

Announcements

" Quiz 1 postponed by a week (now on Aug 23)
= \Venue IBD, timing: /pm, duration: 45 minutes
= Syllabus will be everything up to Aug 21 class

" Homework 1 released by end of this week

CS771: Intro to ML

Wrapping Up Decision Trees..

CS771: Intro to ML

Avoiding Overfitting in DTs ——

» Desired: a DT that is not too big in size, yet fits the training data reasonably) D

= Note: An example of a very simple DT is "decision-stump” A Decision Stump
" A decision-stump only tests the value of a single feature (or a simple rule)
= Not very powerful in itself but often used in a large ensemble of decision stumps

= Some ways to keep a DT simple enough:
= Control its complexity while building the tree (stopping early)
= Prune after building the tree (post-pruning)

= Criteria for judging which nodes could potentially be pruned (from already built complex DT)
" Use a validation set (separate from the training set)
" Prune each possible node that doesn't hurt the accuracy on the validation set
" Greedily remove the node that improves the validation accuracy the most

= Stop when the validation set accuracy starts worsening
CS771: Intro to ML

Ensemble of Trees

_ , , . All trees can be
" Ensemble is a collection of models. Popular in ML trained in parallel

» Fach model makes a prediction. Take their majority as the final prediction
Fach tree is trained on a

" Ensemble of trees is a collection of simple DTs subset of the training

= Often preferred as compared to a single massive, complicated tree ' Inputs/features

An RF with 3 simple trees. The majority =
. ' e o
A popular example: Random Forest (RF) rediction will be the final prediction X

g

= XGBoost is another popular ensemble of trees
" Based on the idea of "boosting” (will study boosting later) simple trees
" Sequentially trains a set of trees with each correcting errors of previous ones — €s771: Intro to ML

Linear Models and Learning
via Optimization

CS771: Intro to ML

Linear Models

= Suppose we want to learn to map inputs x € RP to real-valued outputs y € R

" [inear model: Assume output to be a linear weighted combination of the D input features

This defines a linear model with D
parameters given by a "weight ’\ y
vector" w = [wy, Wy, ..., Wp] —“‘

(Predicted) Output

Each of these weights have a simple
The Input | iNterpretation: wy is the "weight™ or contribution
(1AW 1 6 the dth feature in making this prediction

L : , The "optimal” weights are unknown and have
= This simple model can be used for Linear Regression to be learned by solving an optimization

problem, using some training data

» This simple model can also be used as a "building block™ for more complex models, e.g.,
= (lassification (binary/multiclass/multi-output/multi-label) and various other ML/deep learning models
= Unsupervised learning problems (e.g., dimensionality reduction models)

CS771: Intro to ML

Linear Regression

= Given: Training data with N input-output pairs {(Xp, V) Yae1. Xn EllRD, Yn € R

% —x,—— wy
Y2 T Wy

" Goal: Learn a model to predict the output for new test inputs v v

wp)

w

&
y X
" Assume the function that approximates the 1/O relationship to be a linear model
— . T . Can also write all of them
n = f(xn) = W Xy (TL — 1;2; LLW N) compactly using matrix-vector

notation as y =~ Xw

" | et's write the total error or “loss” of this model over the training data as

£(y,, w'x,) measures the

Goal of learning is 1o find the L(W) — Z%’=1 ’g(yn, WTxn) prediction error or “loss” or A

w that minimizes this loss +
“deviation” of the model on a .
does well on test data Unlike models like KNN and DT, here we single training input (X,) e?/
have an explicit problem-specific objective
(loss function) that we wish to optimize for CS771: Intro to ML

Linear Regression: Pictorially

" [inear regression is like fitting a line or (hyper)plane to a set of points

What if a line/plane doesn't
model the input-output
relationship very well, e.g., if
their relationship is better
modeled by a nonlinear
curve or curved surface?

" 0 1 Do linear models
become useless
in such cases?

(Output y)

Input x (single feature)

Weight

(Feature 2)

150

Horsepower

(Feature 1)

] = ¢@
| S F A S D
21

Two features
Can fit a plane (linear)

voa /
No. We can even fit a
curve using a linear

model after suitably
transforming the inputs

y =~ w'p(x)

Original (single) feature
Nonlinear curve needed

The transformation ¢ (.) can be predefined or learned
(e.g., using kernel methods or a deep neural network
based feature extractor). More on this later

" The line/plane must also predict outputs of the unseen (test) inputs well

CS771: Intro to ML

. » Choice of loss function usually
Loss Functions for Regression Sepends on the natue o the
data. Also, some loss functions
result in easier optimization

" Many possible loss functions for regression problems problem than others

Squared 10ss | Loss (y,, — f(x,))? Absolute loss | Loss, |yn — f (x|

Very commonly used
for regression. Leads
to an easy-to-solve

optimization problem

Grows more slowly than
squared loss. Thus better
suited when data has some
outliers (inputs on which
model makes large errors)

Yn— f(xn) vn — f(x;)

Loss

Huber loss lvn — f(xp)| — €

Loss

€-insensitive loss
(a.k.a. Vapnik loss)

Squared loss for small
errors (say up to 8);
absolute loss for
larger errors. Good for
data with outliers

Note: Can also use
squared loss instead
of absolute loss

Zero loss for small errors
(say up to €); absolute
) 5 yn— f(x,) loss for larger errors

—€ € Yn — f(xn)
CS771: Intro to ML

Minimizing Loss Func using First-Order Optimality

= [Jse basic calculus to find the minima

Called "first order” since only gradient is A
used and gradient provides the first order 8 'j‘ /
info about the function being optimized -

The approach works only for very
simple problems where the objective

% = " & is convex and there are no constraints
Wopt Wopt, Wopty Wopty on the values w can take

" Hirst order optimality: The gradient g must be equal to zero at the optima

g = VW[L(W): =0
" Sometimes, setting g = 0 and solving for w gives a closed form solution

= |t closed form solution is not available, the gradient vector g can still be used in
terative optimization algos, like gradient descent (GD)

= Note: Even if closed-form solution is possible, GD can sometimes be more efficient
CS771: Intro to ML

Minimizing Loss Func. using Iterative Optimization

h Can | used this approach For max. problems we can . lterative Since'it requires | A\
., to solve maximization use gradient ascent several steps/iterations to find | x'va /
~ oroblems? wttD) = w(® 4 g g® the optimal solution ' V
Fact: Gradient gives the Will move in the direction F%r e TUNCtions, 1 sod nitialization

direction of steepest of the gradient GD will converge to needed for non-

change in function’s value the global minima convex functions

Gradient Descent

The learning rate very
® |nitialize w as W(O) imp. Should be set

carefully (fixed or

chosen adaptively).

= For iteration t = 0,1,2, ... (or until convergence) Will discuss some
= Calculate the gradient g(®) using the current iterates w® strategies later
" Set the learning rate 1 Sometimes may be
= Move in the opposite direction of gradient tricky to o assess
o convergence. Wil see
W(t'l'l) — W(t) — T]t.g(t) some methods later

CS771: Intro to ML

Linear Regression with Squared Loss

In matrix-vector notation, can write it compactly
" |n this case, the loss func will be as [ly — Xwll3 = (v — Xw) " (y — Xw)

Lw) =Zn=10n — W' xp)’

" | et us find the w that optimizes (minimizes) the above squared loss

, . , , The “least squares” (LS) problem
" | et's use first order optimality Gauss-Legendre, 18" century)

" The LS problem can be solved easily and has a closed form solution | ciesed form
solutions to ML

Wigs=arg rninw L(W) — darg rninw Zgzl(Yn T WTxn)Z problems are rare,

Wis= (Zn 1Xn xn) (Z 1Ynxn) — (XTX)_l XTy “_é/

D X D matrix inversion — can be expensive.
Ways to handle this. Will see later CS771: Intro to ML

Proof: A bit of calculus/optim. (more on this later)

= \We wanted to find the minima of L(w) = ﬁ=1(yn — WTxn)2

" | et us apply basic rule of calculus: Take first derivative of L(w) and set to zero

Chain rule of calculus

OL(w) 0
av:V - _Zg=1(yn - WTxn)z = 71\1]=12(yn w xn) (yn — W xn) =0

Partial derivative of dot product wirt each element of W || pac it of th|s der|vat|ve s x,, - same size as w

= Using the fact — — wix, =x, weget XN_ 20y, —wTx,)x, =0

" [0 separate w to get a solution, we write the above as

z 2xn, (Y — x,Iw) =0 z YnXn — xnxlw =0
n=1 n=1

Wis= (Zﬁ=1 Xn X) (Zn 1 YnXn) = (XTX)_l XTy

CS771: Intro to ML

Problem(s) with the Solution!

= \We minimized the objective L(w) = ¥N_. (y,, — w'x,,)? wrt. w and got

-1 _
Wis= (Zrl\l’=1 Xn xD (Zg=1 YnXn) = (XTX) ! XT)’

= Problem: The matrix X' X may not be invertible
" This may lead to non-unique solutions for w,,;

» Problem: Overfitting since we only minimized loss defined on training data
= Weights w = [wy, w,, ..., wp]| may become arbitrarily large to fit training data perfectly

" Such weights may perform poorly on the test data however | R(w) is called the Regularizer and
measures the "magnitude” of w

= One Solution: Minimize a regularized objective|L(w) + A R(w) |
A = 0 is the reg. hyperparam.

= The reg. will prevent the elements of w from becoming too large Controls how much we wish

" Reason: Now we are minimizing training error + magnitude of vector w to regularize (needs to be
tuned via cross-validation)

Nod /7 Ao 111UV LU IV

Regularized Least Squares (a.k.a. Ridge Regression)
= Recall that the regularized objective is of the form Lyq4(w) = L(w) + A R(w)

* One possible/popular regularizer: the squared Euclidean (£, squared) norm of w

RW) = Wil = wTw ~
= With this regularizer, we have the regularized least squares problem as b
Look at the form of the solution. We are

) — i + adding a small value A to the diagonals
A erdge arg mlnw L(W) A R (W) of the DxD matrix X X (like adding a
N8 Why is the method N ridge/mountain to some land)

R ‘g - — : . T 2 T
called "ridge” regression — arg mlnw z (yn W xn) + AW W

‘ n=1

» Proceeding just like the LS case, we can find the optimal w which is given by

_1 _
Wrigge= Xn=1Xn Xn + Ap) " Cn=1¥nXn) = X' X+)" X'y

CS771: Intro to ML

Note that optimizing loss functions

Other Ways to Control Overfitting vith such reguaizers i usally

harder than ridge reg. but several
advanced techniques exist (we will

= Use a regularizer R(w) defined by other norms, e.g., see some of those later)
Use them if you have a very
€1 norm regularizer large number of features but m
b many irrelevant features. These | . ° ;,: P /
”W”1 — |Wd| regularizers can help in »
When should | used these d=1 automatic feature selection e’
regularizers instead of the
£, reqgularizer? ”W”O — #nnz(w) Using such regularizers sparse means many entries
. gives a sparse weight vector /N W Wil be zero or near

Automatic feature W as solution zero, Thus those features
selection? Wow, cooll!! £y norm regularizer (counts will be considered irrelevant
But how exactly? number of nonzeros in w

by the model and will not
influence prediction

» Use non-regularization based approaches

» Farly-stopping (stopping training just when we have a decent val. set accuracy)

* Dropout (in each iteration, don't update some of the weights) _ ' All of these are very popular ways to

= N . : N the | control overfitting in deep learning
ﬂJGCtIﬂg noise in the IﬂpUtS models. More on these later when

we talk about deep learning

CS771: Intro to ML

Gradient Descent for Linear/Ridge Regression

= Just use the GD algorithm with the gradient expressions we derived ©
" [terative updates for linear regression will be of the form

Unlike the closed form solution of
least squares regression, here we
W(t+ 1) — W(t) — 7’] g (t) have iterative updates but do not
t require the expensive matrix
inversion of the D X D matrix X' X

= wl® + Nt Z (Y — W' xp)xy,

= Similar updates for ridge regression as well (vv|th the gradient expression being
slightly different; left as an exercise)

= More on iterative optimization methods later
CS771: Intro to ML

	Slide 1: Linear Models and Learning via Optimization
	Slide 2: Announcements
	Slide 3: Wrapping Up Decision Trees..
	Slide 4: Avoiding Overfitting in DTs
	Slide 5: Ensemble of Trees
	Slide 6: Linear Models and Learning via Optimization
	Slide 7: Linear Models
	Slide 8: Linear Regression
	Slide 9: Linear Regression: Pictorially
	Slide 10: Loss Functions for Regression
	Slide 11: Minimizing Loss Func using First-Order Optimality
	Slide 12: Minimizing Loss Func. using Iterative Optimization
	Slide 13: Linear Regression with Squared Loss
	Slide 14: Proof: A bit of calculus/optim. (more on this later)
	Slide 15: Problem(s) with the Solution!
	Slide 16: Regularized Least Squares (a.k.a. Ridge Regression)
	Slide 17: Other Ways to Control Overfitting
	Slide 18: Gradient Descent for Linear/Ridge Regression

