

Today

" Some practical aspects for optimization for ML
» Constrained optimization

» Optimization of non-differentiable functions

CS771: Intro to ML

Some Practical Aspects: Iterate Averaging for SGD

= SGD iterates wD, w2, w3 | can be noisy (recall SGD computes gradients
using randomly picked single training example, or a small minibatch)

= Polyak-Ruppert Averaging: Average SGD iterates and use the average in the end

Stochastic gradient on a This way of computing the average is the
single/minibatch of examples same as doing w1 = Y1 w® put to
SGD/mini-batch SGD avoid storing the previous weights, so we

update at iteration ¢ + 1 W(t+ 1) — W(t) — ntg (t) compute a running average

A 4 weidh Sometimes, we don't start a
Running average weight veraged weig t'vector averaging from iteration 1 but b4 /
g J d at previous Iteration t 9ing
vector at iteration t + 1 t P 1 after some warm-up iterations e»
—(t+1) — —(C) | t+1
wttD) = 1 w(b) 4 T 1 wlt+D)

» Averaging is quite popular for SGD. Stochastic Weighted Averaging (SWA) is
another such recently proposed scheme (similar to Polyak-Ruppert Averaging)
used for deep neural networks

Averaging Weights Leads to Wider Optima and Better Generalization (lzmailov et al, UAI 2018) CS771: Intro to ML

Some Practical Aspects: Assessing Convergence

= \/arious ways to assess convergence, €.g. consider converged if
" The objective’s value (on train set) ceases to change much across iterations

L(W(t+1)) - L(W(t)) < E (for some small pre-defined €)

" The parameter values cease to change much across iterations

H W(t+1) — W(t)H <T (for some small pre-defined 1)

= Above condition is also equivalent to saying that the gradients are close to zero

” g(t) ” N O Caution: May not yet be at the
optima. Use at your own risk!

1

= Use a validation set to assess if the model's performance is acceptable (early stopping)

» The objective’s value has become small enough that we are happy with ©

CS771: Intro to ML

Some Practical Aspects: Learning Rate (Step Size)

= Some guidelines to select good learning rate (a.k.a. step size) ng | Cisahyperparameter

= For convex functions, setting n, something like C/t or C /~/t often works wel
" These step-sizes are actually theoretically optimal in some settings

" |n general, we want the learning rates to satisfy the following conditions
" n, = 0as t becomes very very large
" 1, = o (needed to ensure that we can potentially reach anywhere in the parameter space)

= Sometimes carefully chosen constant learning rates (usually small, or initially large and
later small) also work well in practice

» Can also search for the "best” step-size by solving an opt. problem in each step

Also called n, = arg min f(w(t) —n- g(t)) A one-dim optimization problem
“line search” n=0 (note that w(® and g(® are fixed)

" A faster alternative to line search is the Armijo-Goldstein rule

= Starting with current (or some large) learning rate (from prev. iter), and try a few values in
decreasing order until the objective’'s value has a sufficient reduction CS771: Intro to ML

Some Practical Aspects: Adaptive Gradient Methods

If some dimension had big

» Can also use different learning rate in different dimensions Updates recently (marked
by large gradient values),
W(t+1) — W(t) — e(t) @ g(t) e(t) — 1 s|>c/>vv govx?n along those
d () 2 | directions by using smaller
Vector of learning rates Element-wise product of € + Z,i:l (9,) learning rates - AdaGrad
along each dimension two vectors (Duchi et al, 201 1)

= Can use a momentum term to stabilize gradients by reusing info from past grads

» Move faster along directions that were previously good | |
' 7 In an even faster version of this,

= Slow down along directions where gradient has changed abruptly | g® is replaced by the gradient
computed at the next step if
previous direction were used, i.e.,
VL(w® — pmE—D),
W(t'l'l) «— W(t) —_ m(t) Called Nesterov's Accelerated
Gradient (NAG) method

= Also exist several more advanced methods that combine the above methods

" RMS-Prop: AdaGrad + Momentum, Adam: NAG + RMS-Prop
" These methods are part of packages such as Pylorch, Tensorflow, etc CS771: Intro to ML

B usually set The "momentum” term. m(t) = 'Bm(t_l) + ntg(t)

as 0.9 Set to O at initialization

Constrained Optimization

Projected Gradient Descent

= Consider an optimization problem of the form

Wope = arg minyee L(w)
" Projected GD is very similar to GD with an extra projection step

= Fach iteration t will be of the form (1)

= Perform update: z(HD = w® — 5, g® ,\P -
rojection

step

= Check if z(E+D) satisfies constraints | Projection
n |f z(E+1) € C, set wttD = Z(t+1) operator

= [f z8+D) ¢ ¢, project as wEFD =TI, [z(t+D)]

CS771: Intro to ML

Projected GD: How to Project?

" Here projecting a point means finding the “closest™ point from the constraint set

Another constrainted optimization

HC [Z] — ar‘g manEC ”Z —_ WH 2 problem! But simpler to solvel ©

Projected GD commonly A /
: : ; used only when the LR
" For some sets C, the projection step is easy orojection step is simple e»
. . and efficient to compute
C . Unit radius ¢, ball C . Set of non-negative reals
<
.
(1,0)
< Zé
Projection = Normalize to unit Euclidean length vector Projection = Set each negative entry in z to be zero
X X if [|x|l, <1 R x; ifx; >0
TR i > R U
el 2 0 i<l CS771: Intro to ML

Constrained Opt. via Lagrangian

= Consider the following constrained minimization problem (using f instead of L)

P

W = arg min f(w), st g(w)<O0

= Note: If constraints of the form g(w) = 0, use -g(w) < 0

* Can handle multiple inequality and equality constraints too (will see later)

» Can transform the above into the following equivalent unconstrained problem

w = argmin f(w)+c(w)

oo, if g(w) >0 (constraint violated)
0 if g(w) <0 (constraint satisfied)

c(w) = max ag(w) = {

a>0
= Qur problem can now be written as

w = arg muiln {f(w) + max ag(w)}

CS771: Intro to ML

Constrained Opt. via Lagrangian

| o The Lagrangian: L(w,)
" [herefore, we can write our original problem as

w = arg mui]n {f (w) + max ag(w)} = arg mui,n {rgzélg(w) + ag (W)}}

a=0

* The Lagrangian is now optimized w.rt. w and e (Lagrange multiplier)
" \We can define Primal and Dual problem as

WP = arg min {mgg({f(W) + C(g(W)}} (Primal Problem)

W = arg max {min fw) + ag(w)}} (Dual Problem)

a=0

Both equal if f(w) and the
set g(w) < 0 are convex

&Dg(IﬁfD) — 0 complimentary slackness/Karush-

Kuhn-Tucker (KKT) condition
CS771: Intro to ML

Constrained Opt. with Multiple Constraints

" \We can also have multiple inequality and equality constraints

Fat

w = argmlnf()

s.t. gilw) <0, i=1,....K
h(w)=0, j=1,...,L

* Introduce Lagrange multipliers & = [aq, a9, ..., ag| and B = [B1, B2, ---, L]
" [he Lagrangian based primal and dual problems will be

(K L
Wp = arg min ymax 1{f(w) + Z a;gi(w) + :thj(w)}
w \a>0ﬁ _ =1 j=1
(r K L
Wp = arg max {min §f(w) + z a;gi(w) + ,thj(W)H
=0, \ wo =1 j=1 S771: Intro to ML

Optimization of Non-differentiable
Functions

CS771: Intro to ML

Dealing with Non-differentiable Functions
" [n many ML problems, the objective function will be non-differentiable

" Some examples that we have already seen: Linear regression with absolute loss,
or e-insensitive loss; even €1 norm regularizer is non-diff

Loss . |Vn — f(xp)] Loss Vn = f(n)| — €
—_ x) —C c Ar —_— x
Not diff. here LINAC Not diff here || Not diff. here f (xn)

= Basically, any function in which there are points with kink is non-dift
= At such points, the function is non-differentiable and thus gradients not defined

" Reason: Can't define a unique tangent at such points
CS771: Intro to ML

Sub-gradients

= For convex non-diff fn, can define sub-gradients at point(s) of non-differentiabilty

f(x)

Convex, thus lies
above all its tangents

\

Equation of unique tangent at x4 differentiable

flx)+9"(x—x1) One extreme tangent at x,

x;) + g1 (x —x
non-differentiable 7// fx2) + g1 (2)
. & Region containing all sub-gradients

\ 4 >
: YThe other extreme tangent at x,
. - .
' “, % : fx2) + g3 (x — x3)
‘1

X1 X2

=" For a convex, non-diff function f(x), sub-gradient at x, is any vector g s.t. Vx

f) =z f(x)+ g'(x—x.)

CS771: Intro to ML

Sub-gradients, Sub-differential, and Some Rules

" Set of all sub-gradient at a non-diff point x, is called the sub-differential

———

: of(x) 2{g: f®)=f(x)+g (x—x.) vx} .

= Some basic rules of sub-diff calculus to keep in mind _The affine transform rule
s a special case of the

- Scaling rule: a(C y f(X)) =C- af(X) — {C "V :iVE af(X)} more general chain rule
= Sum rule: a(f(x) + g(x)) =0f(x)+dg(x)={u+v:ue”, x),veaigx)}
= Affine trans: df (a'x+b) =a-df(t) ={a-c:c € of (t)}, wheret =a'x + b

= Max rule: If A(x) = max{f(x), g(x)} then we calculate dh(x) at x, as

= If f(x.) > g(x,),0h(x.) = 0f (x,), If g(x,) > f(x.),0h(x,) = dg(x.)
= f f(x,) =g(x,),0h(x,) ={aa+ (1 —a)b:ae€df(x,),bedg(x,),ac]|01]}

" X, is a stationary point for a non-diff function f(x) if the zero vector belongs to
the sub-differential at x,, ie, 0 € df(x,)

CS771: Intro to ML

Sub-Gradient For Absolute Loss Regression

Using max rule of sub-
differentials and using

T
|yn — W xn| |t| t| = max{t,—t}

1 ift >0

alt] = < —1 ift<o

[-1,+1] ift=0

0 y,— w'x, A0 t
= The loss function for linear reg. with absolute loss: L(w) = |y,, — w'x,,]
= Non-differentiable at y,, — w'x,, = 0
" Can use the affine transform and max rule of sub-diff calculus

= Assume t = y, — w'x,,. Then dL(w) = —x,,0|t]
"JdL(w) =—x, X1=—x,ift >0
"JL(w)=—x, X—-1=x,ift<0

" JL(w) = —x,, Xc=—cx, wherec € [—-1,+1]ift= 0
CS771: Intro to ML

Sub-Gradient Descent

" Suppose we have a non-differentiable function L(w)

" Sub-gradient descent is almost identical to GD except we use subgradients
Sub-Gradient Descent

= |nitialize w as w0

= For iteration t = 0,1,2, ... (or until convergence)
= Calculate the sub-gradient g(&) € oL(w®)
" Set the learning rate 1
= Move in the opposite direction of subgradient

w(t+D) = w® _p g ®

CS771: Intro to ML

Optimization for ML: Some Final Comments

* Gradient methods are simple to understand and implement

= More sophisticated optimization methods also often use gradient methods

» Backpropagation algo used in deep neural nets is GD + chain rule of differentiation

= Use subgradient methods if function not differentiable

» Constrained optimization can use Lagrangian or projected GD

* Second order methods such as Newton's method faster but computationally expensive

* But computing all this gradient related stuff by hand looks scary to me. Any help?
= Don't worry. Automatic Differentiation (AD) methods available now (will see them later)
= AD only requires specifying the loss function (especially useful for deep neural nets)
* Many packages such as Tensorflow, PyTorch, etc. provide AD support
* But having a good understanding of optimization is still helpful

CS771: Intro to ML

	Slide 1: Optimization Techniques for ML (wrap-up)
	Slide 2: Today
	Slide 3: Some Practical Aspects: Iterate Averaging for SGD
	Slide 4: Some Practical Aspects: Assessing Convergence
	Slide 5: Some Practical Aspects: Learning Rate (Step Size)
	Slide 6: Some Practical Aspects: Adaptive Gradient Methods
	Slide 7: Constrained Optimization
	Slide 8: Projected Gradient Descent
	Slide 9: Projected GD: How to Project?
	Slide 10: Constrained Opt. via Lagrangian
	Slide 11: Constrained Opt. via Lagrangian
	Slide 12: Constrained Opt. with Multiple Constraints
	Slide 13: Optimization of Non-differentiable Functions
	Slide 14: Dealing with Non-differentiable Functions
	Slide 15: Sub-gradients
	Slide 16: Sub-gradients, Sub-differential, and Some Rules
	Slide 17: Sub-Gradient For Absolute Loss Regression
	Slide 18: Sub-Gradient Descent
	Slide 19: Optimization for ML: Some Final Comments

