


The objective function of the ML | | Assume unconstrained

F U n Ct | O n S a n d t h e I r O pt I m a problem we are solving (e.g., for now, i.e., just a real-
squared loss for regression) valued number/vector

= Many ML problems require us to optimize a function f of some variable(s) x
= For simplicity, assume f is a scalar-valued function of a scalar x (f: R = R)

f(X) A local maxima A local maxima Global maxima
Usually interested in global "
optima but often want to voa /
find local optima, too e»
A local minima For deep learning models, often the

—_— local optima are what we can find (and
X | they usually suffice) — more later

= A local minima A local minima

Will see what
- these are later

Global minima

" Any function has one/more optima (maxima, minima), and maybe saddle points

* Finding the optima or saddles requires derivatives/gradients of the function
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. . Will sometimes use f'(x) to '\
D erl Vat IVES denote the derivative “;"/

* Magnitude of derivative at a point is the rate of change of the func at that point

X _1im Af(x)
dx AX—=0 " px f(x)
Sign is also important: Positive derivative
means f is increasing at x if we increase Af (x)
the value of x by a very small amount; Af ()]

negative derivative means it is decreasing

Understanding how f changes its value as we
change x is helpful to understand optimization
(minimization/maximization) algorithms

» Derivative becomes zero at stationary points (optima or saddle points)

» The function becomes “flat” (Af (x) = 0 if we change x by a very little at such points)

" These are the points where the function has its maxima/minima (unless they are saddles?
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Saddle Points

® Points where derivative is zero but are neither minima nor maxima

Function might increase
along one direction but
decrease in a different
direction

» Saddle points are very common for loss functions of deep learning models
* Need to be handled carefully during optimization

= Second or higher derivative may help identity it a stationary point is a saddle
CS771: Intro to ML



Rules of Derivatives

Some basic rules of taking derivatives

* Sum Rule: (F(x) + g(x)) = f'(x) + g'(x)

= Scaling Rule: (a : f(x))’ =a - f'(x) if ais not a function of x

= Product Rule: (f(x) -g(x))’ =f'(x)-gx)+ g (x)-f(x)

= Quotient Rule: (f(x)/g(x))" = (f'(x) - g(x) — g’ ()f (1)) /(9(x))°
« Chain Rule: (f(9(0))) & (f 0 9)'(®) = £'(9(0) - g' )

We already used some of these (sum, scaling
A ., and chain) when calculating the derivative for

!» the linear regression model
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Derivatives

" How the derivative itself changes tells us about the function's optima

f'(x)=0and f"(x) < O

X IS a maxima

(x)= 0 at x,
(x)>0 just before x
(x)<O just after x
IS @ maxima

X IS a minima

f
f
f
X

f(x)< O just before x saddle point
f'(x)>0 just after x
X IS a minima
» The second derivative f”(x) can provide this information
" [t is the rate of change of the first derivative

f(x)=0and f’(x) > 0

¢

o

But, the behavior of second
derivative alone may not be
f(x)=0atx enough to tell whether it's a
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Multivariate Functions
= Most functions that we see in ML are multivariate function

» Example: Loss fn L(w) in lin-reg was a multivar function of D-dim vector w
Lw):RP - R

" Here is an illustration of a function of 2 variables (4 maxima and 5 minima)

[T T I _| | I|
it &u)ll '&\KU);’,' | Two-dim contour plot

2

—

|
| of the function (i.e.,

-

|
_
[ —

’ W\ what it looks like from
, |y I
~oll] 1] &O | | : the above)

0.8 | I [
N 1] '.\\\\ : _// / y, '
N 2p _\ll ~—— 1 | Eachcurve here s the
N 3| // \_\\-\l lﬁ”f "\\\Il | | setof points at which
0 : i m Ml I m || | the function has the

& 0 ° | same value

Plot courtesy: http://benchmarkfcns.xyz/benchmarkfcns/griewankfcn html CS771: Intro to ML



Derivatives of Multivariate Functions

= Can define derivative for a multivariate functions as well via the gradient

= Gradient of a function f(x): RP - Risa D X 1 vector of partial derivatives

of of of Each element in this gradient vector tells us how
Vi(x) = , ) ey — much f will change if we move a little along the
dxy 0x; 0xp corresponding (akin to one-dim case)

= Conditions for optima defined similar to one-dim case
" Required properties for one-dim case must be satisfied for all components of x

® [he second derivative in the multivariate case is known as the Hessian matrix
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The Hessian

= For a multivar scalar valued function f(x): RP? - R, Hessian is a D X D matrix

Note: If the function itself is vector

ﬁ o°f i valued, e.g., f(x): RP - RX then
0xi  0x1xz - 0x1Xp we will have K such D X D Hessian
0°f ’f - 0%f matrices, one for each output &\
Vef(x) = 05, a_xzz 0x,Xp dimension of f I.J\l'/
Gives information : : 2 A square, symmetric D X D matrix M ‘A,}
about the curvature 0*f 0*f 9°f sPSDif xTMx>0Vx€e RP ,
of the function at 0xpx; Oxpx, —~ 0x5 1 WillbeNSDif xTMx<0Vx€ RP PSD it al

eigenvalues are

point x |
non-negative

" [he Hessian matrix can be used to assess the optima/saddle points
= Vf(x) = 0and V?f(x) is a positive semi-definite (PSD) matrix then x is a minima
= Vf(x) =0, and V2f(x) is a negative semi-definite (NSD) matrix then x is a maxima

" The determinant of the Hessian is zero at saddle point (has at least one zero eig-val)
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Convex and Non-Convex Functions

= A function being optimized can be either convex or non-convex
" Here are a couple of examples of convex functions

Convex functions are bowl-shaped.

Loss They have a unique optima (minima)

Negative of a convex function is called e /

a concave function, which also has a é»

Optima . ‘ ‘
unigue optima (maxima)

w

" Here are a couple of examples of non-convex fTuNCtions | Non-convex functions have

multiple minima. Usually harder

Loss to optimize as compared to
Loss ™| convex functions
TN Loss functions of most A
- ' deep learning models are > /
“Local” Optima g O
R “Loc?af'ﬁ"dﬁii}nh non-convex
R

1
w
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Convex Sets

" A set S of points is a convex set, it for any two points x,y € S,andO0 < a < 1

Z is also called a “convex Can also define convex ‘“‘
Z = + (1 — €S inati | vt/
combination” of two points ax a)y combination of N points .
X1, X, e, XN S Z = Moq AiX;

" Above means that all points on the line-segment between x and y lie within S

A Convex Set A Non-convex Set

" [he domain of a convex function needs to be a convex set
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Convex Functions

= Informally, f(x) is convex if all of its chords lie above the function everywhere

Note: “Chord lies above function”
Convex Function Non-convex Function more formally means

If fis convex then given
Q1,005 00% S Z:':l a; = 1
n

f(in,.r,-) <3 aif(a:)

1=1 =1

Jensen's Inequality

&I T

» Formally, (assuming differentiable function), some tests for convexity:

= First-order convexity (graph of f must be above all the tangents)
Exercise: Show that

; . 1 ridge regression

L f(y) = flz)+ Vi) (y - 2)i A Aetive |

R4 et ol Lo A A i 25 objective is convex
| S | /

g

" Second derivative a.k.a. Hessian (if exists) must be positive semi-definite
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Some Basic Rules for Convex Functions

@ Some basic rules to check if f(x) is convex or not

o All linear and affine functions (e.g., ax 4+ b) are convex

e exp(ax) is convex for x € R, for any a € R

e log(x) is concave (not convex) for x > 0

e x° is convex for x > 0, for any a > 1 and a < 0, concave for 0 < a <1

e |x|? is convex for x € R, for any a > 1

o All norms in R” are convex

e Non-negative weighted sum of convex functions is also a convex function

o Affine transformation preserves convexity: if f(x) is convex then f(x) = f(ax + b) is also convex

e Some rules to check whether composition f(x) = h(g(x)) of two functions h and g is convex

f is convex if h is convex and nondecreasing, and g is convex,
f is convex if h is convex and nonincreasing, and g is concave,
f is concave if h is concave and nondecreasing, and ¢ is concave,

f is concave if h is concave and nonincreasing, and g is convex.
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Optimization Problems in ML

" The general form of an optimization problem in ML will usually be

Usually a sum of the _

training error + regularizer  Wopt = ar'g Milly,ec L(w) e
, possible to have

linear/ridge regression

where solution has some

constraints (e.g., non-neg,

sparsity, or even both)

» Here L(w) denotes the loss function to be optimized

" C is the constraint set that the solution must belong to, e.g.,
Do : : : , Linear and ridge regression
" Non-negativity constraint: All entries in wy,; must be non-negative .t e saw were

= Sparsity constraint: Wopt IS @ sparse vector with atmost K non-zeros unconstrained (Wope Was a
real-valued vector)

" [f no C is specified, it is an unconstrained optimization problem

» Constrained opt. probs can be converted into unconstrained opt. (will see later)

" For now, assume we have an unconstrained optimization problem
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Methods for Solving
Optimization Problems
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Method 1: Using First-Order Optimality

= \ery simple. Already used this approach for linear and ridge regression

Called "first order” since only gradient is A
used and gradient provides the first order 8 'j‘ /
info about the function being optimized -

The approach works only for very
simple problems where the objective

% = " & is convex and there are no constraints
Wopt Wopt, Wopty  Wopty on the values w can take

" Hirst order optimality: The gradient g must be equal to zero at the optima

g = VW[L(W): =0

" Sometimes, setting g = 0 and solving for w gives a closed form solution

" [f closed form solution is not available, the gradient vector g can still be used in

terative optimization algos, like gradient descent
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Method 2: Iterative Optimiz. via Gradient Descent

N Can | used this approach For max. problems we can . lterative Since'it requires | A\
., to solve maximization use gradient ascent several steps/iterations to find | x'va /
~ oroblems? wttD) = w(® 4 g g® the optimal solution ' V
Fact: Gradient gives the Will move in the direction or convex unclions, e - { nitialization

direction of steepest of the gradient GD will converge to needed for non-

change in function’s value the global minima convex functions

Gradient Descent

The learning rate very

® |nitialize w as W(O) imp. Should be set
carefully (fixed or

chosen adaptively).
= For iteration t = 0,1,2, ... (or until convergence) Will discuss some

= Calculate the gradient gt using the current iterates w(®) strategies later
= Set the learning rate 1y .\/\/illt;eet.the -
= Move in the opposite direction of gradient o

w(ttD) = w® _p g ®
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Gradient Descent: An lllustration

A Negative gradient here (- < 0). Learning rate is very important
L(w) Let's move in the positive direction

Very large learning rates

\

\
\
\

VERY VERY large rate (can
even jump into a bad region

May keep
oscillating

» Positive gradient here.

Let's move in the
i negative direction _
o—>b - ° o > Very small learning rates
— N ) %4 < 2 — ) - 0
0 w3 W@ w@ w3 wOw® w
Woohoo! © Global Stuck at a local iz ot be e to cross’
minima found!!! minima ® i towards the good side
YT . . May take too |

GD thanks you for the Good initialization is ‘Q’@l‘ o converge
good initialization © very important
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GD: An Example

" | et's apply GD for least squares linear regression
W, igge=arg min,, L,..,(W) = arg min, XN_.(y, — w'x,)?
ridge 8 w Lreg g w Zn=1Un n

= The gradient: g = — 201 2(y,, —wTx,)x Training examples
J g Zn—l (Yn n) n on which the

current model's
error is large
contribute more to

W(t+1) — W(t) 4+ Nt 7I¥=1 ) (yn — W(t)Txn) X, the update

Prediction error of current model
" Fach GD update will be of the form w® on the nt" training example

" Exercise: Assume N = 1, and show that GD update improves prediction on the

T T
training input (X, ¥,), i.e, y,, is closer to wl*D " x. than to w®) x,,

" This is sort of a proof that GD updates are “corrective” in nature (and it actually is true not

Just for linear regression but can also be shown for various other ML models)
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Next class

= Optimizing non-differentiable functions

= Making GD faster: Stochastic gradient descent
= Constrained optimization

= Co-ordinate descent

= Alternating optimization

" Practical issue in optimization for ML
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