figure 1: Least squares polynomial approximation.

where p(t) is a polynomial, e.g.,

p(t) = a0 + a1 t+ a2 t
2.

The problem can be viewed as solving the overdetermined system of equa-

tions,
y1

y2
...

yN

 ≈


1 t1 t21
1 t2 t22
...

...
...

1 tN t2N


a0a1
a2

 ,
which we denote as y ≈ Ha. The energy of the residual, E, is written as

E = ‖y −Ha‖22.

From (7), the least squares solution is given by a = (HTH)−1HTy. An

example is illustrated in Fig. 1.

8.2 Linear prediction

One approach to predict future values of a time-series is based on linear

prediction, e.g.,

y(n) ≈ a1 y(n− 1) + a2 y(n− 2) + a3 y(n− 3). (27)

If past data y(n) is available, then the problem of finding ai can be solved

using least squares. Finding a = (a0, a1, a2)T can be viewed as one of

solving an overdetermined system of equations. For example, if y(n) is

available for 0 ≤ n ≤ N − 1, and we seek a third order linear predictor,

then the overdetermined system of equations are given by
y(3)

y(4)
...

y(N − 1)

 ≈


y(2) y(1) y(0)

y(3) y(2) y(1)
...

...
...

y(N − 2) y(N − 3) y(N − 4)


a1a2
a3

 ,
which we can write as ȳ = Ha where H is a matrix of size (N − 3) × 3.

From (7), the least squares solution is given by a = (HTH)−1HT ȳ. Note

that HTH is small, of size 3 × 3 only. Hence, a is obtained by solving a

small linear system of equations.
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Figure 2: Least squares linear prediction.

Once the coefficients ai are found, then y(n) for n > N can be estimated

using the recursive difference equation (27).

An example is illustrated in Fig. 2. One hundred samples of data are

available, i.e., y(n) for 0 ≤ n ≤ 99. From these 100 samples, a p-order linear

predictor is obtained by least squares, and the subsequent 100 samples are

predicted.

8.3 Smoothing

One approach to smooth a noisy signal is based on least squares weighted

regularization. The idea is to obtain a signal similar to the noisy one, but

smoother. The smoothness of a signal can be measured by the energy of

its derivative (or second-order derivative). The smoother a signal is, the

smaller the energy of its derivative is.

Define the matrix D as

D =


1 −2 1

1 −2 1
. . .

. . .

1 −2 1

 . (28)

Then Dx is the second-order difference (a discrete form of the second-order

derivative) of the signal x(n). See Appendix B. If x is smooth, then ‖Dx‖22
is small in value.

If y(n) is a noisy signal, then a smooth signal x(n), that approximates

y(n), can be obtained as the solution to the problem:

min
x
‖y − x‖22 + λ‖Dx‖22 (29)

where λ > 0 is a parameter to be specified. Minimizing ‖y − x‖22 forces

x to be similar to the noisy signal y. Minimizing ‖Dx‖22 forces x to be

smooth. Minimizing the sum in (29) forces x to be both similar to y and

smooth (as far as possible, and depending on λ).

If λ = 0, then the solution will be the noisy data, i.e., x = y, because this

solution makes (29) equal to zero. In this case, no smoothing is achieved.

On the other hand, the greater λ is, the smoother x will be.

Using (18), the signal x minimizing (29) is given by

x = (I + λDTD)−1 y. (30)
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Figure 3: Least squares smoothing.

Note that the matrix I + λDTD is banded. (The only non-zero values are

near the main diagonal). Therefore, the solution can be obtained using fast

solvers for banded systems [5, Sect 2.4].

An example of least squares smoothing is illustrated in Fig. 3. A noisy

ECG signal is smoothed using (30). We have used the ECG waveform

generator ECGSYN [4].

8.4 Deconvolution

Deconvolution refers to the problem of finding the input to an LTI system

when the output signal is known. Here, we assume the impulse response of

the system is known. The output, y(n), is given by

y(n) = h(0)x(n) + h(1)x(n− 1) + · · ·+ h(N)x(n−N) (31)

where x(n) is the input signal and h(n) is the impulse response. Equation

(31) can be written as y = Hx where H is a matrix of the form

H =


h(0)

h(1) h(0)

h(2) h(1) h(0)
...

. . .

 .

This matrix is constant-valued along its diagonals. Such matrices are called

Toeplitz matrices.

It may be expected that x can be obtained from y by solving the linear

system y = Hx. In some situations, this is possible. However, the matrix

H is often singular or almost singular. In this case, Gaussian elimination

encounters division by zeros.

For example, Fig. 4 illustrates an input signal, x(n), an impulse response,

h(n), and the output signal, y(n). When we attempt to obtain x by solving

y = Hx in Matlab, we receive the warning message: ‘Matrix is singular

to working precision’ and we obtain a vector of all NaN (not a number).

Due to H being singular, we regularize the problem. Note that the input

signal in Fig. 4 is mostly zero, hence, it is reasonable to seek a solution x

with small energy. The signal x we seek should also satisfy y = Hx, at

least approximately. To obtain such a signal, x, we solve the problem:

min
x
‖y −Hx‖22 + λ‖x‖22 (32)

where λ > 0 is a parameter to be specified. Minimizing ‖y −Hx‖22 forces

x to be consistent with the output signal y. Minimizing ‖x‖22 forces x to

have low energy. Minimizing the sum in (32) forces x to be consistent with

y and to have low energy (as far as possible, and depending on λ). Using

(18), the signal x minimizing (32) is given by

x = (HTH + λI)−1 HTy. (33)

This technique is called ‘diagonal loading’ because λ is added the diagonal

of HTH. A small value of λ is sufficient to make the matrix invertible. The

solution, illustrated in Fig. 4, is very similar to the original input signal,

shown in the figure.

In practice, the available data is also noisy. In this case, the data y is

given by y = Hx + w where w is the noise. The noise is often modeled as

an additive white Gaussian random signal. In this case, diagonal loading

with a small λ will generally produce a noisy estimate of the input signal.

In Fig. 4, we used λ = 0.1. When the same value is used with the noisy

data, a noisy result is obtained, as illustrated in Fig. 5. A larger λ is needed

so as to attenuate the noise. But if λ is too large, then the estimate of the

input signal is distorted. Notice that with λ = 1.0, the noise is reduced
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Figure 4: Deconvolution of noise-free data by diagonal loading.

but the height of the the pulses present in the original signal are somewhat

attenuated. With λ = 5.0, the noise is reduced slightly more, but the pulses

are substantially more attenuated.

To improve the deconvolution result in the presence of noise, we can

minimize the energy of the derivative (or second-order derivative) of x

instead. As in the smoothing example above, minimizing the energy of the

second-order derivative forces x to be smooth. In order that x is consistent

with the data y and is also smooth, we solve the problem:

min
x
‖y −Hx‖22 + λ‖Dx‖22 (34)

where D is the second-order difference matrix (28). Using (18), the signal

x minimizing (34) is given by

x = (HTH + λDTD)−1 HTy. (35)

The solution obtained using (35) is illustrated in Fig. 6. Compared to the

solutions obtained by diagonal loading, illustrated in Fig. 5, this solution is

less noisy and less distorted.

This example illustrates the need for regularization even when the data

is noise-free (an unrealistic ideal case). It also illustrates the choice of

regularizer (i.e., ‖x‖22, ‖Dx‖22, or other) affects the quality of the result.

8.5 System identification

System identification refers to the problem of estimating an unknown

system. In its simplest form, the system is LTI and input-output data is

available. Here, we assume that the output signal is noisy. We also assume

that the impulse response is relatively short.

The output, y(n), of the system can be written as

y(n) = h0 x(n) + h1 x(n− 1) + h2 x(n− 2) + w(n) (36)

where x(n) is the input signal and w(n) is the noise. Here, we have assumed

the impulse response hn is of length 3. We can write this in matrix form as

y0

y1

y2

y3
...

 ≈


x0

x1 x0

x2 x1 x0

x3 x2 x1
...

...


h0h1
h2


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Figure 5: Deconvolution of noisy data by diagonal loading.
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Figure 6: Deconvolution of noisy data by derivative regularization.

which we denote as y ≈ Xh. If y is much longer than the length of the im-

pulse response h, then X is a tall matrix and y ≈ Xh is an overdetermined

system of equations. In this case, h can be estimated from (7) as

h = (XTX)−1XTy (37)

An example is illustrated in Fig. 7. A binary input signal and noisy

output signal are shown. When it is assumed that h is of length 10, then we

obtain the impulse response shown. The residual, i.e., r = y −Xh, is also

shown in the figure. It is informative to plot the root-mean-square-error

(RMSE), i.e., ‖r‖2, as a function of the length of the impulse response.

This is a decreasing function. If the data really is the input-output data of

an LTI system with a finite impulse response, and if the noise is not too

severe, then the RMSE tends to flatten out at the correct impulse response

length. This provides an indication of the length of the unknown impulse

response.

8.6 Missing sample estimation

Due to transmission errors, transient interference, or impulsive noise, some

samples of a signal may be lost or so badly corrupted as to be unusable. In
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Figure 7: Least squares system identification.
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Figure 8: Least squares estimation of missing data.

this case, the missing samples should be estimated based on the available

uncorrupted data. To complicate the problem, the missing samples may be

randomly distributed through out the signal. Filling in missing values in

order to conceal errors is called error concealment [6].

This example shows how the missing samples can be estimated by least

squares. As an example, Fig. 8 shows a 200-point ECG signal wherein 100

samples are missing. The problem is to fill in the missing 100 samples.

To formulate the problem as a least squares problem, we introduce some

notation. Let x be a signal of length N . Suppose K samples of x are

known, where K < N . The K-point known signal, y, can be written as

y = Sx (38)

where S is a ‘selection’ (or ‘sampling’) matrix of size K ×N . For example,

10



if only the first, second and last elements of a 5-point signal x are observed,

then the matrix S is given by

S =

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

 . (39)

The matrix S is the identity matrix with rows removed, corresponding to

the missing samples. Note that Sx removes two samples from the signal x,

Sx =

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1



x(0)

x(1)

x(2)

x(3)

x(4)

 =

x(0)

x(1)

x(4)

 = y. (40)

The vector y consists of the known samples of x. So, the vector y is shorter

than x (K < N).

The problem can be stated as: Given the signal, y, and the matrix, S,

find x such that y = Sx. Of course, there are infinitely many solutions.

Below, it is shown how to obtain a smooth solution by least squares.

Note that STy has the effect of setting the missing samples to zero. For

example, with S in (39) we have

STy =


1 0 0

0 1 0

0 0 0

0 0 0

0 0 1


y(0)

y(1)

y(2)

 =


y(0)

y(1)

0

0

y(2)

 . (41)

Let us define Sc as the ‘complement’ of S. The matrix Sc consists of the

rows of the identity matrix not appearing in S. Continuing the 5-point

example,

Sc =

[
0 0 1 0 0

0 0 0 1 0

]
. (42)

Now, an estimate x̂ can be represented as

x̂ = STy + ST
c v (43)

where y is the available data and v consists of the samples to be determined.

For example,

STy + ST
c v =


1 0 0

0 1 0

0 0 0

0 0 0

0 0 1


y(0)

y(1)

y(2)

+


0 0

0 0

1 0

0 1

0 0


[
v(0)

v(1)

]
=


y(0)

y(1)

v(0)

v(1)

y(2)

 . (44)

The problem is to estimate the vector v, which is of length N −K.

Let us assume that the original signal, x, is smooth. Then it is reasonable

to find v to optimize the smoothness of x̂, i.e., to minimize the energy of the

second-order derivative of x̂. Therefore, v can be obtained by minimizing

‖Dx̂‖22 where D is the second-order difference matrix (28). Using (43), we

find v by solving the problem

min
v
‖D(STy + ST

c v)‖22, (45)

i.e.,

min
v
‖DSTy + DST

c v‖22. (46)

From (7), the solution is given by

v = −(Sc DTD ST
c )−1Sc DTD STy. (47)

Once v is obtained, the estimate x̂ in (43) can be constructed simply by

inserting entries v(i) into y.

An example of least square estimation of missing data using (47) is

illustrated in Fig. 8. The result is a smoothly interpolated signal.

We make several remarks.

1. All matrices in (47) are banded, so the computation of v can be

implemented with very high efficiency using a fast solver for banded

systems [5, Sect 2.4]. The banded property of the matrix

G = Sc DTD ST
c (48)

arising in (47) is illustrated in Fig. 9.
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Figure 9: Visualization of the banded matrix G in (48). All the non-zero values

lie near the main diagonal.

2. The method does not require the pattern of missing samples to have

any particular structure. The missing samples can be distributed quite

randomly.

3. This method (47) does not require any regularization parameter λ be

specified. However, this derivation does assume the available data, y,

is noise free. If y is noisy, then simultaneous smoothing and missing

sample estimation is required (see the Exercises).

Speech de-clipping: In audio recording, if the amplitude of the audio

source is too high, then the recorded waveform may suffer from clipping

(i.e., saturation). Figure 10 shows a speech waveform that is clipped. All

values greater than 0.2 in absolute value are lost due to clipping.

To estimate the missing data, we can use the least squares approach

given by (47). That is, we fill in the missing data so as to minimize the

energy of the derivative of the total signal. In this example, we minimize

the energy of the the third derivative. This encourages the filled in data to

have the form of a parabola (second order polynomial), because the third

derivative of a parabola is zero. In order to use (47) for this problem, we
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0.6 Clipped speech with 139 missing samples
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0.6 Final output

 

Figure 10: Estimation of speech waveform samples lost due to clipping. The lost

samples are estimated by least squares.

only need to change the matrix D to the following one. If we define the

matrix D as

D =


1 −3 3 −1

1 −3 3 −1
. . .

. . .

1 −3 3 −1

 , (49)

then Dx is an approximation of the third-order derivative of the signal x.

Using (47) with D defined in (49), we obtain the signal shown in the

Fig. 10. The samples lost due to clipping have been smoothly filled in.

Figure 11 shows both, the clipped signal and the estimated samples, on

the same axis.
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Figure 11: The available clipped speech waveform is shown in blue. The filled in

signal, estimated by least squares, is shown in red.

9 Exercises

1. Find the solution x to the least squares problem:

min
x
‖y −Ax‖22 + λ‖b− x‖22

2. Show that the solution x to the least squares problem

min
x

λ1‖b1 −A1x‖22 + λ2‖b2 −A2x‖22 + λ3‖b3 −A3x‖22

is

x =
(
λ1A

T
1 A1 + λ2A

T
2 A2 + λ3A

T
3 A3

)−1

×
(
λ1A

T
1 b1 + λ2A

T
2 b2 + λ3A

T
3 b3

)
(50)

3. In reference to (17), why is HTH + λI with λ > 0 invertible even if

HTH is not?

4. Show (56).

5. Smoothing. Demonstrate least square smoothing of noisy data. Use

various values of λ. What behavior do you observe when λ is very

high?

6. The second-order difference matrix (28) was used in the examples

for smoothing, deconvolution, and estimating missing samples. Dis-

cuss the use of the third-order difference instead. Perform numerical

experiments and compare results of 2-nd and 3-rd order difference

matrices.

7. System identification. Perform a system identification experiment with

varying variance of additive Gaussian noise. Plot the RMSE versus

impulse response length. How does the plot of RMSE change with

respect to the variance of the noise?

8. Speech de-clipping. Record your own speech and use it to artificially

create a clipped signal. Perform numerical experiments to test the

least square estimation of the lost samples.

9. Suppose the available data is both noisy and that some samples are

missing. Formulate a suitable least squares optimization problem

to smooth the data and recover the missing samples. Illustrate the

effectiveness by a numerical demonstration (e.g. using Matlab).

A Vector derivatives

If f(x) is a function of x1, . . . , xN , then the derivative of f(x) with respect

to x is the vector of derivatives,

∂

∂x
f(x) =



∂f(x)

∂x1

∂f(x)

∂x2

...
∂f(x)

∂xN


. (51)

This is the gradient of f , denoted ∇f . By direct calculation, we have

∂

∂x
xTb = b (52)

and

∂

∂x
bTx = b. (53)

Suppose that A is a symmetric real matrix, AT = A. Then, by direct

calculation, we also have

∂

∂x
xTAx = 2Ax. (54)
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Also,

∂

∂x
(y − x)TA(y − x) = 2A(x− y), (55)

and

∂

∂x
‖Ax− b‖22 = 2AT (Ax− b). (56)

We illustrate (54) by an example. Set A as the 2× 2 matrix,

A =

[
3 2

2 5

]
. (57)

Then, by direct calculation

xTAx =
[
x1 x2

] [3 2

2 5

][
x1

x2

]
= 3x21 + 4x1x2 + 5x22 (58)

so

∂

∂x1

(
xTAx

)
= 6x1 + 4x2 (59)

and

∂

∂x2

(
xTAx

)
= 4x1 + 10x2 (60)

Let us verify that the right-hand side of (54) gives the same:

2Ax = 2

[
3 2

2 5

][
x1

x2

]
=

[
6x1 + 4x2

4x1 + 10x2

]
. (61)

B The Kth-order difference

The first order difference of a discrete-time signal x(n), n ∈ Z, is defined

as

y(n) = x(n)− x(n− 1). (62)

This is represented as a system with input x and output y,

x −→ D −→ y

The second order difference is obtained by taking the first order difference

twice:

x −→ D −→ D −→ y

which give the difference equation

y(n) = x(n)− 2x(n− 1)− x(n− 2). (63)

The third order difference is obtained by taking the first order difference

three times:

x −→ D −→ D −→ D −→ y

which give the difference equation

y(n) = x(n)− 3x(n− 1) + 3x(n− 2)− x(n− 3). (64)

In terms of discrete-time linear time-invariant systems (LTI), the first

order difference is an LTI system with transfer function

D(z) = 1− z−1.

The second order difference has the transfer function

D2(z) = (1− z−1)2 = 1− 2z−1 + z−2.

The third order difference has the transfer function

D3(z) = (1− z−1)3 = 1− 3z−1 + 3z−2 − z−3.

Note that the coefficient come from Pascal’s triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1
...

...
...
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C Additional Exercises for Signal Processing Students

1. For smoothing a noisy signal using least squares, we obtained (30),

x = (I + λDTD)−1y, λ > 0.

The matrix G = (I + λDTD)−1 can be understood as a low-pass filter.

Using Matlab, compute and plot the output, y(n), when the input is an

impulse, x(n) = δ(n−no). This is an impulse located at index no. Try

placing the impulse at various points in the signal. For example, put

the impulse around the middle of the signal. What happens when the

impulse is located near the ends of the signal (no = 0 or no = N − 1)?

2. For smoothing a noisy signal using least squares, we obtained (30),

x = (I + λDTD)−1y, λ > 0,

where D represents the K-th order derivative.

Assume D is the first-order difference and that the matrices I and

D are infinite is size. Then I + λDTD is a convolution matrix and

represents an LTI system.

(a) Find and sketch the frequency response of the system I + λDTD.

(b) Based on (a), find the frequency response of G = (I + λDTD)−1.

Sketch the frequency response of G. What kind of filter is it (low-pass,

high-pass, band-pass, etc.)? What is its dc gain?
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