
Optimization Techniques for ML
(wrap-up)

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

Today
2

▪ Some practical aspects for optimization for ML

▪ Constrained optimization

▪Optimization of non-differentiable functions

CS771: Intro to ML

Some Practical Aspects: Iterate Averaging for SGD
3

▪ SGD iterates 𝒘(1), 𝒘(2), 𝒘(3), … can be noisy (recall SGD computes gradients
using randomly picked single training example, or a small minibatch)

▪ Polyak-Ruppert Averaging: Average SGD iterates and use the average in the end

▪ Averaging is quite popular for SGD. Stochastic Weighted Averaging (SWA) is
another such recently proposed scheme (similar to Polyak-Ruppert Averaging)
used for deep neural networks

𝒘(𝑡+1) = 𝒘(𝑡) − 𝜂𝑡𝒈(𝑡)

ഥ𝒘(𝑡+1) =
𝑡

𝑡 + 1
ഥ𝒘(𝑡) +

1

𝑡 + 1
𝒘(𝑡+1)

SGD/mini-batch SGD

update at iteration 𝑡 + 1

Running average weight

vector at iteration 𝑡 + 1

Averaged weight vector

at previous iteration 𝑡

This way of computing the average is the

same as doing ഥ𝒘(𝑡+1) = σ𝑖=1
𝑡+1 𝒘(𝑖) but to

avoid storing the previous weights, so we

compute a running average

Sometimes, we don’t start

averaging from iteration 1 but

after some warm-up iterations

Stochastic gradient on a

single/minibatch of examples

Averaging Weights Leads to Wider Optima and Better Generalization (Izmailov et al, UAI 2018)

CS771: Intro to ML

Some Practical Aspects: Assessing Convergence
4

▪ Various ways to assess convergence, e.g. consider converged if
▪ The objective’s value (on train set) ceases to change much across iterations

▪ The parameter values cease to change much across iterations

▪ Above condition is also equivalent to saying that the gradients are close to zero

▪ The objective’s value has become small enough that we are happy with ☺

▪ Use a validation set to assess if the model’s performance is acceptable (early stopping)

𝐿(𝒘(𝑡+1)) - 𝐿 𝒘 𝑡 < 𝜖 (for some small pre-defined 𝜖)

 𝒘(𝑡+1) − 𝒘(𝑡) < 𝜏 (for some small pre-defined 𝜏)

 𝒈(𝑡) → 0 Caution: May not yet be at the

optima. Use at your own risk!

CS771: Intro to ML

Some Practical Aspects: Learning Rate (Step Size)
5

▪ Some guidelines to select good learning rate (a.k.a. step size) 𝜂𝑡

▪ For convex functions, setting 𝜂𝑡 something like 𝐶/𝑡 or 𝐶/ 𝑡 often works well
▪ These step-sizes are actually theoretically optimal in some settings

▪ In general, we want the learning rates to satisfy the following conditions

▪ 𝜂𝑡 → 0 as 𝑡 becomes very very large

▪ σ 𝜂𝑡 = ∞ (needed to ensure that we can potentially reach anywhere in the parameter space)

▪ Sometimes carefully chosen constant learning rates (usually small, or initially large and
later small) also work well in practice

▪ Can also search for the “best” step-size by solving an opt. problem in each step

▪ A faster alternative to line search is the Armijo-Goldstein rule
▪ Starting with current (or some large) learning rate (from prev. iter), and try a few values in

decreasing order until the objective’s value has a sufficient reduction

𝜂𝑡 = arg min
𝜂≥0

𝑓 𝐰(𝑡) − 𝜂 ⋅ 𝐠(𝑡) A one-dim optimization problem

(note that 𝐰(𝑡) and 𝐠(𝑡) are fixed)

Also called

“line search”

C is a hyperparameter

CS771: Intro to ML

Some Practical Aspects: Adaptive Gradient Methods
6

▪ Can also use different learning rate in different dimensions

𝒘(𝑡+1) = 𝒘(𝑡) − 𝒆(𝑡) ⊙ 𝒈(𝑡)

▪ Can use a momentum term to stabilize gradients by reusing info from past grads
▪ Move faster along directions that were previously good

▪ Slow down along directions where gradient has changed abruptly

▪ Also exist several more advanced methods that combine the above methods
▪ RMS-Prop: AdaGrad + Momentum, Adam: NAG + RMS-Prop

▪ These methods are part of packages such as PyTorch, Tensorflow, etc

𝒎(𝑡) = 𝛽𝒎(𝑡−1) + 𝜂t𝒈(𝑡)

𝒘(𝑡+1) ← 𝒘(𝑡) − 𝒎(𝑡)

Vector of learning rates

along each dimension

Element-wise product of

two vectors

𝑒𝑑
(𝑡)

=
1

𝜖 + σ𝜏=1
𝑡 𝑔𝑑

(𝑡) 2

If some dimension had big

updates recently (marked

by large gradient values),

slow down along those

directions by using smaller

learning rates - AdaGrad

(Duchi et al, 2011)

In an even faster version of this,

𝒈(𝑡) is replaced by the gradient

computed at the next step if

previous direction were used, i.e.,

∇𝐿(𝒘 𝑡 − 𝛽𝒎(𝑡−1)).

Called Nesterov’s Accelerated

Gradient (NAG) method

The “momentum” term.

Set to 0 at initialization
𝛽 usually set

as 0.9

CS771: Intro to ML

Constrained Optimization

7

CS771: Intro to ML

Projected Gradient Descent
8

▪ Consider an optimization problem of the form

▪ Projected GD is very similar to GD with an extra projection step

▪ Each iteration 𝑡 will be of the form

▪ Perform update: 𝒛(𝑡+1) = 𝒘(𝑡) − 𝜂𝑡𝒈(𝑡)

▪ Check if 𝒛(𝑡+1) satisfies constraints

▪ If 𝒛(𝑡+1) ∈ 𝒞, set 𝒘(𝑡+1)= 𝒛(𝑡+1)

▪ If 𝒛(𝑡+1) ∉ 𝒞, project as 𝒘(𝑡+1)= Π𝒞[𝒛(𝑡+1)]

𝑤𝑜𝑝𝑡 = arg min𝑤∈𝒞 𝐿(𝒘)

Projection

 step

Projection

operator

CS771: Intro to ML

Projected GD: How to Project?
9

▪Here projecting a point means finding the “closest” point from the constraint set

▪ For some sets 𝒞, the projection step is easy

Π𝒞 𝒛 = arg min𝒘∈𝒞 𝒛 − 𝒘 2

(1,0)

(0,1)

Projection = Normalize to unit Euclidean length vector

𝒞 : Unit radius ℓ2 ball 𝒞 : Set of non-negative reals

Projection = Set each negative entry in 𝒛 to be zero

Projected GD commonly

used only when the

projection step is simple

and efficient to compute

Another constrainted optimization

problem! But simpler to solve! ☺

CS771: Intro to ML

Constrained Opt. via Lagrangian
10

▪ Consider the following constrained minimization problem (using 𝑓 instead of 𝐿)

▪Note: If constraints of the form 𝑔 𝒘 ≥ 0, use – 𝑔 𝒘 ≤ 0

▪ Can handle multiple inequality and equality constraints too (will see later)

▪ Can transform the above into the following equivalent unconstrained problem

▪Our problem can now be written as

ෝ𝒘 = arg min
𝒘

𝑓 𝒘 + max
𝛼≥0

 𝛼𝑔(𝒘)

CS771: Intro to ML

Constrained Opt. via Lagrangian
11

▪ Therefore, we can write our original problem as

▪ The Lagrangian is now optimized w.r.t. 𝒘 and 𝜶 (Lagrange multiplier)

▪We can define Primal and Dual problem as

The Lagrangian: ℒ(𝒘, 𝜶)

Both equal if 𝑓(𝒘) and the

set 𝑔 𝒘 ≤ 0 are convex
complimentary slackness/Karush-

Kuhn-Tucker (KKT) condition

ෝ𝒘 = arg min
𝒘

𝑓 𝒘 + max
𝛼≥0

 𝛼𝑔(𝒘)

ෝ𝒘𝑃 = arg min
𝒘

max
𝛼≥0

𝑓 𝒘 + 𝛼𝑔(𝒘)

ෝ𝒘𝐷 = arg max
𝛼≥0

min
𝒘

𝑓 𝒘 + 𝛼𝑔(𝒘)

(Primal Problem)

(Dual Problem)

= arg min
𝒘

max
𝛼≥0

𝑓 𝒘 + 𝛼𝑔(𝒘)

CS771: Intro to ML

Constrained Opt. with Multiple Constraints
12

▪We can also have multiple inequality and equality constraints

▪ Introduce Lagrange multipliers 𝜶 = [𝛼1, 𝛼2, … , 𝛼𝐾] and 𝜷 = 𝛽1, 𝛽2, … , 𝛽𝐿

▪ The Lagrangian based primal and dual problems will be

ෝ𝒘𝑃 = arg min
𝒘

max
𝛼≥0,𝛽

𝑓 𝒘 +
𝑖=1

𝐾

𝛼𝑖𝑔𝑖(𝒘) +
𝑗=1

𝐿

𝛽𝑗ℎ𝑗(𝒘)

ෝ𝒘𝐷 = arg max
𝛼≥0,𝛽

min
𝒘

𝑓 𝒘 +
𝑖=1

𝐾

𝛼𝑖𝑔𝑖(𝒘) +
𝑗=1

𝐿

𝛽𝑗ℎ𝑗(𝒘)

CS771: Intro to ML

Optimization of Non-differentiable
 Functions

13

CS771: Intro to ML

Dealing with Non-differentiable Functions
14

▪ In many ML problems, the objective function will be non-differentiable

▪ Some examples that we have already seen: Linear regression with absolute loss,
or 𝜖-insensitive loss; even ℓ1 norm regularizer is non-diff

▪ Basically, any function in which there are points with kink is non-diff
▪ At such points, the function is non-differentiable and thus gradients not defined

▪ Reason: Can’t define a unique tangent at such points

|𝑦𝑛 − 𝑓 𝒙𝑛 |Loss

𝑦𝑛 − 𝑓(𝒙𝑛)

|𝑦𝑛 − 𝑓 𝒙𝑛 | − 𝜖
Loss

𝜖−𝜖
Not diff. here

𝑦𝑛 − 𝑓(𝒙𝑛)
Not diff. here Not diff. here

CS771: Intro to ML

Sub-gradients
15

▪ For convex non-diff fn, can define sub-gradients at point(s) of non-differentiabilty

▪ For a convex, non-diff function 𝑓(𝒙), sub-gradient at 𝒙∗ is any vector 𝒈 s.t. ∀𝒙

differentiable

 here

non-differentiable

 here

Equation of unique tangent at 𝑥1

𝑓 𝑥1 + 𝒈⊤(𝑥 − 𝑥1)

𝑥1

One extreme tangent at 𝑥2
𝑓 𝑥2 + 𝒈1

⊤(𝑥 − 𝑥2)

The other extreme tangent at 𝑥2
𝑓 𝑥2 + 𝒈2

⊤(𝑥 − 𝑥2)

𝑥2

Region containing all sub-gradients

𝑓 𝒙 ≥ 𝑓 𝒙∗ + 𝒈⊤(𝒙 − 𝒙∗)

𝑓 𝑥 Convex, thus lies

above all its tangents

CS771: Intro to ML

Sub-gradients, Sub-differential, and Some Rules
16

▪ Set of all sub-gradient at a non-diff point 𝒙∗ is called the sub-differential

▪ Some basic rules of sub-diff calculus to keep in mind

▪ Scaling rule: 𝜕 𝑐 ⋅ 𝑓 𝐱 = 𝑐 ⋅ 𝜕𝑓 𝐱 = 𝑐 ⋅ 𝐯 ∶ 𝐯 ∈ 𝜕𝑓 𝐱

▪ Sum rule: 𝜕 𝑓 𝐱 + 𝑔 𝐱 = 𝜕𝑓 𝐱 + 𝜕𝑔 𝐱 = 𝐮 + 𝐯 ∶ 𝐮 ∈ 𝜕𝑓 𝐱 , 𝐯 ∈ 𝜕𝑔 𝐱

▪ Affine trans: 𝜕𝑓 𝐚⊤𝐱 + 𝑏 = 𝐚 ⋅ 𝜕𝑓 𝑡 = 𝐚 ⋅ 𝑐: 𝑐 ∈ 𝜕𝑓 𝑡 , where 𝑡 = 𝐚⊤𝐱 + 𝑏

▪ Max rule: If ℎ(𝒙) = max{𝑓(𝒙), 𝑔(𝒙)} then we calculate 𝜕ℎ(𝒙) at 𝒙∗ as

▪ If 𝑓 𝒙∗ > 𝑔 𝒙∗ , 𝜕ℎ 𝒙∗ = 𝜕𝑓 𝒙∗ , If 𝑔 𝒙∗ > 𝑓 𝒙∗ , 𝜕ℎ 𝒙∗ = 𝜕𝑔 𝒙∗

▪ If 𝑓 𝒙∗ = 𝑔 𝒙∗ , 𝜕ℎ 𝒙∗ = {𝛼𝐚 + 1 − 𝛼 𝐛 ∶ 𝐚 ∈ 𝜕𝑓 𝒙∗ , 𝐛 ∈ 𝜕𝑔 𝒙∗ , 𝛼 ∈ 0,1 }

▪ 𝒙∗ is a stationary point for a non-diff function 𝑓(𝒙) if the zero vector belongs to
the sub-differential at 𝑥∗, i.e., 𝟎 ∈ 𝜕𝑓 𝒙∗

𝜕𝑓 𝒙∗ ≜ 𝒈 ∶ 𝑓 𝐱 ≥ 𝑓 𝒙∗ + 𝒈⊤ 𝒙 − 𝒙∗ ∀𝐱

The affine transform rule

is a special case of the

more general chain rule

CS771: Intro to ML

Sub-Gradient For Absolute Loss Regression
17

▪ The loss function for linear reg. with absolute loss: 𝐿 𝒘 = |𝑦𝑛 − 𝒘⊤𝒙𝑛|

▪Non-differentiable at 𝑦𝑛 − 𝒘⊤𝒙𝑛 = 0

▪ Can use the affine transform and max rule of sub-diff calculus

▪ Assume 𝑡 = 𝑦𝑛 − 𝒘⊤𝒙𝑛. Then 𝜕𝐿 𝒘 = −𝒙𝑛𝜕|𝑡|
▪ 𝜕𝐿 𝒘 = −𝒙𝑛 × 1 = −𝒙𝑛 if 𝑡 > 0

▪ 𝜕𝐿 𝒘 = −𝒙𝑛 × −1 = 𝒙𝑛 if 𝑡 < 0

▪ 𝜕𝐿 𝒘 = −𝒙𝑛 × 𝑐 = −𝑐𝒙𝑛 where 𝑐 ∈ [−1, +1] if 𝑡 = 0

𝑦𝑛 − 𝒘⊤𝒙𝑛

|𝑦𝑛 − 𝒘⊤𝒙𝑛|

𝑡

|𝑡|

00

𝜕 𝑡 = ቐ
1 if 𝑡 > 0
−1 if 𝑡 < 0
−1, +1 if 𝑡 = 0

Using max rule of sub-

differentials and using

𝑡 = max{𝑡, −𝑡}

CS771: Intro to ML

Sub-Gradient Descent
18

▪ Suppose we have a non-differentiable function 𝐿(𝒘)

▪ Sub-gradient descent is almost identical to GD except we use subgradients

▪ Initialize 𝒘 as 𝒘(0)

▪ For iteration 𝑡 = 0,1,2, … (or until convergence)

▪ Calculate the sub-gradient 𝒈(𝑡) ∈ 𝜕𝐿(𝒘(𝑡))
▪ Set the learning rate 𝜂𝑡

▪ Move in the opposite direction of subgradient

Sub-Gradient Descent

𝒘(𝑡+1) = 𝒘(𝑡) − 𝜂𝑡𝒈(𝑡)

CS771: Intro to ML

Optimization for ML: Some Final Comments
19

▪ Gradient methods are simple to understand and implement

▪ More sophisticated optimization methods also often use gradient methods

▪ Backpropagation algo used in deep neural nets is GD + chain rule of differentiation

▪ Use subgradient methods if function not differentiable

▪ Constrained optimization can use Lagrangian or projected GD

▪ Second order methods such as Newton’s method faster but computationally expensive

▪ But computing all this gradient related stuff by hand looks scary to me. Any help?
▪ Don’t worry. Automatic Differentiation (AD) methods available now (will see them later)

▪ AD only requires specifying the loss function (especially useful for deep neural nets)

▪ Many packages such as Tensorflow, PyTorch, etc. provide AD support

▪ But having a good understanding of optimization is still helpful

	Slide 1: Optimization Techniques for ML (wrap-up)
	Slide 2: Today
	Slide 3: Some Practical Aspects: Iterate Averaging for SGD
	Slide 4: Some Practical Aspects: Assessing Convergence
	Slide 5: Some Practical Aspects: Learning Rate (Step Size)
	Slide 6: Some Practical Aspects: Adaptive Gradient Methods
	Slide 7: Constrained Optimization
	Slide 8: Projected Gradient Descent
	Slide 9: Projected GD: How to Project?
	Slide 10: Constrained Opt. via Lagrangian
	Slide 11: Constrained Opt. via Lagrangian
	Slide 12: Constrained Opt. with Multiple Constraints
	Slide 13: Optimization of Non-differentiable Functions
	Slide 14: Dealing with Non-differentiable Functions
	Slide 15: Sub-gradients
	Slide 16: Sub-gradients, Sub-differential, and Some Rules
	Slide 17: Sub-Gradient For Absolute Loss Regression
	Slide 18: Sub-Gradient Descent
	Slide 19: Optimization for ML: Some Final Comments

