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Functions and their optima
2

▪Many ML problems require us to optimize a function 𝑓 of some variable(s) 𝑥

▪ For simplicity, assume 𝑓 is a scalar-valued function of a scalar 𝑥(𝑓: ℝ → ℝ)

▪ Any function has one/more optima (maxima, minima), and maybe saddle points

▪ Finding the optima or saddles requires derivatives/gradients of the function

𝑓(𝑥) Global maximaA local maxima A local maxima

A local minima

A local minima

A local minima

Global minima

Will see what 

these are later

Usually interested in global 

optima but often want to 

find local optima, too

𝑥

The objective function of the ML 

problem we are solving (e.g., 

squared loss for regression)

Assume unconstrained 

for now, i.e., just a real-

valued number/vector

For deep learning models, often the 

local optima are what we can find (and 

they usually suffice) – more later
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Derivatives
3

▪Magnitude of derivative at a point is the rate of change of the func at that point

▪Derivative becomes zero at stationary points (optima or saddle points)
▪ The function becomes “flat” (∆𝑓 𝑥 = 0 if  we change 𝑥 by a very little at such points)

▪ These are the points where the function has its maxima/minima (unless they are saddles)

𝑑𝑓(𝑥)

𝑑𝑥
 = lim∆𝑥→0

∆𝑓(𝑥)

∆𝑥 𝑓(𝑥)

𝑥∆𝑥

∆𝑓(𝑥)

∆𝑥

∆𝑓(𝑥)
Sign is also important: Positive derivative 

means 𝑓 is increasing at 𝑥 if  we increase 

the value of 𝑥 by a very small amount; 

negative derivative means it is decreasing

Understanding how 𝑓 changes its value as we 

change 𝑥 is helpful to understand optimization 

(minimization/maximization) algorithms

Will sometimes use 𝑓′(𝑥) to 

denote the derivative
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Saddle Points
4

▪ Points where derivative is zero but are neither minima nor maxima

▪ Saddle points are very common for loss functions of deep learning models
▪ Need to be handled carefully during optimization

▪ Second or higher derivative may help identify if  a stationary point is a saddle

Function might increase 

along one direction but 

decrease in a different 

direction
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Rules of Derivatives
5

Some basic rules of taking derivatives

▪ Sum Rule: 𝑓 𝑥 + 𝑔 𝑥
′

= 𝑓′ 𝑥 + 𝑔′ 𝑥

▪ Scaling Rule: 𝑎 ⋅ 𝑓 𝑥
′

= 𝑎 ⋅ 𝑓′ 𝑥  if  𝑎 is not a function of 𝑥

▪ Product Rule: 𝑓 𝑥 ⋅ 𝑔 𝑥
′

= 𝑓′ 𝑥 ⋅ 𝑔 𝑥 + 𝑔′ 𝑥 ⋅ 𝑓 𝑥

▪Quotient Rule: 𝑓 𝑥 /𝑔 𝑥 ′ = 𝑓′ 𝑥 ⋅ 𝑔 𝑥 − 𝑔′ 𝑥 𝑓 𝑥 / 𝑔 𝑥
2

▪ Chain Rule: 𝑓 𝑔 𝑥
′

≝ 𝑓 ∘ 𝑔 ′ 𝑥 = 𝑓′ 𝑔 𝑥 ⋅ 𝑔′ 𝑥

We already used some of these (sum, scaling 

and chain) when calculating the derivative for 

the linear regression model
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Derivatives
6

▪How the derivative itself  changes tells us about the function’s optima

▪ The second derivative 𝑓’’(𝑥) can provide this information
▪ It is the rate of change of the first derivative

𝑓’(𝑥)= 0 at 𝑥, 

𝑓’(𝑥)>0 just before 𝑥
𝑓’(𝑥)<0 just after 𝑥
𝑥 is a maxima

𝑓’(𝑥)= 0 at 𝑥
𝑓’(𝑥)< 0 just before 𝑥
𝑓’(𝑥)>0 just after 𝑥
𝑥 is a minima

𝑓’(𝑥)= 0 and 𝑓’’(𝑥) < 0
𝑥 is a maxima

𝑓’(𝑥)= 0 and 𝑓’’ 𝑥 > 0
𝑥 is a minima

But, the behavior of second 

derivative alone may not be 

enough to tell whether it’s a 

saddle point
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Multivariate Functions
7

▪Most functions that we see in ML are multivariate function

▪ Example: Loss fn 𝐿(𝒘) in lin-reg was a multivar function of 𝐷-dim vector 𝒘

▪Here is an illustration of a function of 2 variables (4 maxima and 5 minima) 

𝐿 𝒘 : ℝ𝐷 → ℝ 

Two-dim contour plot 

of the function (i.e., 

what it looks like from 

the above)

Plot courtesy: http://benchmarkfcns.xyz/benchmarkfcns/griewankfcn.html

Each curve here is the 

set of points at which 

the function has the 

same value
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Derivatives of Multivariate Functions
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▪ Can define derivative for a multivariate functions as well via the gradient

▪ Gradient of a function 𝑓(𝒙): ℝ𝐷 → ℝ is a 𝐷 × 1 vector of partial derivatives

▪ Conditions for optima defined similar to one-dim case
▪ Required properties for one-dim case must be satisfied for all components of 𝒙

▪ The second derivative in the multivariate case is known as the Hessian matrix

∇𝑓 𝒙 =
𝜕𝑓

𝜕𝑥1
,

𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝐷

Each element in this gradient vector tells us how 

much 𝑓 will change if we move a little along the 

corresponding (akin to one-dim case)
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The Hessian
9

▪ For a multivar scalar valued function 𝑓(𝒙): ℝ𝐷 → ℝ, Hessian is a 𝐷 ×  𝐷 matrix

▪ The Hessian matrix can be used to assess the optima/saddle points
▪ ∇𝑓 𝒙  = 0 and 𝛻2𝑓 𝒙  is a positive semi-definite (PSD) matrix then 𝒙 is a minima

▪ ∇𝑓 𝒙  = 0, and 𝛻2𝑓 𝒙  is a negative semi-definite (NSD) matrix then 𝒙 is a maxima

▪ The determinant of the Hessian is zero at saddle point (has at least one zero eig-val)

𝛻2𝑓 𝒙 =

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥2𝑥1

𝜕2𝑓

𝜕𝑥1𝑥2

𝜕2𝑓

𝜕𝑥2
2

…
…

⋮ ⋮ ⋱
𝜕2𝑓

𝜕𝑥𝐷𝑥1

𝜕2𝑓

𝜕𝑥𝐷𝑥2
…

 

𝜕2𝑓

𝜕𝑥1𝑥𝐷

𝜕2𝑓

𝜕𝑥2𝑥𝐷

⋮
𝜕2𝑓

𝜕𝑥𝐷
2

Note: If  the function itself  is vector 

valued, e.g., 𝑓(𝒙): ℝ𝐷 → ℝ𝐾 then 

we will have 𝐾 such 𝐷 × 𝐷 Hessian 

matrices, one for each output 

dimension of 𝑓

Gives information 

about the curvature 

of the function at 

point 𝒙

A square, symmetric 𝐷 × 𝐷 matrix M 

is PSD if 𝒙⊤𝑀𝒙 ≥ 𝟎 ∀ 𝒙 ∈  ℝ𝐷

Will be NSD if 𝒙⊤𝑀𝒙 ≤ 𝟎 ∀ 𝒙 ∈  ℝ𝐷  
PSD if all 

eigenvalues are 

non-negative  
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▪ A function being optimized can be either convex or non-convex

▪Here are a couple of examples of convex functions

▪Here are a couple of examples of non-convex functions

Convex and Non-Convex Functions
10

Convex functions are bowl-shaped. 

They have a unique optima (minima)

Negative of a convex function is called 

a concave function, which also has a 

unique optima (maxima)

Non-convex functions have 

multiple minima. Usually harder 

to optimize as compared to 

convex functions

Loss functions of most 

deep learning models are 

non-convex
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Convex Sets
11

▪ A set S of points is a convex set, if  for any two points 𝑥, 𝑦 ∈ 𝑆, and 0 ≤ 𝛼 ≤ 1

▪ Above means that all points on the line-segment between 𝑥 and 𝑦 lie within 𝑆

▪ The domain of a convex function needs to be a convex set

𝑧 = 𝛼𝑥 + 1 − 𝛼 𝑦 ∈ 𝑆𝑧 is also called a “convex 

combination” of two points

Can also define convex 

combination of 𝑁 points 

𝑥1, 𝑥2, … , 𝑥𝑁 as 𝑧 = σ𝑖=1
𝑁 𝛼𝑖𝑥𝑖
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Convex Functions 
12

▪ Informally, 𝑓(𝑥) is convex if  all of its chords lie above the function everywhere

▪ Formally, (assuming differentiable function), some tests for convexity:
▪ First-order convexity (graph of 𝑓 must be above all the tangents)

▪ Second derivative a.k.a. Hessian (if  exists) must be positive semi-definite

Exercise: Show that 

ridge regression 

objective is convex
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Some Basic Rules for Convex Functions 
13
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Optimization Problems in ML
14

▪ The general form of an optimization problem in ML will usually be

▪Here 𝐿(𝒘) denotes the loss function to be optimized

▪𝑪 is the constraint set that the solution must belong to, e.g.,

▪ Non-negativity constraint: All entries in 𝑤𝑜𝑝𝑡 must be non-negative 

▪ Sparsity constraint: 𝑤𝑜𝑝𝑡 is a sparse vector with atmost 𝐾 non-zeros

▪ If  no 𝑪 is specified, it is an unconstrained optimization problem

▪ Constrained opt. probs can be converted into unconstrained opt. (will see later)

▪ For now, assume we have an unconstrained optimization problem

𝑤𝑜𝑝𝑡 =  arg min𝑤∈𝑪 𝐿(𝒘)

Linear and ridge regression 

that we saw were 

unconstrained (𝑤𝑜𝑝𝑡 was a 

real-valued vector)

However, possible to have 

linear/ridge regression 

where solution has some 

constraints (e.g., non-neg, 

sparsity, or even both)

Usually a sum of the 

training error + regularizer
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Methods for Solving 
Optimization Problems

15



CS771: Intro to ML

Method 1: Using First-Order Optimality
16

▪ Very simple. Already used this approach for linear and ridge regression

▪ First order optimality: The gradient 𝒈 must be equal to zero at the optima

▪ Sometimes, setting 𝒈 = 𝟎 and solving for 𝒘 gives a closed form solution 

▪ If  closed form solution is not available, the gradient vector 𝒈 can still be used in 
iterative optimization algos, like gradient descent

𝒈 = ∇𝒘 𝐿(𝒘)  = 0 

The approach works only for very 

simple problems where the objective 

is convex and there are no constraints 

on the values 𝒘 can take

Called “first order” since only gradient is 

used and gradient provides the first order 

info about the function being optimized
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Method 2: Iterative Optimiz. via Gradient Descent
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▪ Initialize 𝒘 as 𝒘(0)

▪ For iteration 𝑡 = 0,1,2, … (or until convergence)

▪ Calculate the gradient 𝒈(𝑡) using the current iterates 𝒘(𝑡)

▪ Set the learning rate 𝜂𝑡 

▪ Move in the opposite direction of gradient

Gradient Descent

𝒘(𝑡+1) =  𝒘(𝑡) − 𝜂𝑡𝒈(𝑡)

Can I used this approach 

to solve maximization 

problems?

Iterative since it requires 

several steps/iterations to find 

the optimal solution

For convex functions, 

GD will converge to 

the global minima

Good initialization 

needed for non-

convex functions

For max. problems we can 

use gradient ascent

𝒘(𝑡+1) =  𝒘(𝑡) + 𝜂𝑡𝒈(𝑡)

The learning rate very 

imp. Should be set 

carefully (fixed or 

chosen adaptively). 

Will discuss some 

strategies later

Will move in the direction 

of the gradient

Will see the 

justification shortly

Fact: Gradient gives the 

direction of steepest 

change in function’s value
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Gradient Descent: An Illustration
18

𝒘∗𝒘(0) 𝒘(1) 𝒘(2) 𝒘(0)
𝒘(1)𝒘(2) 𝒘∗

Woohoo! ☺ Global 

minima found!!!

GD thanks you for the 

good initialization ☺

𝒘(3) 𝒘(3)

Stuck at a local 

minima  

Negative gradient here (
𝛿𝐿

𝛿𝑤
< 0). 

Let’s move in the positive direction

Positive gradient here. 

Let’s move in the 

negative direction

Learning rate is very important

Good initialization is 

very important

𝐿(𝒘)

𝒘
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GD: An Example
19

▪ Let’s apply GD for least squares linear regression

▪ The gradient: 𝒈 = − σ𝑛=1
𝑁 2 𝑦𝑛 − 𝒘⊤𝒙𝑛 𝒙𝑛

▪ Each GD update will be of the form

▪ Exercise: Assume 𝑁 = 1, and show that GD update improves prediction on the 

training input (𝒙𝑛, 𝑦𝑛), i.e, 𝑦𝑛 is closer to 𝒘 𝑡+1 ⊤
𝒙𝑛 than to 𝒘 𝑡 ⊤

𝒙𝑛

▪ This is sort of a proof that GD updates are “corrective” in nature (and it actually is true not 
just for linear regression but can also be shown for various other ML models) 

𝒘𝑟𝑖𝑑𝑔𝑒= arg min𝒘 𝐿𝑟𝑒𝑔 𝒘 = arg min𝒘  σ𝑛=1
𝑁 (𝑦𝑛 − 𝒘⊤𝒙𝑛)2

𝒘(𝑡+1) =  𝒘(𝑡) + 𝜂𝑡 σ𝑛=1
𝑁 2 𝑦𝑛 − 𝒘(𝑡)⊤

𝒙𝑛 𝒙𝑛

Prediction error of current model 

𝒘(𝑡) on the 𝑛𝑡ℎ training example

Training examples 

on which the 

current model’s 

error is large 

contribute more to 

the update
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Next class
20

▪ Optimizing non-differentiable functions

▪ Making GD faster: Stochastic gradient descent

▪ Constrained optimization

▪ Co-ordinate descent

▪ Alternating optimization

▪ Practical issue in optimization for ML
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