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Fine-tuning and Transfer Learning
▪ Deep neural networks trained on one dataset can be reused for another dataset

▪ It is like transferring the knowledge of one learning task to another learning task

▪ This is typically done by “freezing” most of the lower layers and finetuning the output layer 
(or the top few layers) – this is known as “fine-tuning”
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This example is for an 

MLP like architecture but 

fine-tuning can be done 

for other architectures as 

well, such as RNN, CNN, 

transformers, etc 

Figure source: Dive into Deep Learning (Zhang et al, 2023)

Initial model with frozen 

layers is called the “pre-

trained” model and the 

updated model is called 

the “fine-tuned” model

BERT (pre-trained in unsupervised manner) 

fine-tuned for a sentence classification task 

by adding a fully connect MLP to predict 

class-label of a sentence
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Unsupervised Pre-training
▪ Self-supervised learning is a powerful idea to learn good representations unsupervisedly

▪ Self-supervised learning is key to unsupervised pre-training of deep learning models

▪ Such pre-trained models can be fine-tuned for any new task given labelled data

▪ Models like BERT, GPT are usually pre-trained using self-supervised learning
▪ Then we can finetune them further for a given task using labelled data for that task

3

Hide part of the input 

and predict it using the 

remaining parts

Self-supervised learning will help us learn 

a good encoder (feature representation)
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Auto-encoders

▪ Auto-encoders (AE) are used for unsupervised feature learning

▪ Consist of an encoder 𝑓 and a decoder 𝑔
▪ 𝑓 and 𝑔 can be deep neural networks (MLP, RNN, CNN, etc)
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𝑓 𝑔

𝑧 = 𝑓(𝑥)

ො𝑥 = 𝑔(𝑓 𝑥 )
Goal: Learn 𝑓 and 𝑔 s.t. 𝑥 − ො𝑥  is small 

Dimensionality of 𝒛 can be chosen to be 

smaller or larger than that of 𝒙

If  using AE for 

dimensionality 

reduction

Sometimes we want to 

learn “overcomplete” 

feature representations 

of the input

In such cases, need to 

impose additional 

constraints on 𝑓 so that we 

don’t learn an identify 

mapping from 𝑥 to 𝑧

If  using a prior on 𝒛, we can a 

probabilistic latent variable model 

called variational auto-encoder (VAE)

Note: Usually only the encoder is of 

use after the AE has been trained 

(unless we want to use the decoder 

for reconstructing the inputs later)
VAE can also generate synthetic 

data usings its decoder 

(standard AE’s decoder can’t 

generate “new” data)

A special type of self-supervised 

learning: The whole input is being 

predicted by first compressing it and 

then uncompressing
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Convolution-less Models for Images: MLP-mixer
▪ Many MLPs can be mixed to construct more powerful deep models (“MLP-mixer”)

5

‘T’ stands for 

Transpose

MLP-Mixer: An all-MLP Architecture for Vision (Tolstikhin et al, 2021)
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Contrastive Learning

▪ Can learn good features by comparing/”contrasting” similar and dissimilar object pairs

▪ Such pairs can be provided by to the algorithm (as supervision), or the algorithm can 

generate such pairs by itself using “data augmentation” (as shown in example below)

▪ Such “contrastive learning” of features is also related to “distance metric learning” algos
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Augmentation by cropping 

and resizing. The class of the 

image remains unchanged in 

this augmentation

The corresponding 

embeddings for such 

pairs must be close 

(“attract”) to each other

The embeddings for “non-match” 

pairs must be far away (“repel”) 

from each other

Or “triplets” (e.g., “cat” is 

more similar to “dog” 

than to a “table”)

𝑑 𝒙𝑖 , 𝒙𝑗 = 𝒙𝑖 − 𝒙𝑗
⊤

𝐌(𝒙𝑖 − 𝒙𝑗)

Distance metric learning 

by learning 𝐌 given 

similar/dissimilar pairs
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Zero-Shot Learning and CLIP

▪ What if  our training data doesn’t have the test data classes?

▪ Several methods to solve ZSL using deep learning. CLIP is a recent approach
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Suppose, at test time, we want 

our predicted labels to be of the 

form “a photo of a {object}”

Suppose our training data 

contains image-caption pairs

CLIP: “Contrastive Language-Image Pre-training” (Radford et al, 2021)  

Learn the text and image encoders such 

that the embeddings of the image and its 

corresponding text have high similarity 

List of all 

possible objects 

that an image 

could be about
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Bias-Variance Trade-off
▪ Assume ℱ to be a class of models (e.g., linear classifiers with some pre-defined features)

▪ Suppose we’ve learned a model 𝑓 ∈ ℱ learned using some (finite amount of) training data

▪ We can decompose the test error 𝜖(𝑓) of 𝑓 as follows

▪ Here 𝑓∗ is the best possible model in ℱ assuming infinite amount of training data

▪ Approximation error: Error of 𝑓∗ because of model class ℱ being too simple

▪ Also known as “bias”(high if  the model is simple)

▪ Estimation error: Error of 𝑓 (relative to 𝑓∗) because we only had finite training data
▪ Also known as “variance”(high if  the model is complex)

▪ Because we can’t keep both low, this is known as the bias-variance trade-off
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Can bias reduce by 

making class ℱ richer

E.g., going from linear 

models to deep nets 

or by adding more 

features

Making ℱ richer will also cause 

estimation error to increase 

Reason: We are now learning a 

more complex model using the 

same amount of training data
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Bias-Variance Trade-off
▪ Bias-variance trade-off implies how training/test losses vary as we increase model complexity
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Deep Neural Nets and Bias-Variance Trade-off
▪ Bias-variance trade-off doesn’t explain well why deep neural networks work so well

▪ They have very large model complexity (massive number of parameters – massively “overparametrized”)

▪ Despite being massively overparametrized, deep neural nets still work well because

▪ Implicit regularization: SGD has noise (randomly chosen minibatches) which performs regularization

▪ These networks have many local minima and all of them are roughly equally good

▪ SGD on overparametrized models usually converges to “flat” minima (less chance of overfitting)

▪ Learning of good features from the raw data

▪ Ensemble-like effect (a deep neural net is akin to an ensemble of many simpler models)

▪ Trained on very large datasets 
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A sharp 

minima

A flat minima

SGD because of the 

“noise” can escape 

such sharp minima

Such minima are not good 

because they might represent 

an overfitted solution

Such a solution is 

less likely to be an 

overfitted solution 

because other nearby 

solutions are also 

reasonably good
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Double Descent Phenomenon
▪ Overparametrized deep neural networks exhibit a “double descent” phenomenon

▪ Bias-variance trade-off seen only in the underparametrized regime

▪ Beyond a point (in the overparametrized regime), the test error starts decreasing once again 
even as the model gets more and more complex
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Figure source: “A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning” (Dar et al, 2021)
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Deep Neural Networks: A Summary
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Common Types of Layers used in Deep Learning
▪ Linear layer: Have the form 𝑾⊤𝒙 (used in fully connected networks like MLP and also in some 

parts of other type of models like CNN, RNN, transformers, etc)

▪ Nonlinearity: Activation functions (sigmoid, tanh, ReLU, etc)

▪ Essential for any deep neural network (without them, deep nets can’t learn nonlinear functions)

▪ Convolutional layer: Have the form 𝑾 ∗ 𝒙 (here * denotes the conv operation)

▪ Usually used in conjunction with pooling layers (e.g., max pooling, average pooling)

▪ Residual or skip connections: Help when learning very deep networks (e.g., ResNets, 
transformers, etc) by avoiding vanishing/exploding gradients

▪ Normalization layer such as batch normalization and layer normalization

▪ Dropout layer: Helps to regularize the network

▪ Recurrent layer: Used in sequential data models such as RNNs and variants

▪ Attention layer: Used in encoder-decoder models like transformers (also in some RNN variants)

▪ Multiplicative layer: Have the form 𝒙⊤𝑾𝒛 (used when each input has two parts 𝒙 and 𝒛)

13



CS771: Intro to ML

Popular Deep Learning Architectures

▪ MLP: Feedforward fully connected network

▪ Not preferred when inputs have spatial/sequential structures (e.g., image, text)

▪ Some variants of MLP (e.g., MLP-mix) perform very well on such data as well

▪ CNN: Feedforward but NOT fully connected (but last few layers, especially output, are)

▪ RNNs: Not feedforward (hidden state of one timestep connects with that of the next)

▪ Transformers: Very powerful models for sequential data
▪ Unlike RNNs, can process inputs in parallel. Also uses (self) attention to better capture long range 

dependencies and context in the input sequence

▪ Graph Neural Networks: Used when inputs are graphs (e.g., molecules) 

▪ Autoencoders and Deep Generative Models: For unsupervised representation learning 
and synthetic data generation tasks
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