
Learning with Decision Trees

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

Announcement
2

▪ An extra office hour every week (Saturday 3-4pm)
▪ Different from my regular in-person office hours (Wed, 6-7pm)

▪ To be held online (Google Meet: https://meet.google.com/dup-mozx-swe)

▪ Can ask doubts etc from the previous classes

https://meet.google.com/dup-mozx-swe

CS771: Intro to ML

Decision Trees
3

▪ A Decision Tree (DT) defines a hierarchy of rules to make a prediction

▪ Root and internal nodes test rules. Leaf nodes make predictions

▪DT learning is about learning such a tree from labeled training data

Body
temp.

Gives
birth

Cold

Non-mammal

Yes No

Non-mammalMammal

Root Node

An Internal Node

Warm

A Leaf Node

CS771: Intro to ML

Decision Tree Learning: The Basic Idea
4

▪ Recursively partition training data till you get (roughly) homogeneous regions

▪ Some typical prediction rules for each region
▪ Use a constant label (e.g., majority) if region fully/almost homogeneous

▪ Learn another prediction model(e.g., LwP) if region not fully homogeneous

What do you mean

by “homogeneous”

regions?

A homogeneous region

will have all (or most of)

the training inputs with

the same outputs/labels

Test time: Given a test

input, first locate its

region. Then use the

prediction rule of that

region to predict its label

Within each region, we can even

use a very sophisticated model

(like a deep neural network) but

we usually prefer a simple rule

(constant label, or maybe use a

simple ML model like LwP) so that

training and test phases are fast

CS771: Intro to ML

Decision Tree for Classification: An Example
5

1 2 3 4 5 6

1

2

3

4

5

Feature 1 (𝑥1)

Fe
at

u
re

 2
 (

𝑥
2

)

𝑥1 > 3.5 ?

𝑥2 > 3 ?

Predict
Red

Predict
Green

𝑥2 > 2 ?

Predict
Green

Predict
Red

NO YES

NO YES YESNO

Test input

DT is very efficient at test time: To predict the label

of a test point, nearest neighbors will require

computing distances from 48 training inputs. DT

predicts the label by doing just 2 feature-value

comparisons! Way more fast!!!

Remember: Root node

contains all training inputs.

Internal/leaf nodes receive a

subset of training inputs

Training data with each

input having 2 features

(𝒙 = 𝑥1, 𝑥2)

CS771: Intro to ML

Decision Tree for Regression: An Example 6

1 2 3 4 5

4

3

2

1

𝐱

y

𝑥 > 4 ?

Predict
𝑦 = 3.5𝑥 > 3 ?

NO YES

NO YES

Predict
𝑦 = 3

Predict
𝑦 = 1.5

Can use any regression

model but would like a

simple one, so let’s use a

constant prediction based

regression model

To predict the output for a test point, nearest

neighbors will require computing distances from 15

training inputs. DT predicts the label by doing just at

most 2 feature-value comparisons! Way more fast!!!

Another simple

option can be to

predict the average

output of the training

inputs in this region

CS771: Intro to ML

Constructing a Decision Tree
7

1 2 3 4 5 6

1

2

3

4

5

Feature 1 (𝑥1)

Fe
at

u
re

 2
 (

𝑥
2

)

𝑥1 > 3.5 ?

𝑥2 > 3 ?

Predict
Red

Predict
Green

𝑥2 > 2 ?

Predict
Green

Predict
Red

NO YES

NO YES YESNO

Given some training data,

what’s the “optimal” DT?

In general, constructing DT is an

intractable problem (NP-hard)

Often we can use some “greedy”

heuristics to construct a “good” DT

To do so, we use the training data to figure out

which rules should be tested at each node

The same rules will be applied on the test inputs

to route them along the tree until they reach

some leaf node where the prediction is made

How to decide which rules to

test for and in what order?

The rules are organized in the

DT such that most informative

rules are tested first

How to assess informativeness of a rule?

Informativeness of a rule is of related

to the extent of the purity of the split

arising due to that rule. More

informative rules yield more pure splits

Hmm.. So DTs are like

the “20 questions”

game (ask the most

useful questions first)

CS771: Intro to ML

Decision Trees: Some Considerations 8

▪What should be the size/shape of the DT?
▪ Number of internal and leaf nodes

▪ Branching factor of internal nodes

▪ Depth of the tree

▪ Split criterion at root/int. nodes
▪ Use another classifier?

▪ Or maybe by doing a simpler test?

▪What to do at the leaf node? Some options:
▪ Make a constant prediction for each test input reaching there

▪ Use a nearest neighbor based prediction using training inputs at that leaf node

▪ Train and predict using some other sophisticated supervised learner on that node

Usually, cross-validation

can be used to decide

size/shape

Usually, constant prediction

at leaf nodes used since it

will be very fast

Root and internal nodes of DT split the training

data (can think of them as a “classifier”)

CS771: Intro to ML

Techniques to Split at Internal Nodes?

▪ This decision/split can be done using various ways, e.g.,
▪ Testing the value of a single feature at a time (such internal node called “Decision Stump”)

▪ Testing the value of a combination of features (maybe 2-3 features)

▪ Learning a classifier (e.g., LwP or some more sophisticated classifier)

9

DT methods based

on testing a single

feature at each

internal node are

faster and more

popular (e.g., ID3,

C4.5 algos)

DT methods based on learning and

using a separate classifier at each

internal node are less common. But

this approach can be very powerful

and sometimes used in some

advanced DT methods

With this approach, all features

(2 real-valued features in this

example) and all possible values

of each feature need to be

evaluated in selecting the feature

to be tested at each internal

node. If features binary/discrete

(only finite possible values), it is

reasonably easy

CS771: Intro to ML

Internal Nodes: Good vs Bad Splits
▪ Recall that each internal node receives a subset of all the training inputs

▪ Regardless of the criterion, the split should result in as “pure” groups as possible
▪ Meaning: After split, in each group, majority of the inputs have the same label/output

▪ For classification problems (discrete outputs), entropy is a measure of purity
▪ Low entropy ⇒ high purity (less uniform label distribution)

▪ Splits that give the largest reduction (before split vs after split) in entropy are preferred
(this reduction is also known as “information gain”)

10

CS771: Intro to ML

Entropy and Information Gain

▪ Assume a set of labelled inputs 𝑺 from C classes, 𝑝𝑐 as fraction of class c inputs

▪ Entropy of the set 𝑺 is defined as H(𝑺) = − σ𝑐∈𝐶 𝑝𝑐 log 𝑝𝑐

▪ Suppose a rule splits 𝑺 into two smaller disjoint sets 𝑺1 and 𝑺2

▪ Reduction in entropy after the split is called information gain

11

Uniform sets (all classes

roughly equally present)

have high entropy; skewed

sets low

𝐼𝐺 = 𝐻 𝑆 −
𝑆1

𝑆
𝐻 𝑆1 −

𝑆2

𝑆
𝐻 𝑆2

This split has a low IG

 (in fact zero IG)
This split has higher IG

CS771: Intro to ML

Decision Tree for Classification: Another Example
12

▪Deciding whether to play or not to play Tennis on a Saturday

▪ Each input (Saturday) has 4 categorical features: Outlook, Temp., Humidity, Wind

▪ A binary classification problem (play vs no-play)

▪ Below Left: Training data, Below Right: A decision tree constructed using this data

Example credit: Tom Mitchell

Because outlook feature is the

most informative (has highest IG)

at the root node position

Why did we test

outlook feature’s

value first?

CS771: Intro to ML

Entropy and Information Gain
▪ Let’s use IG based criterion to construct a DT for the Tennis example

▪ At root node, let’s compute IG of each of the 4 features

▪ Consider feature “wind”. Root contains all examples S = [9+,5-]

Sweak = [6+, 2−] ⇒ H(Sweak) = 0.811

 Sstrong = [3+, 3−] ⇒ H(Sstrong) = 1

▪ Likewise, at root: IG(S, outlook) = 0.246, IG(S, humidity) = 0.151, IG(S,temp) = 0.029

▪ Thus we choose “outlook” feature to be tested at the root node

▪ Now how to grow the DT, i.e., what to do at the next level? Which feature to test next?

▪ Rule: Iterate - for each child node, select the feature with the highest IG

13

H(S) = −(9/14) log2(9/14) − (5/14) log2(5/14) = 0.94

𝐼𝐺(𝑆, 𝑤𝑖𝑛𝑑) = 𝐻 𝑆 −
𝑆weak

𝑆
𝐻 𝑆weak −

𝑆strong

𝑆
𝐻 𝑆strong = 0.94 − 8/14 ∗ 0.811 − 6/14 ∗ 1 = 0.048

CS771: Intro to ML

Growing the tree

▪ Proceeding as before, for level 2, left node, we can verify that

▪ IG(S,temp) = 0.570, IG(S, humidity) = 0.970, IG(S, wind) = 0.019

▪ Thus humidity chosen as the feature to be tested at level 2, left node

▪ No need to expand the middle node (already “pure” - all “yes” training examples ☺)

▪ Can also verify that wind has the largest IG for the right node

▪ Note: If a feature has already been tested along a path earlier, we don’t consider it again

14

CS771: Intro to ML

When to stop growing the tree?

▪ Stop expanding a node further (i.e., make it a leaf node) when

▪ It consist of all training examples having the same label (the node becomes “pure”)

▪ We run out of features to test along the path to that node

▪ The DT starts to overfit (can be checked by monitoring

the validation set accuracy)

▪ Important: No need to obsess with too much for purity

▪ It is okay to have a leaf node that is not fully pure, e.g., this

▪ At test inputs that reach an impure leaf, can predict probability of belonging to each class
(in above example, p(red) = 3/8, p(green) = 5/8), or simply predict the majority label

15

To help prevent the tree

from growing too much!

OR

CS771: Intro to ML

Avoiding Overfitting in DTs
▪ Desired: a DT that is not too big in size, yet fits the training data reasonably

▪ Note: An example of a very simple DT is “decision-stump”

▪ A decision-stump only tests the value of a single feature (or a simple rule)

▪ Not very powerful in itself but often used in large ensembles of decision stumps

▪ Mainly two approaches to prune a complex DT

▪ Prune while building the tree (stopping early)

▪ Prune after building the tree (post-pruning)

▪ Criteria for judging which nodes could potentially be pruned

▪ Use a validation set (separate from the training set)

▪ Prune each possible node that doesn’t hurt the accuracy on the validation set

▪ Greedily remove the node that improves the validation accuracy the most

▪ Stop when the validation set accuracy starts worsening

▪ Use model complexity control, such as Minimum Description Length (will see later)

16

Either can be done

using a validation set

CS771: Intro to ML

Decision Trees: Some Comments

▪ Gini-index defined as σ𝑐=1
𝐶 𝑝𝑐(1 − 𝑝𝑐) can be an alternative to IG

▪ For DT regression1, variance in the outputs can be used to assess purity

▪ When features are real-valued (no finite possible values to try), things are a bit more tricky

▪ Can use tests based on thresholding feature values (recall our synthetic data examples)

▪ Need to be careful w.r.t. number of threshold points, how fine each range is, etc.

▪ More sophisticated decision rules at the internal nodes can also be used

▪ Basically, need some rule that splits inputs at an internal node into homogeneous groups

▪ The rule can even be a machine learning classification algo (e.g., LwP or a deep learner)

▪ However, in DTs, we want the tests to be fast so single feature based rules are preferred

▪ Need to take care handling training or test inputs that have some features missing

17

1Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees

For regression, outputs are

real-valued and we don’t have

a “set” of classes, so

quantities like entropy/IG/gini

etc. are undefined

CS771: Intro to ML

Ensemble of Trees

▪ Ensemble is a collection of models

▪ Each model makes a prediction. Take their majority as the final prediction

▪ Ensemble of trees is a collect of simple DTs
▪ Often preferred as compared to a single massive, complicated tree

▪ A popular example: Random Forest (RF)

▪ XGBoost is another popular ensemble of trees
▪ Based on the idea of “boosting” (will study boosting later) simple trees

▪ Sequentially trains a set of trees with each correcting errors of previous ones

18

An RF with 3 simple trees. The majority

prediction will be the final prediction

Each tree is trained on a

subset of the training

inputs/features

All trees can be

trained in parallel

CS771: Intro to ML

Decision Trees: A Summary
Some key strengths:

▪ Simple and easy to interpret

▪ Nice example of “divide and conquer”

paradigm in machine learning

▪ Easily handle different types of

features (real, categorical, etc.)

▪ Very fast at test time

▪ Multiple simple DTs can be combined

via ensemble methods: more powerful

▪ Used in several real-world ML applications, e.g., recommender systems, gaming (Kinect)

Some key weaknesses:

▪ Learning optimal DT is (NP-hard) intractable. Existing algos mostly greedy heuristics

▪ Can sometimes become very complex unless some pruning is applied

19

1 2 3 4 5 6

1

2

3

4

5

Feature 1 (𝑥1)

Fe
at

u
re

 2
 (

𝑥
2

)

𝑥1 > 3.5 ?

𝑥2 > 3 ?

Predict
Red

Predict
Green

𝑥2 > 2 ?

Predict
Green

Predict
Red

NO YES

NO YES YESNO

Human-body

pose estimation

.. thus helping us learn complex rule as

a combination of several simpler rules

	Slide 1: Learning with Decision Trees
	Slide 2: Announcement
	Slide 3: Decision Trees
	Slide 4: Decision Tree Learning: The Basic Idea
	Slide 5: Decision Tree for Classification: An Example
	Slide 6: Decision Tree for Regression: An Example
	Slide 7: Constructing a Decision Tree
	Slide 8: Decision Trees: Some Considerations
	Slide 9: Techniques to Split at Internal Nodes?
	Slide 10: Internal Nodes: Good vs Bad Splits
	Slide 11: Entropy and Information Gain
	Slide 12: Decision Tree for Classification: Another Example
	Slide 13: Entropy and Information Gain
	Slide 14: Growing the tree
	Slide 15: When to stop growing the tree?
	Slide 16: Avoiding Overfitting in DTs
	Slide 17: Decision Trees: Some Comments
	Slide 18: Ensemble of Trees
	Slide 19: Decision Trees: A Summary

