
Optimization Techniques for ML
(contd)

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

Optimization Problems in ML
2

▪ The general form of an optimization problem in ML will usually be

▪𝑪 is the constraint set that the solution must belong to, e.g.,

▪ Non-negativity constraint: All entries in 𝑤𝑜𝑝𝑡 must be non-negative

▪ Sparsity constraint: 𝑤𝑜𝑝𝑡 is a sparse vector with at most 𝐾 non-zeros

▪ Constrained opt. probs can be converted into unconstrained opt. (will see later)

▪ For now, assume we have an unconstrained optimization problem

𝑤𝑜𝑝𝑡 = arg min𝑤∈𝑪 𝐿(𝒘)

or
Training loss with a

constraint on 𝒘

𝑤𝑜𝑝𝑡 = arg min𝒘 𝐿 𝒘 𝐿(𝒘) may denote the training loss,

or training loss + regularizer term

CS771: Intro to ML

Methods for Solving
Optimization Problems

3

CS771: Intro to ML

Method 1: Using First-Order Optimality
4

▪ Very simple. Already used this approach for linear and ridge regression

▪ First order optimality: The gradient 𝒈 must be equal to zero at the optima

▪ Sometimes, setting 𝒈 = 𝟎 and solving for 𝒘 gives a closed form solution

▪ If closed form solution is not available, the gradient vector 𝒈 can still be used in
iterative optimization algos, like gradient descent

𝒈 = ∇𝒘 𝐿(𝒘) = 0

The approach works only for very

simple problems where the objective

is convex and there are no constraints

on the values 𝒘 can take

Called “first order” since only gradient is

used and gradient provides the first order

info about the function being optimized

E.g., linear/ridge regression, but not

for logistic/softmax regression

CS771: Intro to ML

Method 2: Iterative Optimiz. via Gradient Descent
5

▪ Initialize 𝒘 as 𝒘(0)

▪ For iteration 𝑡 = 0,1,2, … (or until convergence)

▪ Calculate the gradient 𝒈(𝑡) using the current iterates 𝒘(𝑡)

▪ Set the learning rate 𝜂𝑡

▪ Move in the opposite direction of gradient

Gradient Descent

𝒘(𝑡+1) = 𝒘(𝑡) − 𝜂𝑡𝒈(𝑡)

Can I used this approach

to solve maximization

problems?

Iterative since it requires

several steps/iterations to find

the optimal solution

For convex functions,

GD will converge to

the global minima

Good initialization

needed for non-

convex functions

For max. problems we can

use gradient ascent

𝒘(𝑡+1) = 𝒘(𝑡) + 𝜂𝑡𝒈(𝑡)

The learning rate very

imp. Should be set

carefully (fixed or

chosen adaptively).

Will discuss some

strategies later

Will move in the direction

of the gradient

Will see the

justification shortly

Fact: Gradient gives the

direction of steepest

change in function’s value

CS771: Intro to ML

Gradient Descent: An Illustration
6

𝒘∗𝒘(0) 𝒘(1) 𝒘(2) 𝒘(0)
𝒘(1)𝒘(2) 𝒘∗

Woohoo! ☺ Global

minima found!!!

GD thanks you for the

good initialization ☺

𝒘(3) 𝒘(3)

Stuck at a local

minima 

Negative gradient here (
𝛿𝐿

𝛿𝑤
< 0).

Let’s move in the positive direction

Positive gradient here.

Let’s move in the

negative direction

Learning rate is very important

Good initialization is

very important

𝐿(𝒘)

𝒘

CS771: Intro to ML

GD: An Example
7

▪ Let’s apply GD for least squares linear regression

▪ The gradient: 𝒈 = −
2

𝑁
σ𝑛=1

𝑁 𝑦𝑛 − 𝒘⊤𝒙𝑛 𝒙𝑛

▪ Each GD update will be of the form

▪ Exercise: Assume 𝑁 = 1, and show that GD update improves prediction on the

training input (𝒙𝑛, 𝑦𝑛), i.e, 𝑦𝑛 is closer to 𝒘 𝑡+1 ⊤
𝒙𝑛 than to 𝒘 𝑡 ⊤

𝒙𝑛

▪ This is sort of a proof that GD updates are “corrective” in nature (and it actually is true not
just for linear regression but can also be shown for various other ML models)

𝒘𝑟𝑖𝑑𝑔𝑒= arg min𝒘 𝐿𝑟𝑒𝑔 𝒘 = arg min𝒘
1

𝑁
σ𝑛=1

𝑁 (𝑦𝑛 − 𝒘⊤𝒙𝑛)2

𝒘(𝑡+1) = 𝒘(𝑡) + 𝜂𝑡
2

𝑁
 σ𝑛=1

𝑁 𝑦𝑛 − 𝒘(𝑡)⊤
𝒙𝑛 𝒙𝑛

Prediction error of current model

𝒘(𝑡) on the 𝑛𝑡ℎ training example

Training examples

on which the

current model’s

error is large

contribute more to

the update

CS771: Intro to ML

Faster GD: Stochastic Gradient Descent (SGD)
8

▪ Consider a loss function of the form 𝐿 𝒘 =
1

𝑁
σ𝑛=1

𝑁 ℓ𝑛(𝒘)

▪ The gradient in this case can be written as

▪ Stochastic Gradient Descent (SGD) approximates 𝒈 using a single training example

▪ At iter. 𝑡, pick an index 𝑖 ∈ 1,2, … , 𝑁 uniformly randomly and approximate 𝒈 as

▪ May take more iterations than GD to converge but each iteration is much faster ☺
▪ SGD per iter cost is 𝑂 𝐷 whereas GD per iter cost is 𝑂(𝑁𝐷)

Writing as an average instead of sum.

Won’t affect minimization of 𝐿 𝒘

Gradient of the loss on

𝑛𝑡ℎ training example

𝒈 = ∇𝒘𝐿 𝑤 = ∇𝒘[
1

𝑁
෍

𝑛=1

𝑁

ℓ𝑛(𝒘)] =
1

𝑁
෍

𝑛=1

𝑁

𝒈𝑛

Expensive to compute – requires

doing it for all the training

examples in each iteration 

𝒈 ≈ 𝒈𝑖 = ∇𝒘ℓ𝑖(𝒘)
Can show that 𝒈𝑖 is an

unbiased estimate of 𝑔,

i.e.,𝔼 𝒈𝑖 = 𝒈

CS771: Intro to ML

Minibatch SGD
9

▪ Gradient approximation using a single training example may be noisy

▪ We can use 𝐵 > 1 unif. rand. chosen train. ex. with indices 𝑖1, 𝑖2, … , 𝑖𝐵 ∈ {1,2, … , 𝑁}

▪ Using this “minibatch” of examples, we can compute a minibatch gradient

▪ Averaging helps in reducing the variance in the stochastic gradient

▪ Time complexity is 𝑂(𝐵𝐷) per iteration in this case

The approximation may have a high variance –

may slow down convergence, updates may be

unstable, and may even give sub-optimal

solutions (e.g., local minima where GD might

have given global minima)

𝒈 ≈
1

𝐵
෍

𝑏=1

𝐵

𝒈𝑖𝑏

CS771: Intro to ML

Co-ordinate Descent (CD)
10

▪ Standard gradient descent update for : 𝒘(𝑡+1) = 𝒘(𝑡) − 𝜂𝑡𝒈(𝑡)

▪ CD: In each iter, update only one entry (co-ordinate) of 𝒘. Keep all others fixed

▪ Cost of each update is now independent of 𝐷

▪ In each iter, can choose co-ordinate to update unif. randomly or in cyclic order

▪ Instead of updating a single co-ord, can also update “blocks” of co-ordinates
▪ Called block co-ordinate descent (BCD)

▪ To avoid 𝑂(𝐷) cost of gradient computation, can cache previous computations
▪ Recall that grad. computations may have terms like 𝒘⊤𝒙 – if just one co-ordinate of 𝒘

changes, we should avoid computing the new 𝒘⊤𝒙 (= σ𝑑 𝑤𝑑𝑥𝑑) from scratch

𝑤𝑑
(𝑡+1)

= 𝑤𝑑
(𝑡)

− 𝜂𝑡𝑔𝑑
(𝑡)

 𝑑 ∈ {1,2, … , 𝐷}
𝑔𝑑 = ∇𝑤𝑑

𝐿 𝒘 -- partial derivative w.r.t. the 𝑑𝑡ℎ element

of vector 𝒘 (or the 𝑑𝑡ℎ element of the gradient vector g)

=

CS771: Intro to ML

Alternating Optimization (ALT-OPT)
11

▪ Consider opt. problems with several variables, say two variables 𝒘1 and 𝒘2

▪Often, this “joint” optimization is hard/impossible to solve

▪We can take an alternating optimization approach to solve such problems

▪ Usually converges to a local optima. But very very useful. Will see examples later
▪ Also related to the Expectation-Maximization (EM) algorithm which we will see later

CS771: Intro to ML

Second Order Methods: Newton’s Method
12

▪ Unlike GD and its variants, Newton’s method uses second-order information
(second derivative, a.k.a. the Hessian). Iterative method, just like GD

▪ Given current 𝒘(𝑡), minimize the quadratic (second-order) approx. of 𝐿(𝒘)

𝒘(𝑡+1) = arg min𝒘 [𝐿 𝒘 𝑡 + ∇𝐿 𝒘 𝑡 ⊤
𝒘 − 𝒘 𝑡 +

1

2
(𝒘 − 𝒘 𝑡)⊤∇2𝐿 𝒘 𝑡 (𝒘 − 𝒘 𝑡)]

𝒘𝑜𝑝𝑡

𝐿(𝒘)

𝒘

Show that 𝒘(𝑡+1) = 𝒘 𝑡 − ∇2𝐿 𝒘 𝑡
−1

∇𝐿 𝒘 𝑡

 = 𝒘 𝑡 − (𝑯 𝑡)−1𝒈 𝑡

Converges much faster than GD (very fast for convex

functions). Also no “learning rate”. But per iteration cost

is slower due to Hessian computation and inversion

Faster versions of Newton’s method also exist, e.g.,

those based on approximating Hessian using previous

gradients (see L-BFGS which is a popular method)
𝒘(1)

CS771: Intro to ML

Coming up next
13

▪ Constrained optimization

▪Optimizing non-differentiable functions

▪ Some practical issue in optimization for ML

	Slide 1: Optimization Techniques for ML (contd)
	Slide 2: Optimization Problems in ML
	Slide 3: Methods for Solving Optimization Problems
	Slide 4: Method 1: Using First-Order Optimality
	Slide 5: Method 2: Iterative Optimiz. via Gradient Descent
	Slide 6: Gradient Descent: An Illustration
	Slide 7: GD: An Example
	Slide 8: Faster GD: Stochastic Gradient Descent (SGD)
	Slide 9: Minibatch SGD
	Slide 10: Co-ordinate Descent (CD)
	Slide 11: Alternating Optimization (ALT-OPT)
	Slide 12: Second Order Methods: Newton’s Method
	Slide 13: Coming up next

