
LwP (contd), Nearest Neighbors

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

LwP: The Prediction Rule, Mathematically
2

▪What does the prediction rule for LwP look like mathematically?

▪ Assume we are using Euclidean distances here

𝜇− 𝜇+

Test example 𝐱

𝝁− − 𝐱
2

= 𝝁−
2

+ 𝐱
2

− 2 𝝁−, 𝐱

𝝁+ − 𝐱
2

= 𝝁+
2

+ 𝐱
2

− 2 𝝁+, 𝐱

Prediction Rule: Predict label as +1 if 𝑓 𝐱 = 𝝁− − 𝐱
2
 − 𝝁+ − 𝐱

2
> 0 otherwise -1

CS771: Intro to ML

LwP: The Prediction Rule, Mathematically
3

▪ Let’s expand the prediction rule expression a bit more

▪ Thus LwP with Euclidean distance is equivalent to a linear model with
▪ A 𝐷-dim weight vector 𝐰 = 2(𝝁+ − 𝝁−)

▪ A scalar bias term 𝑏 = 𝝁−
2

 − 𝝁+
2

▪ Prediction rule therefore is: Predict +1 if 𝐰, 𝐱 + 𝑏 > 0, else predict -1

𝑓 𝐱 = 𝝁− − 𝐱
2
 − 𝝁+ − 𝐱

2

 = 𝝁−
2

+ 𝐱
2

− 2 𝝁−, 𝐱 − 𝝁+
2

− 𝐱
2

+ 2 𝝁+, 𝐱

 = 2 𝝁+ − 𝝁−, 𝐱 + 𝝁−
2

 − 𝝁+
2

 = 𝐰, 𝐱 + 𝑏

Will look at linear models

more formally and in more

detail later

Linear combination 𝐰, 𝐱
of the 𝐷 input features

CS771: Intro to ML

Learning with Prototypes (LwP)
4

𝜇− 𝜇+

So the “score” of a test point 𝐱 is a weighted sum of its

similarities with each of the N training inputs. Many supervised

learning models have 𝑓 𝐱 in this form as we will see later

𝜇− =
1

𝑁−
෍

𝑦𝑛=−1

𝐱𝑛 𝜇+ =
1

𝑁+
෍

𝑦𝑛=+1

𝐱𝑛

For LwP, the prototype vectors (or their

difference) define the “model”. 𝜇+ and

𝜇− (or just 𝐰 in the Euclidean distance

case) are the model parameters.

𝐰
𝐰 = 𝝁+ − 𝝁−

Decision boundary

(perpendicular bisector of line

joining the class prototype vectors)

𝑓 𝐱 = 2 𝝁+ − 𝝁−, 𝐱 + 𝝁−
2

 − 𝝁+
2

= 𝐰, 𝐱 + 𝑏

(𝑓 𝐱 > 0 then predict +1 otherwise -1)

If Euclidean distance used

Can throw away training data after computing the

prototypes and just need to keep the model parameters

for the test time in such “parametric” models

Prediction rule for LwP

(for binary classification

with Euclidean distance)

𝑓 𝐱 = ෍

𝑛=1

𝑁

𝛼𝑛 𝐱𝑛, 𝐱 + 𝑏

Exercise: Show that for the bin. classfn case
Note: Even though 𝑓 𝐱 can be expressed

in this form, if N > D, this may be more

expensive to compute (O(N) time)as

compared to 𝐰, 𝐱 + 𝑏 (O(D) time).

However the form 𝑓 𝐱 = σ𝑛=1
𝑁 𝛼𝑛 𝐱𝑛, 𝐱 + 𝑏 is still very

useful as we will see later when we discuss kernel methods

CS771: Intro to ML

LwP: Some Failure Cases
5

▪Here is a case where LwP with Euclidean distance may not work well

▪ In general, if classes are not equisized and spherical, LwP with Euclidean
distance will usually not work well (but improvements possible if features are
learned, e.g., using distance metric learning methods or deep learning)

𝜇−
𝜇+

Test example 𝐱

Can also use a Mahalanobis distance

to handle such cases, or use

probabilistic models that represent

each class not by a “point” (its

mean) but as a probability

distribution like a Gaussian

Will study such

approaches later

CS771: Intro to ML

LwP: Some Concluding Remarks
6

▪ Very simple, interpretable, and lightweight model
▪ Just requires computing and storing the class prototype vectors

▪Works with any number of classes (thus for multi-class classification as well)

▪ Can be generalized in various ways to improve it further, e.g.,
▪ Modeling each class by a probability distribution rather than just a prototype vector

▪ Using distances other than the standard Euclidean distance (e.g., Mahalanobis)

▪Only applicable for classification problems (not for regression)

CS771: Intro to ML

Nearest Neighbors

7

CS771: Intro to ML

Nearest Neighbors
8

▪ Very simple idea. Simply do the following at test time

▪ Compute distances of the test point from all the training inputs

▪ Sort the distances to find the “nearest” input(s) in training data

▪ Predict the label using majority or avg label of these inputs

▪ Note: Can work with similarities as well instead of distances

▪ Can use Euclidean or other dist (e.g., Mahalanobis). Choice imp just like LwP

▪ Unlike LwP which does prototype based comparison, nearest neighbors method
looks at the labels of individual training inputs to make prediction

▪ Applicable to both classifn as well as regression (LwP only works for classifn)

Wait. Did you say distances from

ALL the training points? That’s

gonna be sooooo expensive! 

Yes, but let’s not worry

about that at the moment.

There are ways to speed

up this step

CS771: Intro to ML

Nearest Neighbors for Classification

9

CS771: Intro to ML

Nearest Neighbor (or “One” Nearest Neighbor)
10

Test point Test point

Interesting. Even with Euclidean

distances, it can learn nonlinear

decision boundaries?

Indeed. And that’s

possible since it is a “local”

method (looks at a local

neighborhood of the test

point to make prediction)

Decision boundary

Nearest neighbour approach induces

a Voronoi tessellation/partition of the

input space (all test points falling in a

cell will get the label of the training

input in that cell)

CS771: Intro to ML

▪ In many cases, it helps to look at not one but 𝐾 > 1 nearest neighbors

▪ Essentially, taking more votes helps!
▪ Also leads to smoother decision boundaries (less chances of overfitting on training data)

K Nearest Neighbors (KNN)
11

𝐾 = 1𝐾 = 3Test input
How to pick the

“right” K value?

K is this model’s

“hyperparameter”. One way

to choose it is using “cross-

validation” (will see shortly)

Also, K should ideally be an

odd number to avoid ties

CS771: Intro to ML

KNN in Python (NumPy) Code
12

CS771: Intro to ML

▪ Rather than looking at a fixed number 𝐾 of neighbors, can look inside a ball of a
given radius 𝜖, around the test input

𝜖-Ball Nearest Neighbors (𝜖-NN)
13

Test input

So changing 𝜖 may change

the prediction. How to pick

the “right” 𝜖 value?

Just like K, 𝜖 is also a

“hyperparameter”. One way

to choose it is using “cross-

validation” (will see shortly)

CS771: Intro to ML

▪ The standard KNN and 𝜖-NN treat all nearest neighbors equally (all vote equally)

▪ An improvement: When voting, give more importance to closer training inputs

Distance-weighted KNN and 𝜖-NN
14

𝐾 = 3
Test input

1

3

1

3

1

3
+ + =Unweighted KNN prediction:

3

5

1

5

1

5
+ + =Weighted KNN prediction:

In weighted approach, a single red training

input is being given 3 times more importance

than the other two green inputs since it is

sort of “three times” closer to the test input

than the other two green inputs
𝜖-NN can also be made

weighted likewise

CS771: Intro to ML

▪ Can apply KNN/𝜖-NN for other supervised learning problems as well

▪Multi-class classification
▪ Each input’s label is categorical with 𝐾 possible values (assuming total 𝐾 classes)

▪ Can also represent the label as a one-hot vector of length 𝐾

▪ Regression
▪ Each input’s label is a real number

▪ Tagging/multi-label learning

▪ Each input’s label is a binary vector of length 𝐿 (𝐿 is the number of tags – the goal is to
predict the presence/absence of each tag)

KNN/𝜖-NN for Other Supervised Learning Problems
15

Pic source: https://www.microsoft.com/en-us/research/uploads/prod/2017/12/40250.jpg

Assuming discrete/categorical labels with 5 possible values,

the one-hot representation will be an all zeros vector of size

5, except a single 1 denoting the value of the discrete label,

e.g., if label = 3 then one-hot vector = [0,0,1,0,0]

CS771: Intro to ML

▪ Let’s denote the set of K nearest neighbors of an input 𝐱 by 𝑁𝐾 𝐱

▪ The unweighted KNN prediction 𝐲 for a test input 𝐱 can be written as

▪ This form makes direct sense of regression and for cases where the each output
is a vector (e.g., multi-class classification where each output is a discrete value
which can be represented as a one-hot vector, or tagging/multi-label classification
where each output is a binary vector)

▪ For binary classification, assuming labels as +1/-1, we predict as sign(
1

𝐾
 σ𝑖∈𝑁𝐾(𝐱) 𝐲𝑖)

KNN Prediction Rule: The Mathematical Form
16

𝐲 =
1

𝐾
 ෍

𝑖∈𝑁𝐾(𝐱)

𝐲𝑖

CS771: Intro to ML

Nearest Neighbors: Some Comments
17

▪ An old, classic but still very widely used algorithm
▪ Can sometimes give deep neural networks a run for their money ☺

▪ Can work very well in practical with the right distance function

▪ Comes with very nice theoretical guarantees

▪ Also called a memory-based or instance-based or non-parametric method
▪ No “model” is learned here (unlike LwP). Prediction step uses all the training data

▪ Requires lots of storage (need to keep all the training data at test time)

▪ Prediction step can be slow at test time
▪ For each test point, need to compute its distance from all the training points

▪ Clever data-structures or data-summarization techniques can provide speed-ups

CS771: Intro to ML

▪ Can use techniques to reduce the training set size
▪ Several data summarization techniques exist that discard redundant training inputs

▪ Now we will require fewer number of distance computations for each test input

▪ Can use techniques to reduce the data dimensionality (no. of features)
▪ Won’t reduce no. of distance computations but each distance computation will be faster

▪ Compressing each input into a small binary vector (a type of dim-red)
▪ Distance/similarity computation between bin. vecs is very fast (can even be done in H/W)

▪ Various other techniques as well, e.g.,
▪ Locality Sensitive Hashing (group training inputs into buckets)

▪ Clever data structures (e.g., k-D trees) to organize training inputs

▪ Use a divide-and-conquer type approach to narrow down the search region

Speeding-up Nearest Neighbors
18

We will look at Decision Trees which is

also like a divide-and-conquer approach

CS771: Intro to ML

▪ Every ML model has some hyperparameters that need to be tuned, e.g.,
▪ K in KNN or 𝜖 in 𝜖-NN

▪ Choice of distance to use in LwP or nearest neighbors

▪Would like to choose h.p. values that would give best performance on test data

Hyperparameter Selection
19

Okay. So I can try multiple

hyperparam values and choose the

one that gives the best accuracy on

the test data. Simple, isn’t it?

Beware. You are committing a

crime. Never Ever touch your test

data while building the model

Oops, sorry!

What to do

then?

Use cross-validation – use a part of your

training data (we will call it “validation/held-out

set”) to select best hyperparam values.
Is validation set a good

proxy to test set? Usually yes since training set (from

which the val set is taken) and test

sets are assumed to have similar

distribution)

CS771: Intro to ML

Cross-Validation
20

Randomly Split

Test Set

Validation SetActual Training Set

Training Set (assuming bin. class. problem)

Randomly split the original training data into

actual training set and validation set. Using

the actual training set, train several times,

each time using a different value of the

hyperparam. Pick the hyperparam value that

gives best accuracy on the validation set

What if the random

split is unlucky (i.e.,

validation data is not

like test data)?

If you fear an unlucky split, try multiple splits. Pick

the hyperparam value that gives the best average

CV accuracy across all such splits. If you are using

N splits, this is called N–fold cross validation

No peeking while building the model

Note: Not just h.p. selection; we

can also use CV to pick the best

ML model from a set of different

ML models (e.g., say we have to

pick between two models we may

have trained - LwP and nearest

neighbors. Can use CV to choose

the better one.

Class 1 Class 2

CS771: Intro to ML

Next Class

▪Decision Trees and Forests

21

	Slide 1: LwP (contd), Nearest Neighbors
	Slide 2: LwP: The Prediction Rule, Mathematically
	Slide 3: LwP: The Prediction Rule, Mathematically
	Slide 4: Learning with Prototypes (LwP)
	Slide 5: LwP: Some Failure Cases
	Slide 6: LwP: Some Concluding Remarks
	Slide 7: Nearest Neighbors
	Slide 8: Nearest Neighbors
	Slide 9: Nearest Neighbors for Classification
	Slide 10: Nearest Neighbor (or “One” Nearest Neighbor)
	Slide 11: K Nearest Neighbors (KNN)
	Slide 12: KNN in Python (NumPy) Code
	Slide 13: script epsilon-Ball Nearest Neighbors (script epsilon-NN)
	Slide 14: Distance-weighted KNN and script epsilon-NN
	Slide 15: KNN/script epsilon-NN for Other Supervised Learning Problems
	Slide 16: KNN Prediction Rule: The Mathematical Form
	Slide 17: Nearest Neighbors: Some Comments
	Slide 18: Speeding-up Nearest Neighbors
	Slide 19: Hyperparameter Selection
	Slide 20: Cross-Validation
	Slide 21: Next Class

