
The Last Few Bits..

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

Debugging ML Algorithms

2

CS771: Intro to ML

What is going wrong?

▪ What to do when our model (say logistic regression) isn’t doing well on test data

▪ Use more training examples?

▪ Use a smaller number of features?

▪ Introduce new features (can be combinations of existing features)?

▪ Try tuning the regularization parameter?

▪ Run (the iterative) optimizer longer, i.e., for more iterations

▪ Change the optimization algorithm (e.g., GD to SGD or Newton..) or the learning rate?

▪ Give up and switch to a different model (e.g., SVM or deep neural net)?

3

CS771: Intro to ML

High-Bias or High-Variance?

▪ The bad performance (low accuracy on test data) of a model could be due either

▪ High Bias: Too simple model; doesn’t even do well on training data

▪ High Variance: Even small changes in training data lead to high fluctuation in model’s performance

▪ High bias means underfitting, high variance means overfitting

▪ Looking at the training and test error can tell which of the two is the case

4

Adding more training examples can

possibly help here because we possibly

have a complex model but not enough

training data to learn it well

Or regularize the model better to

prevent overfitting or use fewer

features, or switch to a simpler model

Both training and test

errors are large

Adding more training examples won’t

help as the model itself is too simple

Use a more complex

model or increase the

number of features

Small training error

and large test error

CS771: Intro to ML

Learning from
Imbalanced Data

5

CS771: Intro to ML

Learning when classes are imbalanced

▪ When classes are imbalanced, even a “stupid” classifier can give high accuracy but

looking at accuracy alone may be misleading

6

A stupid classifier: Simply predict

everything as non-phishing.

Gives close to 100% accuracy
But likely to do badly on test data,

particularly phishing mails (all will

be predicted as non-phishing)

If we use classification loss/accuracy as

our loss function, the learned model may

indeed prefer simply predicting each input

to be from the majority class

For such data with imbalanced classes,

we need ways so that the majority

class is not given undue importance

CS771: Intro to ML

Solution 1: Balancing the training data

▪ Can balanced the training data by

▪ Under-sampling the majority class examples

▪ Over-sampling the minority class examples

7

ℒ 𝒘 = σ𝑖=1
𝑁 𝛽𝑦𝑖

ℓ(𝒙𝑖 , 𝑦𝑖 , 𝒘)

where 𝛽+1 ≫ 𝛽−1

Equivalent to

Weighted loss function with much

larger importance given to loss

function terms of positive examples

than negative examples

CS771: Intro to ML

Solution 2: Changing the loss function

▪ Don’t use loss functions that define loss or accuracy on per-example basis

▪ Instead, use loss function that use example pairs (one positive and one negative)

▪ Assuming our model to be defined by some function 𝑓(𝒙) (e.g., 𝒘⊤𝒙), define a loss

8

𝐿 𝒘 = ෍
𝑖=1

𝑁

ℓ(𝑥𝑖 , 𝑦𝑖 , 𝒘)

This loss function is a simple sum of

losses on individual training examples.

Not ideal for imbalanced classes

Now we don’t care about per-example

accuracy but care about whether the

positive examples get a higher score

than the negative examples (i.e., we

are only preserving their relative rank)

Such loss functions can known

as “pairwise loss functions”

Usual regularaizer on 𝑓

An input with

positive label

An input with

negative label

CS771: Intro to ML

Ensemble Methods

9

CS771: Intro to ML

Some Simple Ensembles

▪ Voting or Averaging of predictions of multiple models trained on the same data

▪ “Stacking”: Use predictions of multiple already trained models as “features” to train a
new model and use the new model to make predictions on test data

10

Stacking sort of has a flavor of

deep learning where hidden

layers extract good features

Here, that role is being

played by these other

already trained models

In stacking, level 1 and level 2

models are trained independently

(first level 1 and then level 2)

CS771: Intro to ML

Mixture of Experts (MoE) based Ensemble

▪ Mixture of Experts (MoE) is a very general idea

▪ We assume 𝑚 “simple” models, usually of the same type, e.g., 𝑚 linear SVMs or 𝑚
logistic regression models, or 𝑚 deep neural nets (usually all with same architecture)

▪ MoE is very popular in classical ML as well as “modern” deep learning

11

Gating (also called “routing”) function

which outputs an 𝑚 dimensional vector

𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑚] which indicates us

how much importance should be given to

each expert for this input 𝑥

Experts models and the

gating/routing function

are learned jointly using

all the training data

Some variants of MoE

pick only one expert or

a small subset of expert

In that case 𝒛 will be a

one-hot or sparse

binary vector The combination is much

more powerful than the

individual expert models

MoE can also be

formulated like a latent

variable model and learned

using ALT-OPT or EM

CS771: Intro to ML

Ensembles using Bagging and Boosting

▪ Both use a single training set 𝒟 to learn an ensemble consisting of several models

▪ Both construct 𝑁 datasets from the original training set 𝒟 and learn 𝑁 models

▪ Bagging can do this in parallel for all the 𝑁 models

▪ Boosting requires a sequential approach for 𝑁 rounds

12

Figure credit: https://www.blog.dailydoseofds.com/p/an-animated-guide-to-bagging-and

Bagging Boosting

CS771: Intro to ML

Bagging (Bootstrap Aggregation)
13

Figure adapted from: https://www.blog.dailydoseofds.com/p/an-animated-guide-to-bagging-and

Generated bootstrapped

datasets using sampling

with replacement from

original training data

Sampling with replacement

will give about 63% unique

training examples (if both

datasets are of equal size)

To predict the output for a

new test input, we apply all

these models and average

their predictions

Each bootstrapped

dataset consists of a

subset of all the

training examples

Bootstrapping can also be done

at feature level (each model

using a randomly chosen

subset of all the features)

Random forests use both

bootstrapping at examples

level and at features level

Bagging primarily reduces the variance

(reduces chances of overfitting by not

relying completely on some example(s)

since each model only uses a subset)

but can also reduce bias to some extent

CS771: Intro to ML

Boosting
14

Figure adapted from: https://www.blog.dailydoseofds.com/p/an-animated-guide-to-bagging-and

The final model will be an

important-weighted combination

of all these models

Importance of each

model is its accuracy

𝑓1

𝑓2

𝑓𝑁

“Weighted data” means that we

are increasing the importance of

examples that were mis-

predicted in the previous round

and decrease it for examples

that were correctly predicted

Note that here we have

two types of importances:

importance of each

training example and

importance of each model

Boosting assumes that the

individual models are

simple/weak models that

can be easily learned

Boosting trains them

sequentially and combines

them to get a “boosted”

powerful model

Boosting primarily reduces the

bias by making the weak

(underfitted) models stronger

but can also reduce variance to

some extent

CS771: Intro to ML

A Boosting Algo: AdaBoost (Adaptive Boosting)

▪ In many ML problems, we can assign importance weight to each example, e.g., by weighing

each term in the loss functions, i.e., ℒ 𝒘 = σ𝑖=1
𝑁 𝛽𝑖ℓ(𝒙𝑖 , 𝑦𝑖 , 𝒘)

▪ AdaBoost is based on optimizing such a loss function

▪ Initialize the ensemble as ℰ = {} and 𝜷 as 𝜷(0) = [
1

𝑁
,

1

𝑁
, … ,

1

𝑁
]

▪ For round 𝑡 = 1,2, … , 𝑇

▪ 𝒘(𝑡) = argmin𝒘 σ𝑖=1
𝑁 𝛽𝑖

(𝑡−1)
ℓ(𝒙𝑖 , 𝑦𝑖 , 𝒘) and add it to ensemble ℰ = {ℰ ∪ 𝒘 𝑡 }

▪ Define the total loss of 𝒘(𝑡) as 𝐿(𝒘(𝑡)) = σ𝑖=1
𝑁 𝛽𝑖

𝑡−1
ℓ(𝒙𝑖 , 𝑦𝑖 , 𝒘(𝑡))

▪ Compute the “importance” of 𝒘(𝑡) for the ℰ as 𝛼𝑡 = 𝑓(𝐿(𝒘𝑡))

▪ Increase/decrease importance 𝛽𝑖 of each training instance (𝒙𝑖 , 𝑦𝑖) for next round as

▪ Final model is ෝ𝒘 = σ𝑡=1
𝑇 𝛼𝑡𝒘(𝑡) importance-weighted average of all 𝒘 𝑡 ’s

15

𝑓 is some function such that 𝛼𝑡 is high if

total loss 𝐿(𝒘𝑡) is low, and vice-versa

𝛽𝑖
(𝑡)

∝ ቐ
𝛽𝑖

(𝑡−1)
× exp 𝛼𝑡ℓ 𝒙𝑖 , 𝑦𝑖 , 𝒘 𝑡

𝛽𝑖
(𝑡−1)

× exp(−𝛼𝑡ℓ(𝒙𝑖 , 𝑦𝑖 , 𝒘(𝑡)))

(Decrease if 𝒘(𝑡) correctly predicted on (𝒙𝑖 , 𝑦𝑖))

(Increase if 𝒘(𝑡) mispredicted (𝒙𝑖 , 𝑦𝑖))

Importance of the

training example (𝒙𝑖 , 𝑦𝑖)

Initially assume equal

importance for all

training examples

We might know this beforehand

or estimate it during training

Or the importance

weighted total error

CS771: Intro to ML

AdaBoost: An Illustration

▪ Suppose we have a binary classification problems with each input having 2 features.

▪ Suppose we have a weak model like a simple DT (decision stump)

▪ Illustration of AdaBoost using a decision stump if run for 3 rounds

▪ The ensemble represents the overall model

▪ We got a nonlinear model from 3 simple linear models

▪ Note that the ensemble was constructed sequentially

Round 1 Round 2 Round 3

Correct

Mistakes

Increased 𝛽𝑖

Decreased 𝛽𝑖

Mistakes

Correct

Original

dataset

Increased 𝛽𝑖

Decreased 𝛽𝑖

CS771: Intro to ML

Gradient Boosting

▪ Consider learning a function 𝑓(𝑥) by minimizing a squared loss
1

2
𝑦 − 𝑓 𝑥

2

▪ Gradient boosting is a sequential way to construct such 𝑓(𝑥)

▪ For simplicity, assume we start with 𝑓0(𝑥) =
1

𝑁
σ𝑖=1

𝑁 𝑦𝑖

▪ Given previously learned model 𝑓𝑚(𝑥), let’s assume the following “improvement” to it

▪ Thus the goal for the next round is to learn the “residual” ℎ 𝑥 = 𝑦 − 𝑓𝑚(𝑥)

▪ Residual is negative gradient of the loss w.r.t. 𝑓(𝑥) - thus called “gradient boosting”

▪ The final model 𝑓𝑀 𝑥 , once the residual is sufficiently small, is what we will use

▪ The idea of gradient boosting is applicable to classification too

▪ XGBoost (eXtreme Gradient Boosting) is a very popular grad boosting algo

𝑓𝑚+1 𝑥 = 𝑓𝑚 𝑥 + ℎ(𝑥)
“Residual” which, if added

to 𝑓𝑚(𝑥), will make the

new prediction 𝑓𝑚+1 𝑥

closer to 𝑦

17

Based on sequentially

constructing a DT

CS771: Intro to ML

Active Learning
(an example of learning with human-in-the-loop)

18

CS771: Intro to ML

Active Learning

▪ Standard supervised learning is “passive” (learner has no control; we just give it data)

▪ We take a random sample of inputs, get them labelled by an expert, and train a model

19

I had no say in what

data I want to learn

from  I was just

provided some randomly

chosen labeled data and

was asked to learn

CS771: Intro to ML

Active Learning

▪ In active learning, learner can request what training examples it wants to learn from

20

My current model in round 𝑡

is 𝑓𝑡. Based on 𝑓𝑡, I have

identified some unlabeled

inputs that are “hard” for me

to predict correctly (with high

confidence). Please provide

me their true labels. I will add

them to my current training

set and retrain to update 𝑓𝑡

Many ways to identify what

“hard” inputs are. One way

is to look at the confidence

of the current model’s

predictions on each

unlabeled input

Can use entropy as confidence in

classification problems

Can use variance as confidence

in regression problems

CS771: Intro to ML

Learning in the wild

21

CS771: Intro to ML

Domain Adaptation

▪ We may have a “source” model trained on data

from some domain

▪ We might want to deploy it in a new domain

▪ Performance of the source model will suffer

▪ To prevent this, we usually perform “domain

adaptation” or “transfer learning”

▪ These are broad terms covering a variety of

techniques that “finetune” the source model using

labelled/unlabeled data from the new domain

22
We do expect some

“commonality” (e.g., some

common set of features)

between the two domains

otherwise we can’t hope to

have any adaptation/transfer

CS771: Intro to ML

The ending note..

▪ Good features are important for learning well

▪ The “classical” ML methods we studied in this course still continue to have high relevance

▪ Success of deep learning is largely attributed to (automatically learned) good features

▪ Deep learning is not a panacea – often simple classical models can do comparably/better

▪ First understand your data (plot/visualize/look at some statistics of the data, etc)

▪ Always start with a simple model that you understand well

▪ Try to first understand if your data really needs a complex model

▪ Think carefully about your features, how you compute similarities, etc.

▪ Helps to learn to first diagnose a learning algorithm rather than trying new ones

▪ Understanding of optimization algos, loss function, bias-variance trade-offs, etc is important

▪ No free lunch. No learning algorithm is “universally” good

23

	Slide 1: The Last Few Bits..
	Slide 2: Debugging ML Algorithms
	Slide 3: What is going wrong?
	Slide 4: High-Bias or High-Variance?
	Slide 5: Learning from Imbalanced Data
	Slide 6: Learning when classes are imbalanced
	Slide 7: Solution 1: Balancing the training data
	Slide 8: Solution 2: Changing the loss function
	Slide 9: Ensemble Methods
	Slide 10: Some Simple Ensembles
	Slide 11: Mixture of Experts (MoE) based Ensemble
	Slide 12: Ensembles using Bagging and Boosting
	Slide 13: Bagging (Bootstrap Aggregation)
	Slide 14: Boosting
	Slide 15: A Boosting Algo: AdaBoost (Adaptive Boosting)
	Slide 16: AdaBoost: An Illustration
	Slide 17: Gradient Boosting
	Slide 18: Active Learning (an example of learning with human-in-the-loop)
	Slide 19: Active Learning
	Slide 20: Active Learning
	Slide 21: Learning in the wild
	Slide 22: Domain Adaptation
	Slide 23: The ending note..

