
Linear Regression (Contd), Linear
Classification

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

▪ Just use the GD algorithm with the gradient expressions we derived

▪ Iterative updates for linear regression will be of the form

▪ Similar updates for ridge regression as well (with the gradient expression being
slightly different; left as an exercise)

▪More on iterative optimization methods later

Gradient Descent for Linear/Ridge Regression
2

𝒘(𝑡+1) = 𝒘(𝑡) − 𝜂𝑡𝒈 𝑡

= 𝒘(𝑡) + 𝜂𝑡 ෍

𝑛=1

𝑁

𝑦𝑛 − 𝒘(𝒕)⊤
𝒙𝑛 𝒙𝑛

Unlike the closed form solution

𝑿⊤𝑿 −1𝑿⊤𝒚 of least squares

regression, here we have iterative

updates but do not require the

expensive matrix inversion of the

𝐷 × 𝐷 matrix 𝑿⊤𝑿

Note the form of each term in the

gradient expression update: Amount of

current 𝑤’s error on the 𝑛𝑡ℎ training

example multiplied by the input 𝑥𝑛

Also, we usually work with

average gradient so the gradient

term is divided by 𝑁

CS771: Intro to ML

ℓ2 regularization and “Smoothness”
3

▪ The regularized objective we minimized is

▪Minimizing 𝐿𝑟𝑒𝑔 𝒘 w.r.t. 𝒘 gives a solution for 𝒘 that

▪ Keeps the training error small

▪ Has a small ℓ2 squared norm 𝒘⊤𝒘 = σ𝑑=1
𝐷 𝑤𝑑

2

▪ Small entries in 𝒘 are good since they lead to “smooth” models

𝐿𝑟𝑒𝑔 𝒘 = ෍
𝑛=1

𝑁

(𝑦𝑛 − 𝒘⊤𝒙𝑛)2 + 𝜆𝒘⊤𝒘

Good because, consequently, the

individual entries of the weight

vector 𝒘 are also prevented from

becoming too large

Remember – in general,

weights with large magnitude

are bad since they can cause

overfitting on training data and

may not work well on test data

1.2 0.5 2.4 0.3 0.8 0.1 0.9 2.1

1.2 0.5 2.4 0.3 0.8 + 𝝐 0.1 0.9 2.1

𝒙𝑛 =

𝒙𝑚 =

𝑦𝑛 = 0.8

𝑦𝑚 = 100

Exact same feature vectors only differing

in just one feature by a small amount

Very different outputs though (maybe one

of these two training ex. is an outlier)

100003.2 1.8 1.3 2.1 2.5 3.1 0.1

A typical 𝒘 learned without ℓ2 reg.

Just to fit the training data where one of the

inputs was possibly an outlier, this weight

became too big. Such a weight vector will

possibly do poorly on normal test inputs

Not a “smooth” model

since its test data

predictions may change

drastically even with

small changes in some

feature’s value

CS771: Intro to ML

Other Ways to Control Overfitting
4

▪ Use a regularizer 𝑅 𝒘 defined by other norms, e.g.,

▪ Use non-regularization based approaches
▪ Early-stopping (stopping training just when we have a decent val. set accuracy)

▪ Dropout (in each iteration, don’t update some of the weights)

▪ Injecting noise in the inputs

𝒘 1 = ෍
𝑑=1

𝐷

|𝑤𝑑|

𝒘 0 = #nnz(𝒘)

When should I used these

regularizers instead of the

ℓ2 regularizer?

Use them if you have a very

large number of features but

many irrelevant features. These

regularizers can help in

automatic feature selection

Automatic feature

selection? Wow, cool!!!

But how exactly?

Using such regularizers

gives a sparse weight vector

𝒘 as solution (will see the

reason in detail later)

sparse means many entries

in 𝒘 will be zero or near

zero. Thus those features

will be considered irrelevant

by the model and will not

influence prediction

ℓ1 norm regularizer

ℓ0 norm regularizer (counts

number of nonzeros in 𝒘

All of these are very popular ways to

control overfitting in deep learning

models. More on these later when

we talk about deep learning

Note that optimizing loss functions

with such regularizers is usually

harder than ridge reg. but several

advanced techniques exist (we will

see some of those later)

CS771: Intro to ML

Linear Regression as Solving System of Linear Eqs
5

▪ The form of the lin. reg. model 𝒚 ≈ 𝑿𝒘 is akin to a system of linear equation

▪ Assuming 𝑁 training examples with 𝐷 features each, we have

▪ Usually we will either have 𝑁 > 𝐷 or 𝑁 < 𝐷
▪ Thus we have an underdetermined (𝑁 < 𝐷) or overdetermined (𝑁 > 𝐷) system

▪ Methods to solve over/underdetermined systems can be used for lin-reg as well

▪ Many of these methods don’t require expensive matrix inversion

𝑦1 = 𝑥11𝑤1 + 𝑥12𝑤2 + … + 𝑥1𝐷𝑤𝐷

𝑦2 = 𝑥21𝑤1 + 𝑥22𝑤2 + … + 𝑥2𝐷𝑤𝐷

𝑦𝑁 = 𝑥𝑁1𝑤1 + 𝑥𝑁2𝑤2 + … + 𝑥𝑁𝐷𝑤𝐷

First training example:

Second training example:

N-th training example:

Note: Here 𝑥𝑛𝑑 denotes

the 𝑑𝑡ℎ feature of the 𝑛𝑡ℎ

training example

𝑁 equations and 𝐷 unknowns

here (𝑤1, 𝑤2, … , 𝑤𝐷)

𝒘 = (𝑿⊤𝑿)−1 𝑿⊤𝒚 𝑨𝒘 = 𝒃 where 𝑨 = 𝑿⊤𝑿, and 𝒃 = 𝑿⊤𝒚
System of lin. Eqns with 𝐷 equations and 𝐷 unknowns

Solving lin-reg

as system of lin eq.

Now solve this!

CS771: Intro to ML

The bias term
▪ Linear models usually also have a bias term 𝑏 in addition to the weights

6

Can append a constant feature “1” for each

input and again rewrite as 𝑦 = ෥𝒘⊤෥𝒙 where now

both ෥𝒙 = [1, 𝒙] and ෥𝒘 = [𝑏, 𝒘] are in ℝ𝐷+1

We will assume the same and omit the explicit

bias for simplicity of notation

X X

1
1
1
1
1
.
.
.
.
1
1
1

𝑁 𝑁

𝐷 𝐷 + 1

CS771: Intro to ML

Evaluation Measures for Regression Models
7

▪ Plotting the prediction ො𝑦𝑛 vs truth 𝑦𝑛 for the validation/test set

▪Mean Squared Error (MSE) and Mean Absolute Error (MAE) on val./test set

▪ RMSE (Root Mean Squared Error) ≜ 𝑀𝑆𝐸

▪ Coefficient of determination or 𝑅2

𝑀𝑆𝐸 =
1

𝑁
෍

𝑛=1

𝑁

𝑦𝑛 − ො𝑦𝑛
2

𝑅2 = 1 −
σ𝑛=1

𝑁 𝑦𝑛 − ො𝑦𝑛
2

σ𝑛=1
𝑁 𝑦𝑛 − ത𝑦 2

ത𝑦 is empirical mean of true

responses, i.e.,
1

𝑁
σ𝑛=1

𝑁 𝑦𝑛

A “base” model that always predicts the

mean ത𝑦 will have 𝑅2 = 0 and the perfect

model will have 𝑅2 = 1. Worse than base

models can even have negative 𝑅2

“relative” error w.r.t. a model

that makes a constant

prediction ത𝑦 for all inputs

Plots of true vs predicted outputs

and 𝑅2 for two regression models

Pic from MLAPP (Murphy)

𝑀𝐴𝐸 =
1

𝑁
෍

𝑛=1

𝑁

|𝑦𝑛 − ො𝑦𝑛|

Truth

Prediction

CS771: Intro to ML

Linear Models for Classification

8

CS771: Intro to ML

Linear Models for Classification
▪ A linear model 𝑦 = 𝒘⊤𝒙 can also be used in classification

▪ For binary classification, can treat 𝒘⊤𝒙𝑛 as the “score” of input 𝒙𝑛 and either

▪ Threshold the score to get a binary label

▪ Convert the score into a probability

▪ Note: In LR, if we assume the label 𝑦𝑛 as -1/+1 (not 0/1) then we can write

9

𝜇𝑛 = 𝑝 𝑦 = 1 𝒙𝑛, 𝒘 = 𝜎 𝒘⊤𝒙𝑛

0

0.5

1
𝜎(z)

=
1

1 + exp(−𝒘⊤𝒙𝑛)

=
exp(𝒘⊤𝒙𝑛)

1 + exp(𝒘⊤𝒙𝑛)

z

Popularly known as “logistic

regression” (LR) model (misnomer:

it is not a regression model but a

classification model), a probabilistic

model for binary classification

The “sigmoid” function

Squashes a real number

to the range 0-1

𝑦𝑛 = sign(𝒘⊤𝒙𝑛)

Large positive score

means positive label,

otherwise negative label

𝑝 𝑦𝑛 𝒘, 𝒙𝑛 =
1

1 + exp(−𝑦𝑛𝒘⊤𝒙𝑛)
= 𝜎(𝑦𝑛𝒘⊤𝒙𝑛)

Note that log
𝜇𝑛

1−𝜇𝑛
= 𝒘⊤𝒙𝑛 (the

score) is also called the log-odds

ratio, and often also logits

CS771: Intro to ML

Linear Models: The Decision Boundary

▪Decision boundary is where the score
𝒘⊤𝒙𝑛 changes its sign

𝒘

𝒘⊤𝒙𝑛 < 𝟎

𝒘⊤𝒙𝑛 > 𝟎

𝒘⊤𝒙𝑛 = 0 for points

at the decision boundary

▪Decision boundary is where both classes
have equal probability for the input 𝒙𝑛

▪ For logistic reg, at decision boundary

𝑝 𝑦𝑛 = 1 𝒘, 𝒙𝑛 = 𝑝(𝑦𝑛 = 0|𝒘, 𝒙𝑛)

exp(𝒘⊤𝒙𝑛)

1 + exp(𝒘⊤𝒙𝑛)
=

1

1 + exp(𝒘⊤𝒙𝑛)

exp 𝒘⊤𝒙𝑛 = 1

𝒘⊤𝒙𝑛 = 0

▪ Therefore, both views are equivalent

CS771: Intro to ML

Linear Models for (Multi-class) Classification

▪ If there are 𝐾 > 2 classes, we use 𝐾 weight vectors 𝒘𝑖 𝑖=1
𝐾 to define the model

▪ The prediction rule is as follows

▪ Can think of 𝒘𝑖
⊤𝒙𝑛 as the score/similarity of the input w.r.t. the 𝑖𝑡ℎ class

▪ Can also use these scores to compute probability of belonging to each class

𝑾 = [𝒘1, 𝒘2, … , 𝒘𝐾]

𝑦𝑛 = argmax𝑖∈{1,2,…,𝐾} 𝒘𝑖
⊤𝒙𝑛

𝜇𝑛,𝑖 = 𝑝 𝑦𝑛 = 𝑖 𝑾, 𝒙𝑛 =
exp(𝒘𝑖

⊤𝒙𝑛)

σ𝑗=1
𝐾 exp(𝒘𝑗

⊤𝒙)

𝜇𝑛,𝑖

𝑖 = 1 𝑖 = 2 𝑖 = 3

෍
𝑖=1

𝐾

𝜇𝑛,𝑖 = 1

“softmax” classification

Multi-class extension

of logistic regression

𝝁𝑛 = [𝜇𝑛,1, 𝜇𝑛,2, … , 𝜇𝑛,𝐾]

Vector of probabilities of 𝒙𝑛

belonging to each of the 𝐾 classes Probabilities must sum to 1

Probability of 𝒙𝑛

belonging to class 𝑖

𝐷 × 𝐾 weight

matrix

Note: We actually need only 𝐾 − 1

weight vectors in softmax

classification. Think why?
Class 𝑖 with largest 𝒘𝑖

⊤𝒙𝑛

has the largest probability

Note: Just like logistic

regression, the scores

𝒘𝑖
⊤𝒙𝑛 are called logits

(𝐾 logits in this case)

CS771: Intro to ML

Linear Classification: Interpreting weight vectors
▪ Recall that multi-class classification prediction rule is

▪ Can think of 𝒘𝑖
⊤𝒙𝑛 as the score of the input for the 𝑖𝑡ℎ class (or similarity of 𝒙𝑛 with 𝒘𝑖)

▪ Once learned (we will see the methods later), these 𝐾 weight vectors (one for each class)
can sometimes have nice interpretations, especially when the inputs are images

12

𝑦𝑛 = argmax𝑖∈{1,2,…,𝐾} 𝒘𝑖
⊤𝒙𝑛

𝒘𝑐𝑎𝑟 𝒘𝑓𝑟𝑜𝑔 𝒘ℎ𝑜𝑟𝑠𝑒 𝒘𝑐𝑎𝑡

The learned weight

vectors of each of the 4

classes “unflattened” and

visualized as images –

they kind of look like a

“average” of what the

images from that class

should look like

These images sort

of look like class

prototypes if I

were using LwP ☺

Yeah, “sort of”. ☺

No wonder why LwP (with

Euclidean distances) acts

like a linear model. ☺

That’s why the dot product of each of these weight vectors with

an image from the correct class will be expected to be the largest

CS771: Intro to ML

Loss Functions for Classification
▪ Assume true label to be 𝑦𝑛 ∈ {0,1} and the score of a linear model to be 𝒘⊤𝒙𝑛

▪ One possibility is to use squared loss just like we used in regression

▪ Will be easy to optimize (same solution as the regression case)

▪ Can also consider other loss functions used in regression

▪ Basically, pretend that the binary label is actually a continuous value and treat the problem as regression
where the output can only be one of two possible values

▪ However, regression loss functions aren’t ideal since 𝑦𝑛 is discrete (binary/categorical)

▪ Using the score 𝒘⊤𝒙𝑛 or the probability 𝜇𝑛 = 𝜎(𝒘⊤𝒙𝑛) of belonging to the positive class, we
have specialized loss function for binary classification

13

𝑙 𝑦𝑛, 𝒘⊤𝒙𝑛 = 𝑦𝑛 − 𝒘⊤𝒙𝑛
2

CS771: Intro to ML

Loss Functions for Classification: Cross-Entropy
▪ Cross-entropy (CE) is a popular loss function for binary classification. Used in logistic reg.

▪ Assuming true 𝑦𝑛 ∈ {0,1} and 𝜇𝑛 = 𝜎 𝒘⊤𝒙𝑛 as predicted prob of 𝑦𝑛 = 1, CE loss is

▪ For multi-class classification, the CE loss is defined as

14

𝐿 𝒘 = − ෍
𝑛=1

𝑁

𝑦𝑛 log 𝜇𝑛 + 1 − 𝑦𝑛 log(1 − 𝜇𝑛)

Very large loss if 𝑦𝑛 is 1and 𝜇𝑛 close

to 0, or 𝑦𝑛 is 0and 𝜇𝑛 close to 1
This is precisely what we want from a

good loss function for binary classification

Note: Sometimes we divide the loss

function (not just CE but others too like

squared loss) by the number of training

examples 𝑁(doesn’t make a difference

to the solution; just a scaling factor. All

relevant quantities, such as gradients

will also get divided by 𝑁

𝐿 𝑾 = − ෍
𝑛=1

𝑁

෍
𝑖=1

𝐾

𝑦𝑛,𝑖 log 𝜇𝑛,𝑖

𝑦𝑛,𝑖 = 1 if true label of 𝒙𝑛 is class 𝑖

and 0 otherwise. 𝜇𝑛,𝑖 is the predicted

probability of 𝒙𝑛 belonging to class 𝑖

CE loss is also convex in 𝒘

(can prove easily using

definition of convexity; will see

later). Therefore unique solution

is obtained when we minimize it

CS771: Intro to ML

Cross-Entropy Loss: The Gradient
▪ The expression for the gradient of binary cross-entropy loss

▪ The expression for the gradient of multi-class cross-entropy loss

15

𝒈 = ∇𝒘 𝐿 𝒘 = − ෍
𝑛=1

𝑁

(𝑦𝑛 − 𝜇𝑛) 𝒙𝑛

Note the form of each term in the gradient expression:

Amount of current 𝑤’s error in predicting the label of

the 𝑛𝑡ℎ training example multiplied by the input 𝑥𝑛

Using this, we can now do

gradient descent to learn the

optimal 𝒘 for logistic regression:

𝒘(𝑡+1) = 𝒘(𝑡) − 𝜂𝑡𝒈 𝑡

𝒈𝑖 = ∇𝒘𝑖
 𝐿 𝑾 = − ෍

𝑛=1

𝑁

(𝑦𝑛,𝑖 − 𝜇𝑛,𝑖) 𝒙𝑛

Need to calculate the

gradient for each of

the 𝐾 weight vectors

Note the 𝜇𝑛 is a

function of 𝒘

Using these gradients, we can now do gradient descent

to learn the optimal 𝑾 = [𝒘1, 𝒘2, … , 𝒘𝐾]
For the softmax classification model

Note the form of each term in the gradient expression:

Amount of current 𝑊’s error in predicting the label of

the 𝑛𝑡ℎ training example multiplied by the input 𝑥𝑛

CS771: Intro to ML

Linear Models for Classification
▪ A linear model 𝑦 = 𝒘⊤𝒙 can also be used in classification

▪ For binary classification, can treat 𝒘⊤𝒙𝑛 as the “score” of input 𝒙𝑛 and either

▪ Threshold the score to get a binary label

▪ Convert the score into a probability

▪ Note: In LR, if we assume the label 𝑦𝑛 as -1/+1 (not 0/1) then we can write

16

𝜇𝑛 = 𝑝 𝑦 = 1 𝒙𝑛, 𝒘 = 𝜎 𝒘⊤𝒙𝑛

0

0.5

1
𝜎(z)

=
1

1 + exp(−𝒘⊤𝒙𝑛)

=
exp(𝒘⊤𝒙𝑛)

1 + exp(𝒘⊤𝒙𝑛)

z

Popularly known as “logistic

regression” (LR) model (misnomer:

it is not a regression model but a

classification model), a probabilistic

model for binary classification

The “sigmoid” function

Squashes a real number

to the range 0-1

𝑦𝑛 = sign(𝒘⊤𝒙𝑛)

Large positive score

means positive label,

otherwise negative label

𝑝 𝑦𝑛 𝒘, 𝒙𝑛 =
1

1 + exp(−𝑦𝑛𝒘⊤𝒙𝑛)
= 𝜎(𝑦𝑛𝒘⊤𝒙𝑛)

Note that log
𝜇𝑛

1−𝜇𝑛
= 𝒘⊤𝒙𝑛 (the

score) is also called the log-odds

ratio, and often also logit

CS771: Intro to ML

Some Other Loss Functions for Binary Classification
17

▪ Assume true label as 𝑦𝑛 and prediction as ො𝑦𝑛 = sign[𝒘⊤𝒙𝑛]

▪ The zero-one loss is the most natural loss function for classification

▪ Since zero-one loss is hard to minimize, we use some surrogate loss function
▪ Popular examples: Cross-entropy (same as logistic loss), hinge loss , etc

▪ Note: Ideally, surrogate loss (approximation of zero-one) must be an upper bound (must
be larger than the 0-1 loss for all values of 𝑦𝑛𝒘⊤𝒙𝑛) since our goal is minimization

ℓ(𝑦𝑛, ො𝑦𝑛) = ቊ
1
0

if 𝑦𝑛 ≠ ො𝑦𝑛
if 𝑦𝑛 = ො𝑦𝑛

(0,0)

(0,1)

𝑦𝑛𝒘⊤𝒙𝑛

Non-convex, non-differentiable,

and NP-Hard to optimize (also

no useful gradient info for the

most part)

ℓ(𝑦𝑛, ො𝑦𝑛) = ቊ
1
0

if 𝑦𝑛𝒘⊤𝒙𝑛 < 0
if 𝑦𝑛𝒘⊤𝒙𝑛 ≥ 0

CS771: Intro to ML

Some Other Loss Func for Binary Classification
18

▪ For an ideal loss function, assuming 𝑦𝑛 ∈ (−1, +1)
▪ Large positive 𝑦𝑛𝒘⊤𝒙𝑛 ⇒ small/zero loss

▪ Large negative 𝑦𝑛𝒘⊤𝒙𝑛 ⇒ large/non-zero loss

▪ Small (large) loss if predicted probability of the

the true label is large (small)

(0,0)

“Perceptron” Loss

(0,0)

(0,1)

(1,0)(0,0)

Log(istic) Loss Hinge Loss

Same as cross-entropy loss

(logistic reg.) if we assume labels

to be -1/+1 instead of 0/1

Convex and Differentiable Convex and Non-differentiable

Convex and Non-differentiable

Also, not an upper

bound on 0-1 loss

Also an upper

bound on 0-1 loss

Also an upper

bound on 0-1 loss

Very popular like cross-entropy loss.

Used in SVM (Support Vector Machine)

classification

CS771: Intro to ML

Evaluation Measures for Binary Classification
19

▪ Average classification error or average accuracy (on val./test data)

▪ The cross-entropy loss itself (on val./test data)

▪ Precision, Recall, and F1 score (preferred if labels are imbalanced)
▪ Precision (P): Of positive predictions by the model, what fraction is true positive

▪ Recall (R): Of all true positive examples, what fraction the model predicted as positive

▪ F1 score: Harmonic mean of P and R

▪ Confusion matrix is also a helpful measure

𝑒𝑟𝑟 𝒘 =
1

𝑁
෍

𝑛=1

𝑁

𝕀[𝑦𝑛 ≠ ො𝑦𝑛] 𝑎𝑐𝑐 𝒘 =
1

𝑁
෍

𝑛=1

𝑁

𝕀[𝑦𝑛 = ො𝑦𝑛]

Various other metrics such as

error/accuracy, P, R, F1, etc. can

be readily calculated from the

confusion matrix

CS771: Intro to ML

Evaluation Measures for Multi-class Classification
20

▪ Average classification error or average accuracy (on val./test data)

▪ Top-k accuracy

▪ The cross-entropy loss itself (on val./test data)

▪ Class-wise Precision, Recall, and F1 score (preferred if labels are imbalanced)

▪ Confusion matrix

𝑒𝑟𝑟 𝒘 =
1

𝑁
෍

𝑛=1

𝑁

𝕀[𝑦𝑛 ≠ ො𝑦𝑛] 𝑎𝑐𝑐 𝒘 =
1

𝑁
෍

𝑛=1

𝑁

𝕀[𝑦𝑛 = ො𝑦𝑛]

Top − k Accuracy =
1

𝑁
෍

𝑛=1

𝑁

is_correct_top_k[𝑦𝑛, መ𝑆𝑛]

𝑦𝑛 is the true label, መ𝑆𝑛 is the set of top-k predicted classes for 𝒙𝑛

(based on the predicted probabilities/scores of the various classes)

Various other metrics such as

error/accuracy, P, R, F1, etc. can

be readily calculated from the

confusion matrix

CS771: Intro to ML

Coming up next
21

▪Optimization techniques for machine learning

	Slide 1: Linear Regression (Contd), Linear Classification
	Slide 2: Gradient Descent for Linear/Ridge Regression
	Slide 3: ℓ sub 2 regularization and “Smoothness”
	Slide 4: Other Ways to Control Overfitting
	Slide 5: Linear Regression as Solving System of Linear Eqs
	Slide 6: The bias term
	Slide 7: Evaluation Measures for Regression Models
	Slide 8: Linear Models for Classification
	Slide 9: Linear Models for Classification
	Slide 10: Linear Models: The Decision Boundary
	Slide 11: Linear Models for (Multi-class) Classification
	Slide 12: Linear Classification: Interpreting weight vectors
	Slide 13: Loss Functions for Classification
	Slide 14: Loss Functions for Classification: Cross-Entropy
	Slide 15: Cross-Entropy Loss: The Gradient
	Slide 16: Linear Models for Classification
	Slide 17: Some Other Loss Functions for Binary Classification
	Slide 18: Some Other Loss Func for Binary Classification
	Slide 19: Evaluation Measures for Binary Classification
	Slide 20: Evaluation Measures for Multi-class Classification
	Slide 21: Coming up next

