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▪ Just use the GD algorithm with the gradient expressions we derived 

▪ Iterative updates for linear regression will be of the form

▪ Similar updates for ridge regression as well (with the gradient expression being 
slightly different; left as an exercise)

▪More on iterative optimization methods later

Gradient Descent for Linear/Ridge Regression
2

𝒘(𝑡+1) =  𝒘(𝑡) − 𝜂𝑡𝒈 𝑡

=  𝒘(𝑡) + 𝜂𝑡 ෍

𝑛=1

𝑁

𝑦𝑛 − 𝒘(𝒕)⊤
𝒙𝑛 𝒙𝑛

Unlike the closed form solution 

𝑿⊤𝑿 −1𝑿⊤𝒚 of least squares 

regression, here we have iterative 

updates but do not require the 

expensive matrix inversion of the 

𝐷 × 𝐷 matrix 𝑿⊤𝑿

Note the form of each term in the 

gradient expression update: Amount of 

current 𝑤’s error on the 𝑛𝑡ℎ training 

example multiplied by the input 𝑥𝑛 

Also, we usually work with 

average gradient so the gradient 

term is divided by 𝑁
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ℓ2 regularization and “Smoothness”
3

▪ The regularized objective we minimized is

▪Minimizing 𝐿𝑟𝑒𝑔 𝒘  w.r.t. 𝒘 gives a solution for 𝒘 that

▪ Keeps the training error small

▪ Has a small ℓ2 squared norm 𝒘⊤𝒘 = σ𝑑=1
𝐷 𝑤𝑑

2

▪ Small entries in 𝒘 are good since they lead to “smooth” models

𝐿𝑟𝑒𝑔 𝒘 = ෍
𝑛=1

𝑁

(𝑦𝑛 − 𝒘⊤𝒙𝑛)2 + 𝜆𝒘⊤𝒘

Good because, consequently, the 

individual entries of the weight 

vector 𝒘 are also prevented from 

becoming too large

Remember – in general, 

weights with large magnitude 

are bad since they can cause 

overfitting on training data and 

may not work well on test data

1.2 0.5 2.4 0.3 0.8 0.1 0.9 2.1

1.2 0.5 2.4 0.3 0.8 + 𝝐 0.1 0.9 2.1

𝒙𝑛 = 

𝒙𝑚 = 

𝑦𝑛 = 0.8 

𝑦𝑚 = 100 

Exact same feature vectors only differing 

in just one feature by a small amount

Very different outputs though (maybe one 

of these two training ex. is an outlier)

100003.2 1.8 1.3 2.1 2.5 3.1 0.1

A typical 𝒘 learned without ℓ2 reg. 

Just to fit the training data where one of the 

inputs was possibly an outlier, this weight 

became too big. Such a weight vector will 

possibly do poorly on normal test inputs

Not a “smooth” model 

since its test data 

predictions may change 

drastically even with 

small changes in some 

feature’s value
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Other Ways to Control Overfitting
4

▪ Use a regularizer 𝑅 𝒘 defined by other norms, e.g.,

▪ Use non-regularization based approaches
▪ Early-stopping (stopping training just when we have a decent val. set accuracy)

▪ Dropout (in each iteration, don’t update some of the weights)

▪ Injecting noise in the inputs 

𝒘 1 =  ෍
𝑑=1

𝐷

|𝑤𝑑|

𝒘 0 = #nnz(𝒘)

When should I used these 

regularizers instead of the 

ℓ2 regularizer?

Use them if  you have a very 

large number of features but 

many irrelevant features. These 

regularizers can help in 

automatic feature selection

Automatic feature 

selection? Wow, cool!!! 

But how exactly?

Using such regularizers 

gives a sparse weight vector 

𝒘 as solution (will see the 

reason in detail later)

sparse means many entries 

in 𝒘 will be zero or near 

zero. Thus those features 

will be considered irrelevant 

by the model and will not 

influence prediction

ℓ1 norm regularizer

ℓ0 norm regularizer (counts 

number of nonzeros in 𝒘

All of these are very popular ways to 

control overfitting in deep learning 

models. More on these later when 

we talk about deep learning

Note that optimizing loss functions 

with such regularizers is usually 

harder than ridge reg. but several 

advanced techniques exist (we will 

see some of those later)
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Linear Regression as Solving System of Linear Eqs
5

▪ The form of the lin. reg. model 𝒚 ≈ 𝑿𝒘 is akin to a system of linear equation

▪ Assuming 𝑁 training examples with 𝐷 features each, we have

▪ Usually we will either have 𝑁 > 𝐷 or 𝑁 < 𝐷
▪ Thus we have an underdetermined (𝑁 < 𝐷) or overdetermined (𝑁 > 𝐷) system

▪ Methods to solve over/underdetermined systems can be used for lin-reg as well

▪ Many of these methods don’t require expensive matrix inversion

𝑦1 = 𝑥11𝑤1 + 𝑥12𝑤2 + … + 𝑥1𝐷𝑤𝐷

𝑦2 = 𝑥21𝑤1 + 𝑥22𝑤2 + … + 𝑥2𝐷𝑤𝐷

𝑦𝑁 = 𝑥𝑁1𝑤1 + 𝑥𝑁2𝑤2 + … + 𝑥𝑁𝐷𝑤𝐷

First training example:

Second training example:

N-th training example:

Note: Here 𝑥𝑛𝑑 denotes 

the 𝑑𝑡ℎ feature of the 𝑛𝑡ℎ 

training example

𝑁 equations and 𝐷 unknowns 

here (𝑤1, 𝑤2, … , 𝑤𝐷)

𝒘 = (𝑿⊤𝑿)−1 𝑿⊤𝒚 𝑨𝒘 = 𝒃 where 𝑨 =  𝑿⊤𝑿, and 𝒃 =  𝑿⊤𝒚  
System of lin. Eqns with 𝐷 equations and 𝐷 unknowns

Solving lin-reg 

as system of lin eq.

Now solve this!
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The bias term
▪ Linear models usually also have a bias term 𝑏 in addition to the weights 

6

Can append a constant feature “1” for each 

input and again rewrite as 𝑦 =  ෥𝒘⊤෥𝒙 where now 

both ෥𝒙 = [1, 𝒙] and ෥𝒘 = [𝑏, 𝒘] are in ℝ𝐷+1

We will assume the same and omit the explicit 

bias for simplicity of notation

X X

1
1
1
1
1
.
.
.
.
1
1
1

𝑁 𝑁

𝐷 𝐷 + 1
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Evaluation Measures for Regression Models
7

▪ Plotting the prediction ො𝑦𝑛 vs truth 𝑦𝑛 for the validation/test set

▪Mean Squared Error (MSE) and Mean Absolute Error (MAE) on val./test set

▪ RMSE (Root Mean Squared Error) ≜ 𝑀𝑆𝐸

▪ Coefficient of determination or 𝑅2

           

𝑀𝑆𝐸 =
1

𝑁
෍

𝑛=1

𝑁

𝑦𝑛 − ො𝑦𝑛
2

𝑅2 = 1 −
σ𝑛=1

𝑁 𝑦𝑛 − ො𝑦𝑛
2

σ𝑛=1
𝑁 𝑦𝑛 − ത𝑦 2

ത𝑦 is empirical mean of true 

responses, i.e., 
1

𝑁
σ𝑛=1

𝑁 𝑦𝑛

A “base” model that always predicts the 

mean ത𝑦 will have 𝑅2 = 0 and the perfect 

model will have 𝑅2 = 1. Worse than base 

models can even have negative 𝑅2   

“relative” error w.r.t. a model 

that makes a constant 

prediction ത𝑦 for all inputs

Plots of true vs predicted outputs

and 𝑅2 for two regression models

Pic from MLAPP (Murphy)

𝑀𝐴𝐸 =
1

𝑁
෍

𝑛=1

𝑁

|𝑦𝑛 − ො𝑦𝑛|

Truth

Prediction
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Linear Models for Classification

8
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Linear Models for Classification
▪ A linear model 𝑦 =  𝒘⊤𝒙 can also be used in classification

▪ For binary classification, can treat 𝒘⊤𝒙𝑛 as the “score” of input 𝒙𝑛 and either

▪ Threshold the score to get a binary label

▪ Convert the score into a probability

▪ Note: In LR, if  we assume the label 𝑦𝑛 as -1/+1 (not 0/1) then we can write 

9

𝜇𝑛 =  𝑝 𝑦 = 1 𝒙𝑛, 𝒘 = 𝜎 𝒘⊤𝒙𝑛

0

0.5

1
𝜎(z)

=
1

1 + exp(−𝒘⊤𝒙𝑛)

=
exp(𝒘⊤𝒙𝑛)

1 + exp(𝒘⊤𝒙𝑛)

z

Popularly known as “logistic 

regression” (LR) model (misnomer: 

it is not a regression model but a 

classification model), a probabilistic 

model for binary classification

The “sigmoid” function

Squashes a real number 

to the range 0-1

𝑦𝑛 =  sign(𝒘⊤𝒙𝑛)

Large positive score 

means positive label, 

otherwise negative label

𝑝 𝑦𝑛 𝒘, 𝒙𝑛 =
1

1 + exp(−𝑦𝑛𝒘⊤𝒙𝑛)
= 𝜎(𝑦𝑛𝒘⊤𝒙𝑛)

Note that log
𝜇𝑛

1−𝜇𝑛
= 𝒘⊤𝒙𝑛 (the 

score) is also called the log-odds 

ratio, and often also logits
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Linear Models: The Decision Boundary

▪Decision boundary is where the score 
𝒘⊤𝒙𝑛 changes its sign

           
𝒘

𝒘⊤𝒙𝑛 < 𝟎

𝒘⊤𝒙𝑛 > 𝟎

𝒘⊤𝒙𝑛 = 0 for points 

at the decision boundary

▪Decision boundary is where both classes 
have equal probability for the input 𝒙𝑛 

▪ For logistic reg, at decision boundary

           

𝑝 𝑦𝑛 = 1 𝒘, 𝒙𝑛 = 𝑝(𝑦𝑛 = 0|𝒘, 𝒙𝑛)

exp(𝒘⊤𝒙𝑛)

1 + exp(𝒘⊤𝒙𝑛)
=

1

1 + exp(𝒘⊤𝒙𝑛)

exp 𝒘⊤𝒙𝑛 = 1

𝒘⊤𝒙𝑛 = 0

▪ Therefore, both views are equivalent
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Linear Models for (Multi-class) Classification

▪ If  there are 𝐾 > 2 classes, we use 𝐾 weight vectors 𝒘𝑖 𝑖=1
𝐾 to define the model

▪ The prediction rule is as follows

▪ Can think of 𝒘𝑖
⊤𝒙𝑛 as the score/similarity of the input w.r.t. the 𝑖𝑡ℎ class

▪ Can also use these scores to compute probability of belonging to each class 

           

𝑾 = [𝒘1, 𝒘2, … , 𝒘𝐾]

𝑦𝑛 =  argmax𝑖∈{1,2,…,𝐾} 𝒘𝑖
⊤𝒙𝑛

𝜇𝑛,𝑖 =  𝑝 𝑦𝑛 = 𝑖 𝑾, 𝒙𝑛 =
exp(𝒘𝑖

⊤𝒙𝑛)

σ𝑗=1
𝐾 exp(𝒘𝑗

⊤𝒙)

𝜇𝑛,𝑖

𝑖 = 1 𝑖 = 2 𝑖 = 3

෍
𝑖=1

𝐾

𝜇𝑛,𝑖 = 1

“softmax” classification

Multi-class extension 

of logistic regression

𝝁𝑛 = [𝜇𝑛,1, 𝜇𝑛,2, … , 𝜇𝑛,𝐾]

Vector of probabilities of 𝒙𝑛 

belonging to each of the 𝐾 classes Probabilities must sum to 1

Probability of 𝒙𝑛 

belonging to class 𝑖 

𝐷 × 𝐾 weight 

matrix

Note: We actually need only 𝐾 − 1 

weight vectors in softmax 

classification. Think why?
Class 𝑖 with largest 𝒘𝑖

⊤𝒙𝑛 

has the largest probability

Note: Just like logistic 

regression, the scores 

𝒘𝑖
⊤𝒙𝑛 are called logits 

(𝐾 logits in this case) 
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Linear Classification: Interpreting weight vectors
▪ Recall that multi-class classification prediction rule is

▪ Can think of 𝒘𝑖
⊤𝒙𝑛 as the score of the input for the 𝑖𝑡ℎ class (or similarity of 𝒙𝑛 with 𝒘𝑖)

▪ Once learned (we will see the methods later), these 𝐾 weight vectors (one for each class) 
can sometimes have nice interpretations, especially when the inputs are images

12

𝑦𝑛 =  argmax𝑖∈{1,2,…,𝐾} 𝒘𝑖
⊤𝒙𝑛

𝒘𝑐𝑎𝑟 𝒘𝑓𝑟𝑜𝑔 𝒘ℎ𝑜𝑟𝑠𝑒 𝒘𝑐𝑎𝑡

The learned weight 

vectors of each of the 4 

classes “unflattened” and 

visualized as images – 

they kind of look like a 

“average” of what the 

images from that class 

should look like

These images sort 

of look like class 

prototypes if  I 

were using LwP ☺ 

Yeah, “sort of”. ☺

No wonder why LwP (with 

Euclidean distances) acts 

like a linear model. ☺

That’s why the dot product of each of these weight vectors with 

an image from the correct class will be expected to be the largest
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Loss Functions for Classification
▪ Assume true label to be 𝑦𝑛 ∈ {0,1} and the score of a linear model to be 𝒘⊤𝒙𝑛 

▪ One possibility is to use squared loss just like we used in regression

▪ Will be easy to optimize (same solution as the regression case)

▪ Can also consider other loss functions used in regression

▪ Basically, pretend that the binary label is actually a continuous value and treat the problem as regression 
where the output can only be one of two possible values

▪ However, regression loss functions aren’t ideal since 𝑦𝑛 is discrete (binary/categorical)

▪ Using the score 𝒘⊤𝒙𝑛 or the probability 𝜇𝑛 = 𝜎(𝒘⊤𝒙𝑛) of belonging to the positive class, we 
have specialized loss function for binary classification

13

𝑙 𝑦𝑛, 𝒘⊤𝒙𝑛 = 𝑦𝑛 − 𝒘⊤𝒙𝑛
2
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Loss Functions for Classification: Cross-Entropy
▪ Cross-entropy (CE) is a popular loss function for binary classification. Used in logistic reg.

▪ Assuming true 𝑦𝑛 ∈ {0,1} and 𝜇𝑛 = 𝜎 𝒘⊤𝒙𝑛  as predicted prob of 𝑦𝑛 = 1, CE loss is 

▪ For multi-class classification, the CE loss is defined as

14

𝐿 𝒘 = − ෍
𝑛=1

𝑁

𝑦𝑛 log 𝜇𝑛 + 1 − 𝑦𝑛 log(1 − 𝜇𝑛) 

Very large loss if  𝑦𝑛 is 1and 𝜇𝑛 close 

to 0, or 𝑦𝑛 is 0and 𝜇𝑛 close to 1 
This is precisely what we want from a 

good loss function for binary classification

Note: Sometimes we divide the loss 

function (not just CE but others too like 

squared loss) by the number of training 

examples 𝑁(doesn’t make a difference 

to the solution; just a scaling factor. All 

relevant quantities, such as gradients 

will also get divided by 𝑁

𝐿 𝑾 = − ෍
𝑛=1

𝑁

෍
𝑖=1

𝐾

𝑦𝑛,𝑖 log 𝜇𝑛,𝑖  

𝑦𝑛,𝑖 = 1 if  true label of 𝒙𝑛 is class 𝑖 

and 0 otherwise. 𝜇𝑛,𝑖 is the predicted 

probability of 𝒙𝑛 belonging to class 𝑖 

CE loss is also convex in 𝒘 

(can prove easily using 

definition of convexity; will see 

later). Therefore unique solution 

is obtained when we minimize it 
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Cross-Entropy Loss: The Gradient
▪ The expression for the gradient of binary cross-entropy loss

▪ The expression for the gradient of multi-class cross-entropy loss

15

𝒈 = ∇𝒘 𝐿 𝒘 = − ෍
𝑛=1

𝑁

(𝑦𝑛 − 𝜇𝑛) 𝒙𝑛

Note the form of each term in the gradient expression: 

Amount of current 𝑤’s error in predicting the label of 

the 𝑛𝑡ℎ training example multiplied by the input 𝑥𝑛 

Using this, we can now do 

gradient descent to learn the 

optimal 𝒘 for logistic regression:

𝒘(𝑡+1) =  𝒘(𝑡) − 𝜂𝑡𝒈 𝑡

𝒈𝑖 = ∇𝒘𝑖
 𝐿 𝑾 = − ෍

𝑛=1

𝑁

(𝑦𝑛,𝑖 −  𝜇𝑛,𝑖) 𝒙𝑛

Need to calculate the 

gradient for each of 

the 𝐾 weight vectors

Note the 𝜇𝑛 is a 

function of 𝒘 

Using these gradients, we can now do gradient descent 

to learn the optimal 𝑾 = [𝒘1, 𝒘2, … , 𝒘𝐾]
For the softmax classification model

Note the form of each term in the gradient expression: 

Amount of current 𝑊’s error in predicting the label of 

the 𝑛𝑡ℎ training example multiplied by the input 𝑥𝑛 
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Linear Models for Classification
▪ A linear model 𝑦 =  𝒘⊤𝒙 can also be used in classification

▪ For binary classification, can treat 𝒘⊤𝒙𝑛 as the “score” of input 𝒙𝑛 and either

▪ Threshold the score to get a binary label

▪ Convert the score into a probability

▪ Note: In LR, if  we assume the label 𝑦𝑛 as -1/+1 (not 0/1) then we can write 

16

𝜇𝑛 =  𝑝 𝑦 = 1 𝒙𝑛, 𝒘 = 𝜎 𝒘⊤𝒙𝑛

0

0.5

1
𝜎(z)

=
1

1 + exp(−𝒘⊤𝒙𝑛)

=
exp(𝒘⊤𝒙𝑛)

1 + exp(𝒘⊤𝒙𝑛)

z

Popularly known as “logistic 

regression” (LR) model (misnomer: 

it is not a regression model but a 

classification model), a probabilistic 

model for binary classification

The “sigmoid” function

Squashes a real number 

to the range 0-1

𝑦𝑛 =  sign(𝒘⊤𝒙𝑛)

Large positive score 

means positive label, 

otherwise negative label

𝑝 𝑦𝑛 𝒘, 𝒙𝑛 =
1

1 + exp(−𝑦𝑛𝒘⊤𝒙𝑛)
= 𝜎(𝑦𝑛𝒘⊤𝒙𝑛)

Note that log
𝜇𝑛

1−𝜇𝑛
= 𝒘⊤𝒙𝑛 (the 

score) is also called the log-odds 

ratio, and often also logit
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Some Other Loss Functions for Binary Classification
17

▪ Assume true label as 𝑦𝑛 and prediction as ො𝑦𝑛 = sign[𝒘⊤𝒙𝑛]

▪ The zero-one loss is the most natural loss function for classification

▪ Since zero-one loss is hard to minimize, we use some surrogate loss function
▪ Popular examples: Cross-entropy (same as logistic loss), hinge loss , etc 

▪ Note: Ideally, surrogate loss (approximation of zero-one) must be an upper bound (must 
be larger than the 0-1 loss for all values of 𝑦𝑛𝒘⊤𝒙𝑛) since our goal is minimization

ℓ(𝑦𝑛, ො𝑦𝑛) = ቊ
1
0

if 𝑦𝑛 ≠ ො𝑦𝑛 
if 𝑦𝑛 = ො𝑦𝑛

(0,0)

(0,1)

𝑦𝑛𝒘⊤𝒙𝑛

Non-convex, non-differentiable, 

and NP-Hard to optimize (also 

no useful gradient info for the 

most part)

ℓ(𝑦𝑛, ො𝑦𝑛) = ቊ
1
0

if 𝑦𝑛𝒘⊤𝒙𝑛 < 0 
if 𝑦𝑛𝒘⊤𝒙𝑛 ≥ 0 
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Some Other Loss Func for Binary Classification
18

▪ For an ideal loss function, assuming 𝑦𝑛 ∈ (−1, +1)
▪ Large positive 𝑦𝑛𝒘⊤𝒙𝑛 ⇒ small/zero loss

▪ Large negative 𝑦𝑛𝒘⊤𝒙𝑛 ⇒ large/non-zero loss

▪ Small (large) loss if  predicted probability of the 

the true label is large (small) 

           

(0,0)

“Perceptron” Loss

(0,0)

(0,1)

(1,0)(0,0)

Log(istic) Loss Hinge Loss

Same as cross-entropy loss 

(logistic reg.) if  we assume labels 

to be -1/+1 instead of 0/1

Convex and Differentiable Convex and Non-differentiable

Convex and Non-differentiable

Also, not an upper 

bound on 0-1 loss

Also an upper 

bound on 0-1 loss

Also an upper 

bound on 0-1 loss

Very popular like cross-entropy loss. 

Used in SVM (Support Vector Machine) 

classification
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Evaluation Measures for Binary Classification
19

▪ Average classification error or average accuracy (on val./test data)

▪ The cross-entropy loss itself  (on val./test data)

▪ Precision, Recall, and F1 score (preferred if  labels are imbalanced)
▪ Precision (P): Of positive predictions by the model, what fraction is true positive

▪ Recall (R): Of all true positive examples, what fraction the model predicted as positive

▪ F1 score: Harmonic mean of P and R

▪ Confusion matrix is also a helpful measure

𝑒𝑟𝑟 𝒘 =
1

𝑁
෍

𝑛=1

𝑁

𝕀[𝑦𝑛 ≠ ො𝑦𝑛] 𝑎𝑐𝑐 𝒘 =
1

𝑁
෍

𝑛=1

𝑁

𝕀[𝑦𝑛 = ො𝑦𝑛]

Various other metrics such as 

error/accuracy, P, R, F1, etc. can 

be readily calculated from the 

confusion matrix
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Evaluation Measures for Multi-class Classification
20

▪ Average classification error or average accuracy (on val./test data)

▪ Top-k accuracy

▪ The cross-entropy loss itself  (on val./test data)

▪ Class-wise Precision, Recall, and F1 score (preferred if  labels are imbalanced)

▪ Confusion matrix

𝑒𝑟𝑟 𝒘 =
1

𝑁
෍

𝑛=1

𝑁

𝕀[𝑦𝑛 ≠ ො𝑦𝑛] 𝑎𝑐𝑐 𝒘 =
1

𝑁
෍

𝑛=1

𝑁

𝕀[𝑦𝑛 = ො𝑦𝑛]

Top − k Accuracy =
1

𝑁
෍

𝑛=1

𝑁

is_correct_top_k[𝑦𝑛, መ𝑆𝑛]

𝑦𝑛 is the true label, መ𝑆𝑛 is the set of top-k predicted classes for 𝒙𝑛 

(based on the predicted probabilities/scores of the various classes)

Various other metrics such as 

error/accuracy, P, R, F1, etc. can 

be readily calculated from the 

confusion matrix
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▪Optimization techniques for machine learning
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