


Gradient Descent for Linear/Ridge Regression

" Just use the GD algorithm with the gradient expressions we derived

Also, we usually work with

" [terative updates for linear regression will be of the form average gradient so the gradient
term is divided by N

Note the form of each term in the
W(t+ 1) — W(t) —_ T]tg (t) gradient expression update: Amount of
current w's error on the nt" training

Unlike the closed form solution o .
example multiplied by the input x,

(XTX)"1XTy of least squares N
regression, here we have iterative

T
updates but do not require the —_— C E _ t
expensive matrix inversion of the - W( ) + nt (yn W( ) xn) x')’l
D X D matrix X' X

n=1

= Similar updates for ridge regression as well (with the gradient expression being
slightly different; left as an exercise)

= More on iterative optimization methods later
CS771: Intro to ML



£, regularization and “Smoothness”

" [he regularized objective we minimized is

N
Lieg (w) = § 1(yn - WTxn)Z +Aw'w
n=

= Minimizing L.z (W) wirt. w gives a solution for w that

= Keeps the training error small
= Has a small £, squared norm ww =Y5_, w3

* Small entries in w are good since they lead to "smooth” models

=
3
I

12 05 24 03 : 08 : 01 09 21

12 05 24 03 08+€ 01 09 2.1

LTEEEEET -

Exact same feature vectors only differing
in just one feature by a small amount

v, = 0.8
Vi = 100

Very different outputs though (maybe one
of these two training ex. is an outlier)

Remember — in general,
weights with large magnitude
are bad since they can cause
overfitting on training data and
may not work well on test data

'('5/

14

Good because, consequently, the

individual entries of the weight
vector w are also prevented from

becoming too large

Not a "smooth” model
since its test data
predictions may change
drastically even with
small changes in some
feature's value

A typical w learned without €, reg.

3.2 1.8

13 2.1

10000 2.5 3.1 0.1

Just to fit the training data where one of the

inputs was possibly an outlier, this weight
became too big. Such a weight vector will
possibly do poorly on normal test inputs
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) ) Note that optimizing loss functions
with such regularizers is usually
Other Ways to Control Overfitting it suh requirizers s vl
advanced techniques exist (we will
see some of those later)

» Use a reqgularizer R(w) defined by other norms, e.g.,

Use them if you have a very

€1 norm regularizer large number of features but m
b many irrelevant features. These | u *.° P /
”W”1 — |Wd| regularizers can help in »
When should | used these d=1 automaticfeature selection e—,
regularizers instead of the
£, reqgularizer? ”W” 0= #nnz(w) Using such regularizers sparse means many entries

in w will be zero or near

Automatic feature _ gives a spgrse vvgght vector zero. Thus those features
selection? Wow, cool!!! £y norm regularizer (ICOUWS was sglunon ,(Wlll see the will be considered irrelevant
But how exactly? number of nonzeros in w reason in detail later) by the model and will not

influence prediction

» Use non-regularization based approaches
» Farly-stopping (stopping training just when we have a decent val. set accuracy)

* Dropout (in each iteration, don't update some of the weights) _ ' All of these are very popular ways to

s |niect : " the | ¢ control overfitting in deep learning
njecting Noise In tne INPUts models. More on these later when

we talk about deep learning
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Linear Regression as Solving System of Linear EQs

" The form of the lin. reg. model y = Xw is akin to a system of linear equation

= Assuming N training examples with D features each, we have

Note: Here x,,4 denotes

First training example: = X{1W{ +X1oWr, + ...+ X1pW
! 1171 1272 LD™D the dt"* feature of the nt"
Second training example: Vo = Xoq1Wq + XyoWo + ...+ XopWp training example
: N equations and D unknowns
here (wq, Wy, ..., Wp)
N-th training example: VYN = XyiWq1 + XpyoWo + ..+ XypWp

" Usually we will either have N > D or N < D
* Thus we have an underdetermined (N < D) or overdetermined (N > D) system
= Methods to solve over/underdetermined systems can be used for lin-reg as well
= Many of these methods don't require expensive matrix inversion | Now solve this!

Sohving lin-reg w=X"X)"1XTy " Aw =bwhere A= XX andb= X"y

as systemof lineq. =~ 7 T

77 L. Iuirv Lvuv 1vi

System of lin. Egns with D equations and D unknowns

L



The bias term

" [ inear models usually also have a bias term b in addition to the weights

Can append a constant feature 1" for each

input and again rewrite as y = Ww'X where now
both % = [1,x] and W = [b,w] are in RP*1

We will assume the same and omit the explicit
bias for simplicity of notation

Yy = de:r:d—l- b=w'xz+b
d=1

D D+1

[ T

vooX e X

[E
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Evaluation Measures for Regression Models .

Prediction .‘:}:;:'/
g 259 ,": ;
= Plotting the prediction Y, vs truth 1y, for the validation/test set B
© Truth
" Mean Squared Error (MSE) and Mean Absolute Error (MAE) on val./test set
MSE = z yn)z MAE = —Z |1V, — Vil Plots of true vs predicted outputs
N n=1 N n=1 and R? for two regression models
= RMSE (Root Mean Squared Error) £ vVMSE A
- L LAY T
= Coefficient of determination or R* e
,,—“'!'.:4‘.-
N - 9.)2 ‘relative” error wirt. @ model o
R 2 — 1 —_ N=1 (yn yn) that makes a constant degree 2. R2 on Test = 0.613
— 17)2 prediction y for all inputs et
=10 —¥) o o
A “base” model that always predicts the - .{f{, '
mean ¥y will have R? = 0 and the perfect y is empirical mean of true Eé ,-f.:."-: ’
model will have R? = 1. Worse than base responses, i.e., —Zn 1 Vn

models can even have negative R?
Pic from MLAPP (Murphy) CS771: Intro to ML



Linear Models for Classification
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Linear Models for Classification

= A linear model y = w'x can also be used in classification A\

= For binary classification, can treat w'x;,, as the “score” of input x,, and either 47»

* Threshold the score to get a binary label

Large positive score
means positive label,

Vn = Sign(WTxn) otherwise negative label

Note that log % =w'x, (the
—Hn

score) is also called the log-odds
ratio, and often also logits

= Convert the score into a probability

n = p(y = 1lx,,w) = o'(wan) The "sigmoid” function O'(Z)

Popularly known as “logistic
regression” (LR) model (misnomer:
it is not a regression model but a
classification model), a probabilistic
model for binary classification

— 1 Squashes a real number
1+ exp(—w'x,,) to the range O-1

_ exp(wxy)
1+exp(wTx,)

* Note: In LR, if we assume the label y,, as -1/+1 (not O/1) then we can write

ju— — T
POnlW, xn) = 70— D W) o(YnW' Xy)
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Linear Models: The Decision Boundary

= Decision boundary is where the score = Decision boundary is where both classes
w'x,, changes its sign have equal probability for the input x,

®» -or logistic reg, at decision boundary

p(yn = 1w, x,,) = p(y, = 0|lw, x,)

exp(w'x,,) 1

1+ exp(w'x,) 1+ exp(w'x,)

exp(w'x,) =1

w'x, = 0 for points -
at the decision boundary W X, = 0

" [herefore, both views are equivalent
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Linear Models for (Multi-class) Classification

= |f there are K > 2 classes, we use K weight vectors {w;}i—, to define the model

X W = [Wy, Wy, e, W] Nk
= The prediction rule is as follows ¥ ¥ ¥¥
-
Yn = argmaX;er1 2. g3} Wi Xn * [ ¥

= Can think of w/ x,, as the score/similarity of the input w.rt. the it? class
» Can also use these scores to compute probability of belonging to each class

" " re . A
T softmax” classification _ Note: Just like logistic
. exp (Wi xn) . _ Hn,i regression, the scores
,U,n’i = p (yn — llW, xn) — K T MUlt"qalSS extens?on w] x,, are called logits

j=1 exp (W] X ,Of logistic regression (K logits in this case)

Probability of x, i=1i=2 i=3

belonging to class i K
— o Note: We actually need only K — 1 A
Hn [.un,ly .un,Z' e 'un;K] E _ l.un,L =1 weight vectors in softmax 5o 4 /

Vector of probabilities of x;, Class i with largest wy x,, classification. Think why: e »

belonging to each of the K classes has the largest probability Probabilities must sum to 1 CST71- Intro to ML



Linear Classification: Interpreting weight vectors
» Recall that multi-class classification prediction rule is

Yn = argmaXje(q2 . K} WiTxn
» Can think of w; x,, as the score of the input for the it class (or similarity of x,, with w;)

" Once learned (we will see the methods later), these K weight vectors (one for each class)
can sometimes have nice interpretations, especially when the inputs are images

The learned weight - ‘ These images sort
vectors of each of the 4 of look like class

classes “unflattened” and .
prototypes if |

visualized as images — .
they kind of look like a were using LwP ©
Yeah, “sort of". ©

"average” of what the
J That's why the dot product of each of these weight vectors with No wonder why LwP (with

images from that class . |
J . an image from the correct class will be expected to be the largest || Fuclidean distances) acts
should look like like a linear model. ©

Wear Werog Whorse Weat
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Loss Functions for Classification

= Assume true label to be y,, € {0,1} and the score of a linear model to be w'x,,

* One possibility is to use squared loss just like we used in regression
l(yn' WTxn) = (Yn - WTxn)z

= Will be easy to optimize (same solution as the regression case)

= Can also consider other loss functions used in regression

= Basically, pretend that the binary label is actually a continuous value and treat the problem as regression
where the output can only be one of two possible values

" However, regression loss functions aren't ideal since vy, is discrete (binary/categorical)

= Using the score w'x,, or the probability u,, = a(w'x;,) of belonging to the positive class, we
have specialized loss function for binary classification
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Loss Functions for Classification: Cross-Entropy

= Cross-entropy (CE) is a popular loss function for binary classification. Used in logistic reg.

= Assuming true y,, € {0,1} and u,, = o(w'x,,) as predicted prob of y,, = 1, CE loss is

Cross-Entropy Less for Binary Classification

—— True Label = 0
| True Label = 1

N
L(w) = — [zn=1y" log py, + (1 — yp)log(l — uy) ] |

Very large loss if yy is Tand p, close This is precisely what we want from a
to O, or yp is Oand py, close to 1 good loss function for binary classification

=} LB ¥ [ B =) -
L . .

T T T T T T
0o 02 04 06 0.8 10
Predicted Probability

= For multi-class classification, the CE loss is defined as

Note: Sometimes we divide the loss

function (not just CE but others too like
N K squared loss) by the number of training A
L(W) = — Yni log Un i examples N (doesn't make a difference P o4 /
n=1 i=1 to the solution; just a scaling factor. All »
A CE loss is also convex in w relevant quantities, such as gradients
. will also get divided by N

(can prove easily using Vni = 11 true label of x,, is class i

e? later). Therefore unique solution probability of x,, belonging to class i
is obtained when we minimize it CS771: Intro to ML



Cross-Entropy Loss: The Gradient

» The expression for the gradient of binary cross-entropy loss
Note the u, is a

N function of w

g=Vy,Lw)=— (Vn — Un) Xn
n=1
Using this, we can now do
Note the form of each term in the gradient expression:

grad|ent descent to learn the Amount of current w's error in predicting the label of

optimal w for logistic regression: the nt" training example multiplied by the input x,,

" The expression for the gradient of multi-class cross-entropy loss

Need to calculate the N
gradient for each of

the K weight vectors ;= VWi L(W) = — (Yn,i — ‘Lln’i) Xn

n=1
Using these gradients, we can now do gradient descent

to learn the optimal W = [er Wo, ..., WK] Note the form of each term in the gradient expression:

Amount of current W's error in predicting the label of

~or the softmax classification model the nt™ training example multiplied by the input x;,
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Linear Models for Classification

= A linear model y = w'x can also be used in classification A\

= For binary classification, can treat w'x;,, as the “score” of input x,, and either 47»

* Threshold the score to get a binary label

Large positive score
means positive label,

Vn = Sign(WTxn) otherwise negative label

Note that log % =w'x, (the
—Hn

score) is also called the log-odds
ratio, and often also logit

= Convert the score into a probability

n = p(y = 1lx,,w) = o'(wan) The "sigmoid” function O'(Z)

Popularly known as “logistic
regression” (LR) model (misnomer:
it is not a regression model but a
classification model), a probabilistic
model for binary classification

— 1 Squashes a real number
1+ exp(—w'x,,) to the range O-1

_ exp(wxy)
1+exp(wTx,)

* Note: In LR, if we assume the label y,, as -1/+1 (not O/1) then we can write

ju— — T
POnlW, xn) = 70— D W) o(YnW' Xy)
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Some Other Loss Functions for Binary Classification

= Assume true label as y,, and prediction as §,, = sign[w'x,,]

" [he zero-one 10ss is the most natural loss function for classification

( ] A~
|]c - Non-convex, non-differentiable,
V — < 1 . yn yn and NP-Hard to optimize (also
Yn» Yn 5
\O i Yn = Vn no useful gradient info for the
most part)
( ,
(Y, Yn) 1 ify,w'x, <0 (0.1)
— X .
Yo In 0 if y.Ww'x, =0
(0,0) YW Xp

" Since zero-one 10ss is hard to minimize, we use some surrogate loss function
" Popular examples: Cross-entropy (same as logistic loss), hinge loss |, etc

= Note: |deally, surrogate loss (approximation of zero-one) must be an upper bound (must
be larger than the O-1 loss for all values of y,w'x,,) since our goal is miNiMizatign,. . 1o m




Some Other Loss Func for Binary Classification

“Perceptron” Loss

" For an ideal loss function, assuming y,, € (—1, +1)
= | arge positive y,w ! x,, = small/zero loss
= | arge negative y,w' x,, = large/non-zero oss
= Small (large) loss if predicted probability of the
the true label is large (small)

max{0, —yw ' =}

Also, not an upper
bound on O-1 loss

Convex and Non-differentiable

0,0
Same as cross-entropy loss (0,0) yw @
Log(istic) Loss (logistic reg.) if we assume labels Hinge Loss Very popular like cross-entropy loss.

to be -1/+1 instead of O/1 Used in SVM (Support Vector Machine)

classification

max{0,1 — yw 'z}

log(1 + exp(—yw ' x))

Also an upper
bound on O-1 loss

Also an upper
bound on O-1 loss

(0,1)

Convex and Differentiable Convex and Non-differentiable

(0,0) y'wTa: (0,0) (1,0 yw ' x
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Evaluation Measures for Binary Classification

" Average classification error or average accuracy (on val./test data)

1V 1 ZN
err(w) = N § 1]1[)’11 #* Ynl acc(w) = N 1H[yn = Yn]
n= n=

" The cross-entropy loss itself (on val./test data)

" Precision, Recall, and F1 score (preferred it labels are imbalanced)
= Precision (P): Of positive predictions by the model, what fraction is true positive

= Recall (R): Of all true positive examples, what fraction the model predicted as positive
" 1 score: Harmonic mean of P and R

" Confusion matrix is also a helpful measure

Positive Negative
Various other metrics such as
error/accuracy, P, R, F1, etc. can

be readily calculated from the
FN ™ confusion matrix

P FP

Negative  Positive
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Evaluation Measures for Multi-class Classification

" Average classification error or average accuracy (on val./test data)

1N 1 N
errw) = 5 ) W #9]  accw)= ) Iy =5,
n=1 N n=1
y,, is the true label, S,, is the set of top-k predicted classes for x,,
] TO p_k accuy raCy (based on the predicted probabilities/scores of the various classes)

1N A
Top — k Accuracy = Nz is_correct_top_k[y,,, S;]
n=1

" The cross-entropy loss itself (on val./test data)
" Class-wise Precision, Recall, and F1 score (preferred if labels are imbalanced)
= Confusion matrix

Apple Orange Mango

7 8 9 Various other metrics such as
error/accuracy, P, R, F1, etc. can
be readily calculated from the
confusion matrix

Mango Orange Apple
[y
N
w
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Coming up next

= Optimization techniques for machine learning
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