
Linear Models and Learning via
Optimization

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

Announcements

▪Quiz 1 postponed by a week (now on Aug 23)

▪ Venue TBD, timing: 7pm, duration: 45 minutes

▪ Syllabus will be everything up to Aug 21 class

▪Homework 1 released by end of this week

2

CS771: Intro to ML

Wrapping Up Decision Trees..

3

CS771: Intro to ML

Avoiding Overfitting in DTs

▪ Desired: a DT that is not too big in size, yet fits the training data reasonably

▪ Note: An example of a very simple DT is “decision-stump”

▪ A decision-stump only tests the value of a single feature (or a simple rule)

▪ Not very powerful in itself but often used in a large ensemble of decision stumps

▪ Some ways to keep a DT simple enough:

▪ Control its complexity while building the tree (stopping early)

▪ Prune after building the tree (post-pruning)

▪ Criteria for judging which nodes could potentially be pruned (from already built complex DT)

▪ Use a validation set (separate from the training set)

▪ Prune each possible node that doesn’t hurt the accuracy on the validation set

▪ Greedily remove the node that improves the validation accuracy the most

▪ Stop when the validation set accuracy starts worsening

4

A Decision Stump

CS771: Intro to ML

Ensemble of Trees

▪ Ensemble is a collection of models. Popular in ML

▪ Each model makes a prediction. Take their majority as the final prediction

▪ Ensemble of trees is a collection of simple DTs
▪ Often preferred as compared to a single massive, complicated tree

▪ A popular example: Random Forest (RF)

▪ XGBoost is another popular ensemble of trees
▪ Based on the idea of “boosting” (will study boosting later) simple trees

▪ Sequentially trains a set of trees with each correcting errors of previous ones

5

An RF with 3 simple trees. The majority

prediction will be the final prediction

Each tree is trained on a

subset of the training

inputs/features

All trees can be

trained in parallel

CS771: Intro to ML

Linear Models and Learning
via Optimization

6

CS771: Intro to ML

Linear Models
▪ Suppose we want to learn to map inputs 𝒙 ∈ ℝ𝐷 to real-valued outputs 𝑦 ∈ ℝ

▪ Linear model: Assume output to be a linear weighted combination of the 𝐷 input features

▪ This simple model can be used for Linear Regression

▪ This simple model can also be used as a “building block” for more complex models, e.g.,

▪ Classification (binary/multiclass/multi-output/multi-label) and various other ML/deep learning models

▪ Unsupervised learning problems (e.g., dimensionality reduction models)

This defines a linear model with 𝐷

parameters given by a “weight

vector” 𝒘 = [𝑤1, 𝑤2, … , 𝑤𝐷]

Each of these weights have a simple

interpretation: 𝑤𝑑 is the “weight” or contribution

of the 𝑑𝑡ℎ feature in making this prediction

The “optimal” weights are unknown and have

to be learned by solving an optimization

problem, using some training data

7

CS771: Intro to ML

Linear Regression

▪ Given: Training data with 𝑁 input-output pairs {(𝒙n, 𝑦n)}𝑛=1
𝑁 , 𝒙𝒏 ∈ ℝ𝐷, 𝑦𝑛 ∈ ℝ

▪ Goal: Learn a model to predict the output for new test inputs

▪ Assume the function that approximates the I/O relationship to be a linear model

▪ Let’s write the total error or “loss” of this model over the training data as

8

𝑦𝑛 ≈ 𝑓 𝒙𝑛 = 𝒘⊤𝒙𝑛 (𝑛 = 1,2, … , 𝑁)

𝐿 𝒘 = σ𝑛=1
𝑁 ℓ(𝑦𝑛, 𝒘⊤𝒙𝑛)

ℓ(𝑦𝑛, 𝒘⊤𝒙𝑛) measures the

prediction error or “loss” or

“deviation” of the model on a

single training input (𝒙n, 𝑦n)

Goal of learning is to find the

𝒘 that minimizes this loss +

does well on test data Unlike models like KNN and DT, here we

have an explicit problem-specific objective

(loss function) that we wish to optimize for

Can also write all of them

compactly using matrix-vector

notation as 𝒚 ≈ 𝑿𝒘

CS771: Intro to ML

▪ Linear regression is like fitting a line or (hyper)plane to a set of points

▪ The line/plane must also predict outputs of the unseen (test) inputs well

Linear Regression: Pictorially
9

(Feature 1)(Feature 2)

(O
u
tp

u
t

𝑦
)

Input 𝑥 (single feature)

(O
u
tp

u
t

𝑦
)

What if a line/plane doesn’t

model the input-output

relationship very well, e.g., if

their relationship is better

modeled by a nonlinear

curve or curved surface?

No. We can even fit a

curve using a linear

model after suitably

transforming the inputs

𝑦 ≈ 𝒘⊤𝜙(𝒙)

Do linear models

become useless

in such cases?

The transformation 𝜙 . can be predefined or learned

(e.g., using kernel methods or a deep neural network

based feature extractor). More on this later

Original (single) feature

Nonlinear curve needed

Two features

Can fit a plane (linear)

𝑧1

𝑧2
= 𝜙(𝑥)

CS771: Intro to ML

Loss Functions for Regression

▪Many possible loss functions for regression problems

10

𝑦𝑛 − 𝑓(𝒙𝑛)

(𝑦𝑛 − 𝑓(𝒙𝑛))2Loss |𝑦𝑛 − 𝑓 𝒙𝑛 |Loss

Loss
|𝑦𝑛 − 𝑓 𝒙𝑛 | − 𝜖

Loss

Squared loss Absolute loss

Huber loss

𝜖-insensitive loss

(a.k.a. Vapnik loss)
Squared loss for small

errors (say up to 𝛿);

absolute loss for

larger errors. Good for

data with outliers

Choice of loss function usually

depends on the nature of the

data. Also, some loss functions

result in easier optimization

problem than others

𝜖−𝜖
𝛿−𝛿

Zero loss for small errors

(say up to 𝜖); absolute

loss for larger errors

Grows more slowly than

squared loss. Thus better

suited when data has some

outliers (inputs on which

model makes large errors)

Very commonly used

for regression. Leads

to an easy-to-solve

optimization problem

Note: Can also use

squared loss instead

of absolute loss
𝑦𝑛 − 𝑓(𝒙𝑛)

𝑦𝑛 − 𝑓(𝒙𝑛)

𝑦𝑛 − 𝑓(𝒙𝑛)

CS771: Intro to ML

Minimizing Loss Func using First-Order Optimality
11

▪ Use basic calculus to find the minima

▪ First order optimality: The gradient 𝒈 must be equal to zero at the optima

▪ Sometimes, setting 𝒈 = 𝟎 and solving for 𝒘 gives a closed form solution

▪ If closed form solution is not available, the gradient vector 𝒈 can still be used in
iterative optimization algos, like gradient descent (GD)
▪ Note: Even if closed-form solution is possible, GD can sometimes be more efficient

𝒈 = ∇𝒘 𝐿(𝒘) = 0

The approach works only for very

simple problems where the objective

is convex and there are no constraints

on the values 𝒘 can take

Called “first order” since only gradient is

used and gradient provides the first order

info about the function being optimized

CS771: Intro to ML

Minimizing Loss Func. using Iterative Optimization
12

▪ Initialize 𝒘 as 𝒘(0)

▪ For iteration 𝑡 = 0,1,2, … (or until convergence)

▪ Calculate the gradient 𝒈(𝑡) using the current iterates 𝒘(𝑡)

▪ Set the learning rate 𝜂𝑡

▪ Move in the opposite direction of gradient

Gradient Descent

𝒘(𝑡+1) = 𝒘(𝑡) − 𝜂𝑡𝒈(𝑡)

Can I used this approach

to solve maximization

problems?

Iterative since it requires

several steps/iterations to find

the optimal solution

For convex functions,

GD will converge to

the global minima

Good initialization

needed for non-

convex functions

For max. problems we can

use gradient ascent

𝒘(𝑡+1) = 𝒘(𝑡) + 𝜂𝑡𝒈(𝑡)

The learning rate very

imp. Should be set

carefully (fixed or

chosen adaptively).

Will discuss some

strategies later

Will move in the direction

of the gradient

Sometimes may be

tricky to to assess

convergence. Will see

some methods later

Fact: Gradient gives the

direction of steepest

change in function’s value

CS771: Intro to ML

Linear Regression with Squared Loss

▪ In this case, the loss func will be

▪ Let us find the 𝒘 that optimizes (minimizes) the above squared loss

▪ Let’s use first order optimality

▪ The LS problem can be solved easily and has a closed form solution

13

𝐿 𝒘 = σ𝑛=1
𝑁 (𝑦𝑛 − 𝒘⊤𝒙𝑛)2

𝒘𝐿𝑆= arg min𝒘 𝐿 𝒘 = arg min𝒘 σ𝑛=1
𝑁 (𝑦𝑛 − 𝒘⊤𝒙𝑛)2

𝒘𝐿𝑆= (σ𝑛=1
𝑁 𝒙𝑛 𝒙𝑛

⊤)
 −1

(σ𝑛=1
𝑁 𝑦𝑛𝒙𝑛)

In matrix-vector notation, can write it compactly

as 𝒚 − 𝑿𝒘 2
2 = (𝒚 − 𝑿𝒘)⊤(𝒚 − 𝑿𝒘)

= (𝑿⊤𝑿)−1 𝑿⊤𝒚

The “least squares” (LS) problem

Gauss-Legendre, 18th century)

Closed form

solutions to ML

problems are rare.

𝐷 × 𝐷 matrix inversion – can be expensive.

Ways to handle this. Will see later

CS771: Intro to ML

Proof: A bit of calculus/optim. (more on this later)

▪We wanted to find the minima of 𝐿 𝒘 = σ𝑛=1
𝑁 (𝑦𝑛 − 𝒘⊤𝒙𝑛)2

▪ Let us apply basic rule of calculus: Take first derivative of 𝐿 𝒘 and set to zero

▪ Using the fact
𝜕

𝜕𝒘
 𝒘⊤𝒙𝑛 = 𝒙𝑛, we get σ𝑛=1

𝑁 2 𝑦𝑛 − 𝒘⊤𝒙𝑛 𝒙𝑛 = 0

▪ To separate 𝒘 to get a solution, we write the above as

14

𝜕𝐿 𝒘

𝜕𝒘
=

𝜕

𝜕𝒘
 σ𝑛=1

𝑁 (𝑦𝑛 − 𝒘⊤𝒙𝑛)2 = σ𝑛=1
𝑁 2 𝑦𝑛 − 𝒘⊤𝒙𝑛

𝜕

𝜕𝒘
𝑦𝑛 − 𝒘⊤𝒙𝑛 = 0

𝑛=1

𝑁

2𝒙𝑛 𝑦𝑛 − 𝒙𝑛
⊤𝒘 = 0

𝑛=1

𝑁

𝑦𝑛𝒙𝑛 − 𝒙𝑛𝒙𝑛
⊤𝒘 = 0

𝒘𝐿𝑆= (σ𝑛=1
𝑁 𝒙𝑛 𝒙𝑛

⊤)
 −1

(σ𝑛=1
𝑁 𝑦𝑛𝒙𝑛)

Chain rule of calculus

Partial derivative of dot product w.r.t each element of 𝒘 Result of this derivative is 𝒙𝑛 - same size as 𝒘

= (𝑿⊤𝑿)−1 𝑿⊤𝒚

CS771: Intro to ML

▪We minimized the objective 𝐿 𝒘 = σ𝑛=1
𝑁 (𝑦𝑛 − 𝒘⊤𝒙𝑛)2 w.r.t. 𝒘 and got

▪ Problem: The matrix 𝑿⊤𝑿 may not be invertible

▪ This may lead to non-unique solutions for 𝒘𝑜𝑝𝑡

▪ Problem: Overfitting since we only minimized loss defined on training data
▪ Weights 𝒘 = [𝑤1, 𝑤2, … , 𝑤𝐷] may become arbitrarily large to fit training data perfectly

▪ Such weights may perform poorly on the test data however

▪One Solution: Minimize a regularized objective 𝐿 𝒘 + 𝜆 𝑅 𝒘
▪ The reg. will prevent the elements of 𝒘 from becoming too large

▪ Reason: Now we are minimizing training error + magnitude of vector 𝒘

Problem(s) with the Solution!
15

𝒘𝐿𝑆= (σ𝑛=1
𝑁 𝒙𝑛 𝒙𝑛

⊤)
 −1

(σ𝑛=1
𝑁 𝑦𝑛𝒙𝑛) = (𝑿⊤𝑿)−1 𝑿⊤𝒚

𝑅 𝒘 is called the Regularizer and

measures the “magnitude” of 𝒘

𝜆 ≥ 0 is the reg. hyperparam.

Controls how much we wish

to regularize (needs to be

tuned via cross-validation)

CS771: Intro to ML

▪ Recall that the regularized objective is of the form 𝐿𝑟𝑒𝑔(𝒘) = 𝐿 𝒘 + 𝜆 𝑅 𝒘

▪One possible/popular regularizer: the squared Euclidean (ℓ2 squared) norm of 𝒘

▪With this regularizer, we have the regularized least squares problem as

▪ Proceeding just like the LS case, we can find the optimal 𝒘 which is given by

𝒘𝑟𝑖𝑑𝑔𝑒= (σ𝑛=1
𝑁 𝒙𝑛 𝒙𝑛

⊤ + 𝜆𝐼𝐷)
 −1

(σ𝑛=1
𝑁 𝑦𝑛𝒙𝑛)

Regularized Least Squares (a.k.a. Ridge Regression)
16

𝑅 𝒘 = 𝒘 2
2 = 𝒘⊤𝒘

𝒘𝑟𝑖𝑑𝑔𝑒= arg min𝒘 𝐿 𝒘 + 𝜆 𝑅 𝒘

= arg min𝒘
𝑛=1

𝑁

(𝑦𝑛 − 𝒘⊤𝒙𝑛)2 + 𝜆𝒘⊤𝒘

= (𝑿⊤𝑿 + 𝜆𝐼𝐷)−1 𝑿⊤𝒚

Why is the method

called “ridge” regression

Look at the form of the solution. We are

adding a small value 𝜆 to the diagonals

of the DxD matrix 𝑿⊤𝑿(like adding a

ridge/mountain to some land)

CS771: Intro to ML

Other Ways to Control Overfitting
17

▪ Use a regularizer 𝑅 𝒘 defined by other norms, e.g.,

▪ Use non-regularization based approaches
▪ Early-stopping (stopping training just when we have a decent val. set accuracy)

▪ Dropout (in each iteration, don’t update some of the weights)

▪ Injecting noise in the inputs

𝒘 1 =
𝑑=1

𝐷

|𝑤𝑑|

𝒘 0 = #nnz(𝒘)

When should I used these

regularizers instead of the

ℓ2 regularizer?

Use them if you have a very

large number of features but

many irrelevant features. These

regularizers can help in

automatic feature selection

Automatic feature

selection? Wow, cool!!!

But how exactly?

Using such regularizers

gives a sparse weight vector

𝒘 as solution

sparse means many entries

in 𝒘 will be zero or near

zero. Thus those features

will be considered irrelevant

by the model and will not

influence prediction

ℓ1 norm regularizer

ℓ0 norm regularizer (counts

number of nonzeros in 𝒘

All of these are very popular ways to

control overfitting in deep learning

models. More on these later when

we talk about deep learning

Note that optimizing loss functions

with such regularizers is usually

harder than ridge reg. but several

advanced techniques exist (we will

see some of those later)

CS771: Intro to ML

▪ Just use the GD algorithm with the gradient expressions we derived ☺

▪ Iterative updates for linear regression will be of the form

▪ Similar updates for ridge regression as well (with the gradient expression being
slightly different; left as an exercise)

▪More on iterative optimization methods later

Gradient Descent for Linear/Ridge Regression
18

𝒘(𝑡+1) = 𝒘(𝑡) − 𝜂𝑡𝒈 𝑡

= 𝒘(𝑡) + 𝜂𝑡

𝑛=1

𝑁

𝑦𝑛 − 𝒘⊤𝒙𝑛 𝒙𝑛

Unlike the closed form solution of

least squares regression, here we

have iterative updates but do not

require the expensive matrix

inversion of the 𝐷 × 𝐷 matrix 𝑿⊤𝑿

	Slide 1: Linear Models and Learning via Optimization
	Slide 2: Announcements
	Slide 3: Wrapping Up Decision Trees..
	Slide 4: Avoiding Overfitting in DTs
	Slide 5: Ensemble of Trees
	Slide 6: Linear Models and Learning via Optimization
	Slide 7: Linear Models
	Slide 8: Linear Regression
	Slide 9: Linear Regression: Pictorially
	Slide 10: Loss Functions for Regression
	Slide 11: Minimizing Loss Func using First-Order Optimality
	Slide 12: Minimizing Loss Func. using Iterative Optimization
	Slide 13: Linear Regression with Squared Loss
	Slide 14: Proof: A bit of calculus/optim. (more on this later)
	Slide 15: Problem(s) with the Solution!
	Slide 16: Regularized Least Squares (a.k.a. Ridge Regression)
	Slide 17: Other Ways to Control Overfitting
	Slide 18: Gradient Descent for Linear/Ridge Regression

