
Optimization Techniques for ML

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

Functions and their optima
2

▪Many ML problems require us to optimize a function 𝑓 of some variable(s) 𝑥

▪ For simplicity, assume 𝑓 is a scalar-valued function of a scalar 𝑥(𝑓: ℝ → ℝ)

▪ Any function has one/more optima (maxima, minima), and maybe saddle points

▪ Finding the optima or saddles requires derivatives/gradients of the function

𝑓(𝑥) Global maximaA local maxima A local maxima

A local minima

A local minima

A local minima

Global minima

Will see what

these are later

Usually interested in global

optima but often want to

find local optima, too

𝑥

The objective function of the ML

problem we are solving (e.g.,

squared loss for regression)

Assume unconstrained

for now, i.e., just a real-

valued number/vector

For deep learning models, often the

local optima are what we can find (and

they usually suffice) – more later

CS771: Intro to ML

Derivatives
3

▪Magnitude of derivative at a point is the rate of change of the func at that point

▪Derivative becomes zero at stationary points (optima or saddle points)
▪ The function becomes “flat” (∆𝑓 𝑥 = 0 if we change 𝑥 by a very little at such points)

▪ These are the points where the function has its maxima/minima (unless they are saddles)

𝑑𝑓(𝑥)

𝑑𝑥
 = lim∆𝑥→0

∆𝑓(𝑥)

∆𝑥 𝑓(𝑥)

𝑥∆𝑥

∆𝑓(𝑥)

∆𝑥

∆𝑓(𝑥)
Sign is also important: Positive derivative

means 𝑓 is increasing at 𝑥 if we increase

the value of 𝑥 by a very small amount;

negative derivative means it is decreasing

Understanding how 𝑓 changes its value as we

change 𝑥 is helpful to understand optimization

(minimization/maximization) algorithms

Will sometimes use 𝑓′(𝑥) to

denote the derivative

CS771: Intro to ML

Saddle Points
4

▪ Points where derivative is zero but are neither minima nor maxima

▪ Saddle points are very common for loss functions of deep learning models
▪ Need to be handled carefully during optimization

▪ Second or higher derivative may help identify if a stationary point is a saddle

Function might increase

along one direction but

decrease in a different

direction

CS771: Intro to ML

Rules of Derivatives
5

Some basic rules of taking derivatives

▪ Sum Rule: 𝑓 𝑥 + 𝑔 𝑥
′

= 𝑓′ 𝑥 + 𝑔′ 𝑥

▪ Scaling Rule: 𝑎 ⋅ 𝑓 𝑥
′

= 𝑎 ⋅ 𝑓′ 𝑥 if 𝑎 is not a function of 𝑥

▪ Product Rule: 𝑓 𝑥 ⋅ 𝑔 𝑥
′

= 𝑓′ 𝑥 ⋅ 𝑔 𝑥 + 𝑔′ 𝑥 ⋅ 𝑓 𝑥

▪Quotient Rule: 𝑓 𝑥 /𝑔 𝑥 ′ = 𝑓′ 𝑥 ⋅ 𝑔 𝑥 − 𝑔′ 𝑥 𝑓 𝑥 / 𝑔 𝑥
2

▪ Chain Rule: 𝑓 𝑔 𝑥
′

≝ 𝑓 ∘ 𝑔 ′ 𝑥 = 𝑓′ 𝑔 𝑥 ⋅ 𝑔′ 𝑥

We already used some of these (sum, scaling

and chain) when calculating the derivative for

the linear regression model

CS771: Intro to ML

Derivatives
6

▪How the derivative itself changes tells us about the function’s optima

▪ The second derivative 𝑓’’(𝑥) can provide this information
▪ It is the rate of change of the first derivative

𝑓’(𝑥)= 0 at 𝑥,

𝑓’(𝑥)>0 just before 𝑥
𝑓’(𝑥)<0 just after 𝑥
𝑥 is a maxima

𝑓’(𝑥)= 0 at 𝑥
𝑓’(𝑥)< 0 just before 𝑥
𝑓’(𝑥)>0 just after 𝑥
𝑥 is a minima

𝑓’(𝑥)= 0 and 𝑓’’(𝑥) < 0
𝑥 is a maxima

𝑓’(𝑥)= 0 and 𝑓’’ 𝑥 > 0
𝑥 is a minima

But, the behavior of second

derivative alone may not be

enough to tell whether it’s a

saddle point

CS771: Intro to ML

Multivariate Functions
7

▪Most functions that we see in ML are multivariate function

▪ Example: Loss fn 𝐿(𝒘) in lin-reg was a multivar function of 𝐷-dim vector 𝒘

▪Here is an illustration of a function of 2 variables (4 maxima and 5 minima)

𝐿 𝒘 : ℝ𝐷 → ℝ

Two-dim contour plot

of the function (i.e.,

what it looks like from

the above)

Plot courtesy: http://benchmarkfcns.xyz/benchmarkfcns/griewankfcn.html

Each curve here is the

set of points at which

the function has the

same value

CS771: Intro to ML

Derivatives of Multivariate Functions
8

▪ Can define derivative for a multivariate functions as well via the gradient

▪ Gradient of a function 𝑓(𝒙): ℝ𝐷 → ℝ is a 𝐷 × 1 vector of partial derivatives

▪ Conditions for optima defined similar to one-dim case
▪ Required properties for one-dim case must be satisfied for all components of 𝒙

▪ The second derivative in the multivariate case is known as the Hessian matrix

∇𝑓 𝒙 =
𝜕𝑓

𝜕𝑥1
,

𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝐷

Each element in this gradient vector tells us how

much 𝑓 will change if we move a little along the

corresponding (akin to one-dim case)

CS771: Intro to ML

The Hessian
9

▪ For a multivar scalar valued function 𝑓(𝒙): ℝ𝐷 → ℝ, Hessian is a 𝐷 × 𝐷 matrix

▪ The Hessian matrix can be used to assess the optima/saddle points
▪ ∇𝑓 𝒙 = 0 and 𝛻2𝑓 𝒙 is a positive semi-definite (PSD) matrix then 𝒙 is a minima

▪ ∇𝑓 𝒙 = 0, and 𝛻2𝑓 𝒙 is a negative semi-definite (NSD) matrix then 𝒙 is a maxima

▪ The determinant of the Hessian is zero at saddle point (has at least one zero eig-val)

𝛻2𝑓 𝒙 =

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥2𝑥1

𝜕2𝑓

𝜕𝑥1𝑥2

𝜕2𝑓

𝜕𝑥2
2

…
…

⋮ ⋮ ⋱
𝜕2𝑓

𝜕𝑥𝐷𝑥1

𝜕2𝑓

𝜕𝑥𝐷𝑥2
…

𝜕2𝑓

𝜕𝑥1𝑥𝐷

𝜕2𝑓

𝜕𝑥2𝑥𝐷

⋮
𝜕2𝑓

𝜕𝑥𝐷
2

Note: If the function itself is vector

valued, e.g., 𝑓(𝒙): ℝ𝐷 → ℝ𝐾 then

we will have 𝐾 such 𝐷 × 𝐷 Hessian

matrices, one for each output

dimension of 𝑓

Gives information

about the curvature

of the function at

point 𝒙

A square, symmetric 𝐷 × 𝐷 matrix M

is PSD if 𝒙⊤𝑀𝒙 ≥ 𝟎 ∀ 𝒙 ∈ ℝ𝐷

Will be NSD if 𝒙⊤𝑀𝒙 ≤ 𝟎 ∀ 𝒙 ∈ ℝ𝐷
PSD if all

eigenvalues are

non-negative

CS771: Intro to ML

▪ A function being optimized can be either convex or non-convex

▪Here are a couple of examples of convex functions

▪Here are a couple of examples of non-convex functions

Convex and Non-Convex Functions
10

Convex functions are bowl-shaped.

They have a unique optima (minima)

Negative of a convex function is called

a concave function, which also has a

unique optima (maxima)

Non-convex functions have

multiple minima. Usually harder

to optimize as compared to

convex functions

Loss functions of most

deep learning models are

non-convex

CS771: Intro to ML

Convex Sets
11

▪ A set S of points is a convex set, if for any two points 𝑥, 𝑦 ∈ 𝑆, and 0 ≤ 𝛼 ≤ 1

▪ Above means that all points on the line-segment between 𝑥 and 𝑦 lie within 𝑆

▪ The domain of a convex function needs to be a convex set

𝑧 = 𝛼𝑥 + 1 − 𝛼 𝑦 ∈ 𝑆𝑧 is also called a “convex

combination” of two points

Can also define convex

combination of 𝑁 points

𝑥1, 𝑥2, … , 𝑥𝑁 as 𝑧 = σ𝑖=1
𝑁 𝛼𝑖𝑥𝑖

CS771: Intro to ML

Convex Functions
12

▪ Informally, 𝑓(𝑥) is convex if all of its chords lie above the function everywhere

▪ Formally, (assuming differentiable function), some tests for convexity:
▪ First-order convexity (graph of 𝑓 must be above all the tangents)

▪ Second derivative a.k.a. Hessian (if exists) must be positive semi-definite

Exercise: Show that

ridge regression

objective is convex

CS771: Intro to ML

Some Basic Rules for Convex Functions
13

CS771: Intro to ML

Optimization Problems in ML
14

▪ The general form of an optimization problem in ML will usually be

▪Here 𝐿(𝒘) denotes the loss function to be optimized

▪𝑪 is the constraint set that the solution must belong to, e.g.,

▪ Non-negativity constraint: All entries in 𝑤𝑜𝑝𝑡 must be non-negative

▪ Sparsity constraint: 𝑤𝑜𝑝𝑡 is a sparse vector with atmost 𝐾 non-zeros

▪ If no 𝑪 is specified, it is an unconstrained optimization problem

▪ Constrained opt. probs can be converted into unconstrained opt. (will see later)

▪ For now, assume we have an unconstrained optimization problem

𝑤𝑜𝑝𝑡 = arg min𝑤∈𝑪 𝐿(𝒘)

Linear and ridge regression

that we saw were

unconstrained (𝑤𝑜𝑝𝑡 was a

real-valued vector)

However, possible to have

linear/ridge regression

where solution has some

constraints (e.g., non-neg,

sparsity, or even both)

Usually a sum of the

training error + regularizer

CS771: Intro to ML

Methods for Solving
Optimization Problems

15

CS771: Intro to ML

Method 1: Using First-Order Optimality
16

▪ Very simple. Already used this approach for linear and ridge regression

▪ First order optimality: The gradient 𝒈 must be equal to zero at the optima

▪ Sometimes, setting 𝒈 = 𝟎 and solving for 𝒘 gives a closed form solution

▪ If closed form solution is not available, the gradient vector 𝒈 can still be used in
iterative optimization algos, like gradient descent

𝒈 = ∇𝒘 𝐿(𝒘) = 0

The approach works only for very

simple problems where the objective

is convex and there are no constraints

on the values 𝒘 can take

Called “first order” since only gradient is

used and gradient provides the first order

info about the function being optimized

CS771: Intro to ML

Method 2: Iterative Optimiz. via Gradient Descent
17

▪ Initialize 𝒘 as 𝒘(0)

▪ For iteration 𝑡 = 0,1,2, … (or until convergence)

▪ Calculate the gradient 𝒈(𝑡) using the current iterates 𝒘(𝑡)

▪ Set the learning rate 𝜂𝑡

▪ Move in the opposite direction of gradient

Gradient Descent

𝒘(𝑡+1) = 𝒘(𝑡) − 𝜂𝑡𝒈(𝑡)

Can I used this approach

to solve maximization

problems?

Iterative since it requires

several steps/iterations to find

the optimal solution

For convex functions,

GD will converge to

the global minima

Good initialization

needed for non-

convex functions

For max. problems we can

use gradient ascent

𝒘(𝑡+1) = 𝒘(𝑡) + 𝜂𝑡𝒈(𝑡)

The learning rate very

imp. Should be set

carefully (fixed or

chosen adaptively).

Will discuss some

strategies later

Will move in the direction

of the gradient

Will see the

justification shortly

Fact: Gradient gives the

direction of steepest

change in function’s value

CS771: Intro to ML

Gradient Descent: An Illustration
18

𝒘∗𝒘(0) 𝒘(1) 𝒘(2) 𝒘(0)
𝒘(1)𝒘(2) 𝒘∗

Woohoo! ☺ Global

minima found!!!

GD thanks you for the

good initialization ☺

𝒘(3) 𝒘(3)

Stuck at a local

minima

Negative gradient here (
𝛿𝐿

𝛿𝑤
< 0).

Let’s move in the positive direction

Positive gradient here.

Let’s move in the

negative direction

Learning rate is very important

Good initialization is

very important

𝐿(𝒘)

𝒘

CS771: Intro to ML

GD: An Example
19

▪ Let’s apply GD for least squares linear regression

▪ The gradient: 𝒈 = − σ𝑛=1
𝑁 2 𝑦𝑛 − 𝒘⊤𝒙𝑛 𝒙𝑛

▪ Each GD update will be of the form

▪ Exercise: Assume 𝑁 = 1, and show that GD update improves prediction on the

training input (𝒙𝑛, 𝑦𝑛), i.e, 𝑦𝑛 is closer to 𝒘 𝑡+1 ⊤
𝒙𝑛 than to 𝒘 𝑡 ⊤

𝒙𝑛

▪ This is sort of a proof that GD updates are “corrective” in nature (and it actually is true not
just for linear regression but can also be shown for various other ML models)

𝒘𝑟𝑖𝑑𝑔𝑒= arg min𝒘 𝐿𝑟𝑒𝑔 𝒘 = arg min𝒘 σ𝑛=1
𝑁 (𝑦𝑛 − 𝒘⊤𝒙𝑛)2

𝒘(𝑡+1) = 𝒘(𝑡) + 𝜂𝑡 σ𝑛=1
𝑁 2 𝑦𝑛 − 𝒘(𝑡)⊤

𝒙𝑛 𝒙𝑛

Prediction error of current model

𝒘(𝑡) on the 𝑛𝑡ℎ training example

Training examples

on which the

current model’s

error is large

contribute more to

the update

CS771: Intro to ML

Next class
20

▪ Optimizing non-differentiable functions

▪ Making GD faster: Stochastic gradient descent

▪ Constrained optimization

▪ Co-ordinate descent

▪ Alternating optimization

▪ Practical issue in optimization for ML

	Slide 1: Optimization Techniques for ML
	Slide 2: Functions and their optima
	Slide 3: Derivatives
	Slide 4: Saddle Points
	Slide 5: Rules of Derivatives
	Slide 6: Derivatives
	Slide 7: Multivariate Functions
	Slide 8: Derivatives of Multivariate Functions
	Slide 9: The Hessian
	Slide 10: Convex and Non-Convex Functions
	Slide 11: Convex Sets
	Slide 12: Convex Functions
	Slide 13: Some Basic Rules for Convex Functions
	Slide 14: Optimization Problems in ML
	Slide 15: Methods for Solving Optimization Problems
	Slide 16: Method 1: Using First-Order Optimality
	Slide 17: Method 2: Iterative Optimiz. via Gradient Descent
	Slide 18: Gradient Descent: An Illustration
	Slide 19: GD: An Example
	Slide 20: Next class

