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CS771: Intro to ML

Announcements

▪Quiz 1 postponed by a week (now on Aug 23)

▪ Venue TBD, timing: 7pm, duration: 45 minutes

▪ Syllabus will be everything up to Aug 21 class

▪Homework 1 released by end of this week
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CS771: Intro to ML

Wrapping Up Decision Trees..
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Avoiding Overfitting in DTs

▪ Desired: a DT that is not too big in size, yet fits the training data reasonably 

▪ Note: An example of a very simple DT is “decision-stump” 

▪ A decision-stump only tests the value of a single feature (or a simple rule)

▪ Not very powerful in itself  but often used in a large ensemble of decision stumps 

▪ Some ways to keep a DT simple enough:

▪ Control its complexity while building the tree (stopping early) 

▪ Prune after building the tree (post-pruning) 

▪ Criteria for judging which nodes could potentially be pruned (from already built complex DT) 

▪ Use a validation set (separate from the training set) 

▪ Prune each possible node that doesn’t hurt the accuracy on the validation set 

▪ Greedily remove the node that improves the validation accuracy the most 

▪ Stop when the validation set accuracy starts worsening 
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A Decision Stump
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Ensemble of Trees

▪ Ensemble is a collection of models. Popular in ML

▪ Each model makes a prediction. Take their majority as the final prediction

▪ Ensemble of trees is a collection of simple DTs
▪ Often preferred as compared to a single massive, complicated tree

▪ A popular example: Random Forest (RF)

▪ XGBoost is another popular ensemble of trees
▪ Based on the idea of “boosting” (will study boosting later) simple trees

▪ Sequentially trains a set of trees with each correcting errors of previous ones 
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An RF with 3 simple trees. The majority 

prediction will be the final prediction

Each tree is trained on a 

subset of the training 

inputs/features

All trees can be 

trained in parallel
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Linear Models and Learning 
via Optimization
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Linear Models
▪ Suppose we want to learn to map inputs 𝒙 ∈ ℝ𝐷 to real-valued outputs 𝑦 ∈ ℝ

▪ Linear model: Assume output to be a linear weighted combination of the 𝐷 input features

▪ This simple model can be used for Linear Regression

▪ This simple model can also be used as a “building block” for more complex models, e.g., 

▪ Classification (binary/multiclass/multi-output/multi-label) and various other ML/deep learning models

▪ Unsupervised learning problems (e.g., dimensionality reduction models)

This defines a linear model with 𝐷 

parameters given by a “weight 

vector” 𝒘 = [𝑤1, 𝑤2, … , 𝑤𝐷] 

Each of these weights have a simple 

interpretation: 𝑤𝑑 is the “weight” or contribution 

of the 𝑑𝑡ℎ feature in making this prediction 

The “optimal” weights are unknown and have 

to be learned by solving an optimization 

problem, using some training data

7



CS771: Intro to ML

Linear Regression

▪ Given: Training data with 𝑁 input-output pairs {(𝒙n, 𝑦n)}𝑛=1
𝑁 , 𝒙𝒏 ∈ ℝ𝐷, 𝑦𝑛 ∈ ℝ

▪ Goal: Learn a model to predict the output for new test inputs

▪ Assume the function that approximates the I/O relationship to be a linear model

▪ Let’s write the total error or “loss” of this model over the training data as
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𝑦𝑛 ≈ 𝑓 𝒙𝑛 =  𝒘⊤𝒙𝑛 (𝑛 = 1,2, … , 𝑁)

𝐿 𝒘 =  σ𝑛=1
𝑁 ℓ(𝑦𝑛, 𝒘⊤𝒙𝑛)

ℓ(𝑦𝑛, 𝒘⊤𝒙𝑛) measures the

prediction error or “loss” or 

“deviation” of the model on a 

single training input (𝒙n, 𝑦n)

Goal of learning is to find the 

𝒘 that minimizes this loss + 

does well on test data Unlike models like KNN and DT, here we 

have an explicit problem-specific objective 

(loss function) that we wish to optimize for

Can also write all of them 

compactly using matrix-vector 

notation as 𝒚 ≈ 𝑿𝒘 
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▪ Linear regression is like fitting a line or (hyper)plane to a set of points

▪ The line/plane must also predict outputs of the unseen (test) inputs well

Linear Regression: Pictorially
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What if  a line/plane doesn’t 

model the input-output 

relationship very well, e.g., if  

their relationship is better 

modeled by a nonlinear 

curve or curved surface?

No. We can even fit a 

curve using a linear 

model after suitably 

transforming the inputs

𝑦 ≈ 𝒘⊤𝜙(𝒙)

Do linear models 

become useless 

in such cases?

The transformation 𝜙 .  can be predefined or learned 

(e.g., using kernel methods or a deep neural network 

based feature extractor). More on this later

Original (single) feature

Nonlinear curve needed

Two features

Can fit a plane (linear)

𝑧1

𝑧2
= 𝜙(𝑥)
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Loss Functions for Regression

▪Many possible loss functions for regression problems
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𝑦𝑛 −  𝑓(𝒙𝑛)

(𝑦𝑛 − 𝑓(𝒙𝑛))2Loss |𝑦𝑛 − 𝑓 𝒙𝑛 |Loss

Loss
|𝑦𝑛 − 𝑓 𝒙𝑛 | − 𝜖

Loss

Squared loss Absolute loss

Huber loss

𝜖-insensitive loss

(a.k.a. Vapnik loss)
Squared loss for small 

errors (say up to 𝛿); 

absolute loss for 

larger errors. Good for 

data with outliers

Choice of loss function usually 

depends on the nature of the 

data. Also, some loss functions 

result in easier optimization 

problem than others

𝜖−𝜖
𝛿−𝛿

Zero loss for small errors 

(say up to 𝜖); absolute 

loss for larger errors

Grows more slowly than 

squared loss. Thus better 

suited when data has some 

outliers (inputs on which 

model makes large errors)

Very commonly used 

for regression. Leads 

to an easy-to-solve 

optimization problem

Note: Can also use 

squared loss instead 

of absolute loss
𝑦𝑛 −  𝑓(𝒙𝑛)

𝑦𝑛 −  𝑓(𝒙𝑛)

𝑦𝑛 −  𝑓(𝒙𝑛)
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Minimizing Loss Func using First-Order Optimality
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▪ Use basic calculus to find the minima

▪ First order optimality: The gradient 𝒈 must be equal to zero at the optima

▪ Sometimes, setting 𝒈 = 𝟎 and solving for 𝒘 gives a closed form solution 

▪ If  closed form solution is not available, the gradient vector 𝒈 can still be used in 
iterative optimization algos, like gradient descent (GD)
▪ Note: Even if  closed-form solution is possible, GD can sometimes be more efficient

𝒈 = ∇𝒘 𝐿(𝒘)  = 0 

The approach works only for very 

simple problems where the objective 

is convex and there are no constraints 

on the values 𝒘 can take

Called “first order” since only gradient is 

used and gradient provides the first order 

info about the function being optimized
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Minimizing Loss Func. using Iterative Optimization
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▪ Initialize 𝒘 as 𝒘(0)

▪ For iteration 𝑡 = 0,1,2, … (or until convergence)

▪ Calculate the gradient 𝒈(𝑡) using the current iterates 𝒘(𝑡)

▪ Set the learning rate 𝜂𝑡 

▪ Move in the opposite direction of gradient

Gradient Descent

𝒘(𝑡+1) =  𝒘(𝑡) − 𝜂𝑡𝒈(𝑡)

Can I used this approach 

to solve maximization 

problems?

Iterative since it requires 

several steps/iterations to find 

the optimal solution

For convex functions, 

GD will converge to 

the global minima

Good initialization 

needed for non-

convex functions

For max. problems we can 

use gradient ascent

𝒘(𝑡+1) =  𝒘(𝑡) + 𝜂𝑡𝒈(𝑡)

The learning rate very 

imp. Should be set 

carefully (fixed or 

chosen adaptively). 

Will discuss some 

strategies later

Will move in the direction 

of the gradient

Sometimes may be 

tricky to to assess 

convergence. Will see 

some methods later

Fact: Gradient gives the 

direction of steepest 

change in function’s value
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Linear Regression with Squared Loss

▪ In this case, the loss func will be

▪ Let us find the 𝒘 that optimizes (minimizes) the above squared loss

▪ Let’s use first order optimality

▪ The LS problem can be solved easily and has a closed form solution
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𝐿 𝒘 = σ𝑛=1
𝑁 (𝑦𝑛 − 𝒘⊤𝒙𝑛)2

𝒘𝐿𝑆= arg min𝒘 𝐿 𝒘 = arg min𝒘 σ𝑛=1
𝑁 (𝑦𝑛 − 𝒘⊤𝒙𝑛)2

𝒘𝐿𝑆= (σ𝑛=1
𝑁 𝒙𝑛 𝒙𝑛

⊤)
 −1

(σ𝑛=1
𝑁 𝑦𝑛𝒙𝑛)

In matrix-vector notation, can write it compactly 

as 𝒚 − 𝑿𝒘 2
2 = (𝒚 − 𝑿𝒘)⊤(𝒚 − 𝑿𝒘)

= (𝑿⊤𝑿)−1 𝑿⊤𝒚

The “least squares” (LS) problem 

Gauss-Legendre, 18th century)

Closed form 

solutions to ML 

problems are rare.

𝐷 × 𝐷 matrix inversion – can be expensive. 

Ways to handle this. Will see later
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Proof: A bit of calculus/optim. (more on this later)

▪We wanted to find the minima of 𝐿 𝒘 = σ𝑛=1
𝑁 (𝑦𝑛 − 𝒘⊤𝒙𝑛)2

▪ Let us apply basic rule of calculus: Take first derivative of 𝐿 𝒘  and set to zero

▪ Using the fact 
𝜕

𝜕𝒘
 𝒘⊤𝒙𝑛 = 𝒙𝑛, we get σ𝑛=1

𝑁 2 𝑦𝑛 − 𝒘⊤𝒙𝑛 𝒙𝑛 = 0

▪ To separate 𝒘 to get a solution, we write the above as 
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𝜕𝐿 𝒘

𝜕𝒘
=

𝜕

𝜕𝒘
 σ𝑛=1

𝑁 (𝑦𝑛 − 𝒘⊤𝒙𝑛)2 = σ𝑛=1
𝑁 2 𝑦𝑛 − 𝒘⊤𝒙𝑛

𝜕

𝜕𝒘
𝑦𝑛 − 𝒘⊤𝒙𝑛 = 0



𝑛=1

𝑁

2𝒙𝑛 𝑦𝑛 − 𝒙𝑛
⊤𝒘 = 0 

𝑛=1

𝑁

𝑦𝑛𝒙𝑛 − 𝒙𝑛𝒙𝑛
⊤𝒘 = 0

𝒘𝐿𝑆= (σ𝑛=1
𝑁 𝒙𝑛 𝒙𝑛

⊤)
 −1

(σ𝑛=1
𝑁 𝑦𝑛𝒙𝑛)

Chain rule of calculus

Partial derivative of dot product w.r.t each element of 𝒘 Result of this derivative is 𝒙𝑛 - same size as 𝒘

= (𝑿⊤𝑿)−1 𝑿⊤𝒚
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▪We minimized the objective 𝐿 𝒘 = σ𝑛=1
𝑁 (𝑦𝑛 − 𝒘⊤𝒙𝑛)2 w.r.t. 𝒘 and got

▪ Problem: The matrix 𝑿⊤𝑿 may not be invertible

▪ This may lead to non-unique solutions for 𝒘𝑜𝑝𝑡

▪ Problem: Overfitting since we only minimized loss defined on training data
▪ Weights 𝒘 = [𝑤1, 𝑤2, … , 𝑤𝐷] may become arbitrarily large to fit training data perfectly

▪ Such weights may perform poorly on the test data however

▪One Solution: Minimize a regularized objective 𝐿 𝒘 + 𝜆 𝑅 𝒘
▪ The reg. will prevent the elements of 𝒘 from becoming too large

▪ Reason: Now we are minimizing training error + magnitude of vector 𝒘

Problem(s) with the Solution!
15

𝒘𝐿𝑆= (σ𝑛=1
𝑁 𝒙𝑛 𝒙𝑛

⊤)
 −1

(σ𝑛=1
𝑁 𝑦𝑛𝒙𝑛) = (𝑿⊤𝑿)−1 𝑿⊤𝒚

𝑅 𝒘  is called the Regularizer and 

measures the “magnitude” of 𝒘 

𝜆 ≥ 0 is the reg. hyperparam. 

Controls how much we wish 

to regularize (needs to be 

tuned via cross-validation)
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▪ Recall that the regularized objective is of the form 𝐿𝑟𝑒𝑔(𝒘) =  𝐿 𝒘 + 𝜆 𝑅 𝒘

▪One possible/popular regularizer: the squared Euclidean (ℓ2 squared) norm of 𝒘

▪With this regularizer, we have the regularized least squares problem as

▪ Proceeding just like the LS case, we can find the optimal 𝒘 which is given by 

𝒘𝑟𝑖𝑑𝑔𝑒= (σ𝑛=1
𝑁 𝒙𝑛 𝒙𝑛

⊤ + 𝜆𝐼𝐷)
 −1

(σ𝑛=1
𝑁 𝑦𝑛𝒙𝑛)

Regularized Least Squares (a.k.a. Ridge Regression)
16

𝑅 𝒘 = 𝒘 2
2 =  𝒘⊤𝒘

𝒘𝑟𝑖𝑑𝑔𝑒= arg min𝒘 𝐿 𝒘  + 𝜆 𝑅 𝒘

= arg min𝒘 
𝑛=1

𝑁

(𝑦𝑛 − 𝒘⊤𝒙𝑛)2 + 𝜆𝒘⊤𝒘

= (𝑿⊤𝑿 + 𝜆𝐼𝐷)−1 𝑿⊤𝒚

Why is the method 

called “ridge” regression 

Look at the form of the solution. We are 

adding a small value 𝜆 to the diagonals 

of the DxD matrix 𝑿⊤𝑿(like adding a 

ridge/mountain to some land)
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Other Ways to Control Overfitting
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▪ Use a regularizer 𝑅 𝒘 defined by other norms, e.g.,

▪ Use non-regularization based approaches
▪ Early-stopping (stopping training just when we have a decent val. set accuracy)

▪ Dropout (in each iteration, don’t update some of the weights)

▪ Injecting noise in the inputs 

𝒘 1 =  
𝑑=1

𝐷

|𝑤𝑑|

𝒘 0 = #nnz(𝒘)

When should I used these 

regularizers instead of the 

ℓ2 regularizer?

Use them if  you have a very 

large number of features but 

many irrelevant features. These 

regularizers can help in 

automatic feature selection

Automatic feature 

selection? Wow, cool!!! 

But how exactly?

Using such regularizers 

gives a sparse weight vector 

𝒘 as solution

sparse means many entries 

in 𝒘 will be zero or near 

zero. Thus those features 

will be considered irrelevant 

by the model and will not 

influence prediction

ℓ1 norm regularizer

ℓ0 norm regularizer (counts 

number of nonzeros in 𝒘

All of these are very popular ways to 

control overfitting in deep learning 

models. More on these later when 

we talk about deep learning

Note that optimizing loss functions 

with such regularizers is usually 

harder than ridge reg. but several 

advanced techniques exist (we will 

see some of those later)
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▪ Just use the GD algorithm with the gradient expressions we derived  ☺

▪ Iterative updates for linear regression will be of the form

▪ Similar updates for ridge regression as well (with the gradient expression being 
slightly different; left as an exercise)

▪More on iterative optimization methods later

Gradient Descent for Linear/Ridge Regression
18

𝒘(𝑡+1) =  𝒘(𝑡) − 𝜂𝑡𝒈 𝑡

=  𝒘(𝑡) + 𝜂𝑡 

𝑛=1

𝑁

𝑦𝑛 − 𝒘⊤𝒙𝑛 𝒙𝑛

Unlike the closed form solution of 

least squares regression, here we 

have iterative updates but do not 

require the expensive matrix 

inversion of the 𝐷 × 𝐷 matrix 𝑿⊤𝑿
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