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Random Variables
2

▪ Informally, a random variable (r.v.) 𝑋 denotes possible outcomes of an event

▪ Can be discrete (i.e., finite many possible outcomes) or continuous

▪ Some examples of discrete r.v.
▪ 𝑋 ∈ {0, 1} denoting outcomes of a coin-toss

▪ 𝑋 ∈ {1, 2, . . . , 6} denoting outcome of a dice roll

▪ Some examples of continuous r.v.
▪ 𝑋 ∈ (0, 1) denoting the bias of a coin

▪ 𝑋 ∈ ℝ denoting heights of students in a class

▪ 𝑋 ∈ ℝ denoting time to get to your hall from the department

𝑝(𝑋)

𝑝(𝑋)

𝑋(a discrete r.v.)

𝑋(a continuous r.v.)
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Discrete Random Variables
3

▪ For a discrete r.v. 𝑋, 𝑝(𝑥) denotes 𝑝(𝑋 = 𝑥) - probability that 𝑋 = 𝑥

▪ 𝑝(𝑋) is called the probability mass function (PMF) of r.v. 𝑋

▪ 𝑝(𝑥) or 𝑝(𝑋 = 𝑥) is the value of the PMF at 𝑥

𝑝 𝑥 ≥ 0
𝑝 𝑥 ≤  1


𝑥

𝑝 𝑥 = 1

𝑝(𝑋)

𝑋
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Continuous Random Variables
4

▪ For a continuous r.v. 𝑋, a probability 𝑝(𝑋 = 𝑥) or 𝑝(𝑥) is meaningless

▪ For cont. r.v., we talk in terms of prob. within an interval 𝑋 ∈ (𝑥, 𝑥 + 𝛿𝑥) 
▪ 𝑝(𝑥)𝛿𝑥 is the prob. that 𝑋 ∈ (𝑥, 𝑥 + 𝛿𝑥) as 𝛿𝑥 → 0

▪ 𝑝(𝑥) is the probability density at 𝑋 =  𝑥

𝑝 𝑥 ≥ 0
𝑝 𝑥 ≤ 1

න 𝑝 𝑥 𝑑𝑥 = 1

Yes, probability density at a 

point 𝑥 can very well be 

larger than 1. The integral 

however must be equal to 1
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A word about notation
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▪ 𝑝(. ) can mean different things depending on the context

▪ 𝑝(𝑋) denotes the distribution (PMF/PDF) of an r.v. 𝑋

▪ 𝑝(𝑋 = 𝑥) or 𝑝𝑋(𝑥) or simply 𝑝(𝑥) denotes the prob. or prob. density at value 𝑥

▪ Actual meaning should be clear from the context (but be careful)

▪ Exercise same care when 𝑝(. ) is a specific distribution (Bernoulli, Gaussian, etc.)

▪ The following means generating a random sample from the distribution 𝑝(𝑋)

𝑥 ∼ 𝑝(𝑋)
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Joint Probability Distribution
6

▪ Joint prob. dist. 𝑝(𝑋, 𝑌) models probability of co-occurrence of two r.v. 𝑋, 𝑌

▪ For discrete r.v., the joint PMF 𝑝(𝑋, 𝑌 ) is like a table (that sums to 1)

▪ For two continuous r.v.’s 𝑋 and 𝑌, we have joint PDF 𝑝(𝑋, 𝑌)

For 3 r.v.’s, we will likewise 

have a “cube” for the PMF. 

For more than 3 r.v.’s too, 

similar analogy holds 

For more than two r.v.’s, we 

will likewise have a multi-dim 

integral for this property
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Marginal Probability Distribution
7

▪ Consider two r.v.’s X and Y (discrete/continuous – both need not of same type)

▪Marg. Prob. is PMF/PDF of one r.v. accounting for all possibilities of the other r.v.

▪ For discrete r.v.’s, 𝑝 𝑋 =  σ𝑦 𝑝(𝑋, 𝑌 = 𝑦) and 𝑝 𝑌 = σ𝑥 𝑝(𝑋 = 𝑥, 𝑌)

▪ For discrete r.v. it is the sum of the PMF table along the rows/columns

▪ For continuous r.v.’s, 

The definition also applied for two sets 

of r.v.’s and marginal of one set of r.v.’s 

is obtained by summing over all 

possibilities of the second set of r.v.’s

For discrete r.v.’s, marginalization is 

called summing over, for continuous 

r.v.’s, it is called “integrating out”
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Conditional Probability Distribution
8

▪ Consider two r.v.’s 𝑋 and 𝑌 (discrete/continuous – both need not of same type)

▪ Conditional PMF/PDF 𝑝(𝑋|𝑌) is the prob. dist. of one r.v. 𝑋, fixing other r.v. 𝑌

▪ 𝑝(𝑋|𝑌 = 𝑦) or 𝑝(𝑌 |𝑋 = 𝑥) like taking a slice of the joint dist. 𝑝(𝑋, 𝑌 )

▪Note: A conditional PMF/PDF may also be conditioned on something that is not 
the value of an r.v. but some fixed quantity in general

Discrete Random Variables
Continuous Random Variables

We will  see cond. dist. of output 

𝑦 given weights 𝑤(r.v.) and 

features 𝑿 written as 𝑝(𝑦|𝑤, 𝑋)
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Some Basic Rules
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▪ Sum Rule: Gives the marginal probability distribution from joint probability distribution

▪ Product Rule: 𝑝(𝑋, 𝑌) = 𝑝(𝑌 |𝑋)𝑝(𝑋) = 𝑝(𝑋|𝑌 )𝑝(𝑌 )

▪ Bayes’ rule: Gives conditional probability distribution (can derive it from product rule)

▪ Chain Rule:  𝑝(𝑋1, 𝑋2, . . . , 𝑋𝑁) = 𝑝(𝑋1)𝑝(𝑋2|𝑋1). . . 𝑝(𝑋𝑁 |𝑋1, . . . , 𝑋𝑁−1)
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Independence
10

▪ 𝑋 and 𝑌 are independent when knowing one tells nothing about the other

▪ The above is the marginal independence (𝑋 ⫫  𝑌)

▪ Two r.v.’s 𝑋 and 𝑌 may not be marginally indep but may be given the value of another r.v. 𝑍
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Expectation
11

▪ Expectation of a random variable tells the expected or average value it takes

▪ Expectation of a discrete random variable 𝑋 ∈ 𝑆𝑋 having PMF 𝑝(𝑋)

▪ Expectation of a continuous random variable 𝑋 ∈ 𝑆𝑋 having PDF 𝑝(𝑋)

▪ The definition applies to functions of r.v. too (e.g.., 𝔼 𝑓(𝑋) )

▪ Exp. is always w.r.t. the prob. dist. 𝑝(𝑋) of the r.v. and often written as 𝔼𝑝 𝑋

𝔼[𝑋]  =  

𝑥∈𝑆𝑋

𝑥𝑝(𝑥)

𝔼 𝑋 = න 𝑥𝑝 𝑥 𝑑𝑥

Often the subscript is omitted 

but do keep in mind the 

underlying distribution

Note that this exp. is w.r.t. the 

distribution 𝑝(𝑓(𝑋)) of the r.v. 𝑓(𝑋)
𝑥 ∈ 𝑆𝑋

Probability that 𝑋 =  𝑥

Probability density at 𝑋 =  𝑥
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Expectation: A Few Rules
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▪ Expectation of sum of two r.v.’s: 𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼[𝑌]

▪ Proof is as follows
▪ Define 𝑍 = 𝑋 + 𝑌  

       𝔼 𝑍 = σ𝑧∈𝑆𝑍
𝑧 ⋅ 𝑝(𝑍 = 𝑧) s.t. 𝑧 =  𝑥 + 𝑦 where 𝑥 ∈ 𝑆𝑋 and 𝑦 ∈ 𝑆𝑌

                      = σ𝑥∈𝑆𝑋
σ𝑦∈𝑆𝑌

(𝑥 + 𝑦) ⋅ 𝑝(𝑋 = 𝑥, 𝑌 = 𝑦)

=  σ𝑥 σ𝑦 𝑥 ⋅ 𝑝(𝑋 = 𝑥, 𝑌 = 𝑦) + σ𝑥 σ𝑦 𝑦 ⋅ 𝑝(𝑋 = 𝑥, 𝑌 = 𝑦)

                      =  σ𝑥 𝑥 σ𝑦 𝑝(𝑋 = 𝑥, 𝑌 = 𝑦) + σ𝑦 𝑦 σ𝑥 𝑝(𝑋 = 𝑥, 𝑌 = 𝑦)

=  σ𝑥 𝑥 ⋅ 𝑝(𝑋 = 𝑥) + σ𝑦 𝑦 ⋅ 𝑝(𝑌 = 𝑦)

= 𝔼 𝑋 + 𝔼[𝑌]

𝑋 and 𝑌 need not be even 

independent. Can be 

discrete or continuous

Used the rule of marginalization 

of joint dist. of two r.v.’s
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Expectation: A Few Rules (Contd)
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▪ Expectation of a scaled r.v.: 𝔼 𝛼𝑋 = 𝛼𝔼 𝑋

▪ Linearity of expectation: 𝔼 𝛼𝑋 + 𝛽𝑌 = 𝛼𝔼 𝑋 + 𝛽𝔼 𝑌

▪ (More General) Lin. of exp.: 𝔼 𝛼𝑓(𝑋) + 𝛽𝑔(𝑌) = 𝛼𝔼 𝑓(𝑋) + 𝛽𝔼 𝑔(𝑌)

▪ Exp. of product of two independent r.v.’s: 𝔼 𝑋𝑌 = 𝔼 𝑋 𝔼[𝑌]

▪ Law of the Unconscious Statistician (LOTUS): Given an r.v. 𝑋 with a known prob. 
dist. 𝑝(𝑋) and another random variable 𝑌 = 𝑔(𝑋) for some function 𝑔

▪ Rule of iterated expectation: 𝔼𝑝(𝑋) 𝑋 = 𝔼𝑝(𝑌)[𝔼𝑝(𝑋|𝑌) 𝑋|𝑌 ]

𝑓 and 𝑔 are arbitrary functions. 

𝔼 𝑌 = 𝔼 𝑔 𝑋 = 
𝑦∈𝑆𝑌

𝑦𝑝 𝑦  = 
𝑥∈𝑆𝑋

𝑔 𝑥 𝑝(𝑥)

Requires finding 𝑝(𝑌) Requires only 𝑝(𝑋) which we already have

LOTUS also applicable 

for continuous r.v.’s

𝛼 and 𝛽 are real-valued scalars

𝛼 is a real-valued scalar
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Variance and Covariance
14

▪ Variance of a scalar r.v. tells us about its spread around its mean value 𝔼 𝑋 =  𝜇

▪ Standard deviation is simply the square root is variance

▪ For two scalar r.v.’s 𝑋 and 𝑌, the covariance is defined by

▪ For two vector r.v.’s 𝑋 and 𝑌 (assume column vec), the covariance matrix is defined by

▪ Cov. of components of a vector r.v. 𝑋: cov 𝑋 = cov 𝑋, 𝑋

▪ Note: The definitions apply to functions of r.v. too (e.g., var 𝑓(𝑋) )

▪ Note: Variance of sum of independent r.v.’s: var[𝑋 + 𝑌] = var[𝑋] + var[𝑌]

var 𝑋 = 𝔼 𝑋 − 𝜇 2 = 𝔼 𝑋2  − 𝜇2

cov 𝑋, 𝑌 = 𝔼 {𝑋 − 𝔼[𝑋]}{𝑌 − 𝔼[𝑌]} = 𝔼 𝑋𝑌 − 𝔼[X]𝔼[Y]

cov 𝑋, 𝑌 = 𝔼 {𝑋 − 𝔼[𝑋]}{𝑌⊤ − 𝔼[𝑌⊤]} = 𝔼 𝑋𝑌⊤ − 𝔼[X]𝔼[𝑌⊤]

Important result
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Transformation of Random Variables
15

▪ Suppose 𝑌 = 𝑓(𝑋) = 𝐴𝑋 + 𝑏 be a linear function of a vector-valued r.v. 𝑋 (𝐴 is a 
matrix and 𝑏 is a vector, both constants)

▪ Suppose 𝔼 𝑋 = 𝜇 and cov 𝑋 = Σ, then for the vector-valued r.v. 𝑌

▪ Likewise, if  𝑌 = 𝑓 𝑋 = 𝑎⊤𝑋 + 𝑏 be a linear function of a vector-valued r.v. 𝑋 (𝑎 is a 
vector and 𝑏 is a scalar, both constants)

▪ Suppose 𝔼 𝑋 = 𝜇 and cov 𝑋 = Σ, then for the scalar-valued r.v. 𝑌

𝔼 𝑌 = 𝔼 𝐴𝑋 + 𝑏 = 𝐴𝜇 + 𝑏

cov 𝑌 = cov 𝐴𝑋 + 𝑏 = 𝐴Σ𝐴⊤

𝔼 𝑌 = 𝔼 𝑎⊤𝑋 + 𝑏 = 𝑎⊤𝜇 + 𝑏

var 𝑌 = var 𝑎⊤𝑋 + 𝑏 = 𝑎⊤Σ𝑎
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Common Probability Distributions
16

Important: We will use these extensively to model data as well as parameters of models

▪ Some common discrete distributions and what they can model
▪ Bernoulli: Binary numbers, e.g., outcome (head/tail, 0/1) of a coin toss

▪ Binomial: Bounded non-negative integers, e.g., # of heads in 𝑛 coin tosses

▪ Multinomial/multinoulli: One of 𝐾 (>2) possibilities, e.g., outcome of a dice roll

▪ Poisson: Non-negative integers, e.g., # of words in a document

▪ Some common continuous distributions and what they can model
▪ Uniform: numbers defined over a fixed range

▪ Beta: numbers between 0 and 1, e.g., probability of head for a biased coin

▪ Gamma: Positive unbounded real numbers

▪ Dirichlet: vectors that sum of 1 (fraction of data points in different classes/clusters)

▪ Gaussian: real-valued numbers or real-valued vectors
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Discrete Distributions

17
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Bernoulli Distribution
18

▪Distribution over a binary random variable 𝑋 ∈ {0,1}, e.g., outcome of a coin-toss 

▪ Defined by probability parameter 𝜇 ∈ (0,1) s.t. 𝜇 =  𝑝(𝑋 = 1)

▪ The probability mass function (PMF) of Bernoulli is

▪ Expectation: 𝔼 𝑋 = 𝜇

▪ Variance: var[𝑋] = 𝜇(1 − 𝜇)

𝑝(𝑋 = 𝑥|𝜇) = 𝜇𝑥 1 − 𝜇 1−𝑥 

𝜇

1 − 𝜇
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Binomial Distribution
19

▪Distribution over number of successes 𝑚 in 𝑁 trials, e.g., number of heads in 𝑁
coin tosses

▪ Defined by a parameter 𝜇 ∈ 0,1 , probability of success of each trial

▪ The probability mass function (PMF) of Binomial is

▪ Expectation: 𝔼 𝑋 = 𝑁𝜇

▪ Variance: var[𝑋] = 𝑁𝜇(1 − 𝜇)

𝑝(𝑋 = 𝑚|𝑁, 𝜇) =
𝑁
𝑚

𝜇𝑚 1 − 𝜇 𝑁−𝑚 
Binomial with 𝑁 = 15, 𝜇 = 0.2

P
ro

b
ab

ili
ty

 o
f 

𝑋
=

𝑚
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Multinoulli Distribution
20

▪ Generalization of Bernoulli distribution for discrete/categorical variable 𝑋 taking 
one of 𝐾 > 2 outcomes, e.g., outcome of a single dice roll

▪Note: If  𝑋 = 𝑖, we can also use a one-hot vector of length 𝐾 to denote 𝑋

▪ Multinoulli is defined by 𝐾 params 𝝁 =  [𝜇1, 𝜇2, … , 𝜇𝐾], 𝜇𝑖 ∈ 0,1 and σ𝑖=1
𝐾 𝜇𝑖 = 1

▪ The PMF of Multinoulli is

▪ Expectation: 𝔼 𝑥𝑖 = 𝜇𝑖 , variance: var[𝑥𝑖] = 𝜇𝑖(1 − 𝜇𝑖)

𝑝 𝑋 𝝁 = ෑ
𝑖=1

𝐾

𝜇𝑖
𝑥𝑖

𝑋 = [0, 0, … , 0, 1, 0, … , 0, 0]
Vector of all zeros except the 𝑖𝑡ℎ entry 𝑥𝑖 

which is 1; all other 𝑥𝑗, for 𝑗 ≠ 𝑖 are 0  

Probability of the 𝑖𝑡ℎ outcome
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Multinomial Distribution
21

▪ Generalization of multinomial for a 𝐾 outcome trial repeated 𝑁 > 1 times

▪Defines distribution of random var. 𝑋 denoting counts of each possible outcome

▪ Can use a vector of length 𝐾 to denote 𝑋

▪ Multinomial is defined by 𝐾 params 𝝁 =  [𝜇1, 𝜇2, … , 𝜇𝐾], 𝜇𝑖 ∈ 0,1 and σ𝑖=1
𝐾 𝜇𝑖 = 1

▪ The PMF of Multinomial is

▪ Expectation: 𝔼 𝑥𝑖 = 𝑁𝜇𝑖 , variance: var[𝑥𝑖] = 𝑁𝜇𝑖(1 − 𝜇𝑖)

▪ Multinomial can also be viewed as a generalization of Binomial for 𝐾 > 2 outcomes

𝑝 𝑋 𝝁 =
𝑁

𝑥1, 𝑥2, … , 𝑥𝐾
ෑ

𝑖=1

𝐾

𝜇𝑖
𝑥𝑖

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝐾−1, 𝑥𝐾]

The 𝑖𝑡ℎ entry 𝑥𝑖 denotes 

the number of times we 

had outcome 𝑖


𝑖=1

𝐾

𝑥𝑖 = 𝑁

E.g., same dice 

rolled 𝑁 times



CS771: Intro to ML

Poisson Distribution
22

▪Distribution a non-negative integer (count) random variable 𝑋, e.g., number of 
events in a fixed interval of time

▪Defined by a non-negative rate parameter 𝜆

▪ The PMF of Poisson is

▪ Expectation: 𝔼 𝑋 = 𝜆, variance: var[𝑋] = 𝜆

𝑝 𝑋 = 𝑘 𝜇 =
𝜆𝑘exp(−𝜆)

𝑘!
(𝑘 = 0,1,2, … )

𝑝(𝑋 = 𝑘|𝜆)

𝑋
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Continuous Distributions

23
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Uniform Distribution
24

▪Distribution over a uniformly distributed random variable in interval [𝑎, 𝑏]

▪ The probability density function (PDF) is 

▪ Expectation: 𝔼 𝑋 =
(𝑎+𝑏)

2

▪ Variance: var[𝑋] =
𝑏−𝑎 2

12

𝑝 𝑋 = 𝑥 𝜇 =
1

(𝑏 − 𝑎)

Recall that since 𝑋 is continuous, this 

is not the probability of 𝑋 = 𝑥 but 

probability of 𝑋 ∈ (𝑥, 𝑥 + 𝛿𝑥) where 

𝛿𝑥 is very small
𝑝(𝑋 = 𝑥)

𝑋
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Beta Distribution
25

▪Distribution over a random var. 𝜋 ∈ (0,1), e.g., probability of head for a coin

▪Defined by two parameters 𝛼, 𝛽 > 0. They control the shape of the distribution

▪ The probability density function (PDF) is 

▪ Expectation: 𝔼 𝜋 =
𝛼

𝛼+𝛽

▪ Variance: var[𝜋] =
𝛼+𝛽

𝛼+𝛽 2(𝛼+𝛽+1)

𝑝 𝜋 𝛼, 𝛽 =
Γ(𝛼 + 𝛽)

Γ 𝛼 Γ 𝛽
 𝜋𝛼−1 1 − 𝜋 𝛽−1 

𝑝(𝜇)

𝜇

Also equivalent to a uniform 

distribution for 𝛼 = 1, 𝛽 = 1

Γ denotes the gamma function: 

Γ 𝛼 = 0 

∞
𝑡𝛼−1exp −𝑡 𝑑𝑡
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Dirichlet Distribution
26

▪Distribution over a random non-neg vector 𝝅 = [𝜋1, 𝜋2, … , 𝜋𝐾] that sums to 1, 
e.g., vector of probabilities of a dice roll showing each of the 𝐾 faces

▪ Equivalent to a distribution over the 𝐾 − 1 dimensional simplex

▪Defined by 𝐾 non-negative parameters 𝜶 = 𝛼1, 𝛼2, … , 𝛼𝐾

▪ The PDF is

▪ Expectation: 𝔼 𝜋𝑖 =
𝛼𝑖

σ𝑖=1
𝐾 𝛼𝑖

, variance: var[𝜋𝑖] =
 ෝ𝛼𝑖(1−ෝ𝛼𝑖)

 (𝛼0+1)
where 𝛼0 =  σ𝑖=1

𝐾 𝛼𝑖

𝑝 𝝅 𝜶 =
Γ(σ𝑖=1

𝐾 𝛼𝑖)

ς𝑖=1
𝐾 Γ 𝛼𝑖

 𝜋𝑖
𝛼𝑖−1

0 ≤ 𝜋𝑖 ≤ 1, ∀𝑖 = 1,2, … , 𝐾,  
𝑖=1

𝐾

𝜋𝑖 = 1

Dirichlet is like a 𝐾-dimensional 

generalization of the Beta distribution
ො𝛼𝑖 =

𝛼𝑖

𝛼0

These parameters control the shape 

of the Dirichlet distribution



CS771: Intro to ML

Dirichlet Distribution (contd)
27

▪ Shape of the Dirichlet distribution (𝐾 = 3), as 𝜶 = 𝛼1, 𝛼2, … , 𝛼𝐾  varies

▪ Each point within the two-dim (𝐾 − 1), simplices (triangles) below is a random 
probability vector 𝝅 = [𝜋1, 𝜋2, 𝜋3] of length 3, drawn from the Dirichlet

Visualizations of PDFs of some 3-dim 

Dirichlet distributions (each generated 

using a different conc. Param vector 𝜶)

𝜋1

𝜋2

𝜋3

𝜋1

𝜋2

𝜋3

𝜋1

𝜋2

𝜋3 𝜋3
𝜋1

𝜋2

𝜶 controls the shape 

of the Dirichlet (just 

like Beta distribution’s 

hyperparameters)

Like a uniform 

distribution if  

all 𝛼𝑘’s are 1
All 𝛼𝑘’s large results in 

peak around the 

center of the simplex 

More red means we will 

get more points from that 

region when drawing 

random 𝝅 vectors from 

the Dirichlet 
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Gamma Distribution
28

▪Distribution over non-negative random variable 𝑋 > 0, e.g., time between phone-
calls at a call center

▪Defined by a shape parameters 𝑘 and a scale parameter 𝜃

▪ The PDF is

▪ Expectation: 𝔼 𝑋 = 𝑘𝜃, variance: var[𝑋] = 𝑘𝜃2

▪Note: Sometimes, the gamma distribution can also be defined in another 
parameterization (shape and inverse scale (1/𝜃))

𝑝 𝑋 = 𝑥 𝑘, 𝜃 =
𝑥𝑘−1exp(−

𝑥
𝜃

)

𝜃𝑘Γ(𝑘) 

𝑝(𝑋 = 𝑥)

𝑋



CS771: Intro to ML

Gaussian Distribution (Univariate)
29

▪Distribution over real-valued scalar random variables 𝑋 ∈ ℝ, e.g., height of 
students in a class

▪ Defined by a scalar mean 𝜇 and a scalar variance 𝜎2

▪ Mean: 𝔼 𝑋 = 𝜇

▪ Variance: var[𝑋] = 𝜎2

▪ Inverse of variance is called precision: 𝛽 =
1

𝜎2
. 

𝒩 𝑋 = 𝑥 𝜇, 𝜎2 =
1

2𝜋𝜎2
exp −

𝑥 − 𝜇 2

2𝜎2
 

𝒩 𝑋 = 𝑥 𝜇, 𝛽 =
𝛽

2𝜋
exp −

𝛽

2
𝑥 − 𝜇 2  

Gaussian PDF in 

terms of precision
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Gaussian Distribution (Multivariate)
30

▪Distribution over real-valued vector random variables 𝑿 ∈ ℝ𝐷

▪ Defined by a mean vector 𝜇 ∈ ℝ𝐷and a covariance matrix 𝚺

▪ Note: The cov. matrix 𝚺 must be symmetric and PSD
▪ All eigenvalues are positive

▪ 𝒛⊤𝚺𝒛 ≥ 0 for any real vector 𝒛

▪ The covariance matrix also controls the shape of the Gaussian

𝒩 𝑿 = 𝒙 𝝁, 𝚺 =
1

2𝜋 𝐷 𝚺
exp − 𝒙 − 𝝁 ⊤𝚺−1(𝒙 − 𝝁)  

A two-dimensional Gaussian
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Covariance Matrix for Multivariate Gaussian
31

Spherical Covariance Diagonal Covariance Full Covariance
5

5-5 -5 -5

-5 -5 -5

5

5 5 5

5 5

Spherical: Equal 

spreads (variances) 

along all dimensions

Diagonal: Unequal 

spreads (variances) 

along all directions 

but still axis-parallel

Full: Unequal spreads 

(variances) along all 

directions and also 

spreads along oblique 

directions

5 5

5 5
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