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CS771: Intro to ML

Recap: RNNs
▪ RNNs are used when each input or output or both are sequences of tokens

▪ Hidden state 𝒉𝑡 is supposed to remember everything up to time 𝑡 − 1. However, in practice, 
RNNs have difficulties remembering the distant past

▪ Variants such as LSTM, GRU, etc mitigate this issue to some extent

▪ Slow processing is another major issue (e.g., can’t compute 𝒉𝑡 before computing 𝒉𝑡−1)  
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Attention

▪ We use attention to “focus” on some part of interest in an input
▪ Other nearby relevant parts help us focus

▪ Other irrelevant parts do not contribute in the process

▪ In sequence modeling problems, we can use attention between input and output 
tokens (between encoder and decoder parts), as well as among the inputs only (only 
within the encoder part)
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Pic credit: https://lilianweng.github.io/posts/2018-06-24-attention/
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RNN with Attention

▪ RNNs have also been augmented with attention to help remember the distant past

▪ Attention mechanism for a bi-directional RNN encoder-decoder model
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Pic source: https://matthewmcateer.me/blog/getting-started-with-attention-for-classification/
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Self-Attention

▪ With self-attention, each token 𝒙𝑛 can “attend to” all other tokens of the same 
sequence when computing this token’s embedding 𝒉𝑛

▪ Attention helps capture the context better and in a much more “global” manner
▪ “Global”: Long ranges captures and in both directions (previous and ahead)
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An input 

sequence

How much the word 

“it” is being 

“attended to” by 

other words in the 

input sequence

The input sequence 

but differing in the last 

word (tired -> wide)

Note how the 

attention has 

changed

Example credit: https://blog.research.google/2017/08/transformer-novel-neural-network.html
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Self-Attention

▪ For an 𝑁 length sequence, the attention scores for each token 𝒙𝑛 are computed using 

▪ A query vector 𝒒𝑛 associated with that token 

▪ 𝑁 key vectors 𝑲 = {𝒌1, 𝒌2, … , 𝒌𝑁} (one per token)

▪ 𝑁 value vectors 𝑽 = {𝒗1, 𝒗2, … , 𝒗𝑁} associated with the key vectors 

▪ One way to compute the attention score is

▪ Given attention scores, encoder’s hidden state for 𝒙𝑛 is
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How much token 𝑖 
attends to token 𝑛

𝒉𝑛 =  ෍
𝑖=1

𝑁

𝛼𝑛,𝑖 𝒗𝑖  
Attention-weighted sum of 

the value vectors of all the 

tokens in the sequence 𝑯 =  softmax
𝑸𝑲⊤

𝑑
 𝑽

Dot-product attention 

(query and key assumed 

𝑑 dimensional)

“Scaled” dot-product attention

𝑁 × 𝑣

𝑸 and 𝑲 are 

assumed 𝑁 × 𝑑 𝑁 × 𝑣

Thus the encoding of 𝑥𝑛 

depends on all the tokens 

in the sequence

Provided in form of a 𝐷-dim 

embedding (e.g., word2vec)

𝑸 = 𝑿𝑾𝑄

𝑲 = 𝑿𝑾𝐾

𝑽 = 𝑿𝑾𝑉

𝑁 × 𝑑 matrix 

of “queries”

𝑁 × 𝑑 matrix 

of 𝑁 “keys”

𝑁 × 𝐾 matrix of 

“value” vectors 

of the 𝑁 keys

Row 𝑛 is 𝒒𝑛

Linear projection 

by 𝐷 × 𝑑 matrix

𝑁 × 𝐷 matrix of original 

embeddings from the input layer

Learnable

Assuming same 

size 𝑑 as query

𝐷 × 𝑑 matrix. 

Learnable

𝐷 ×K matrix. 

Learnable

Dividing by 𝑑 ensures variance 

of the dot product is 1
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Transformers

▪ Transformers also use the idea of attention

▪ “self-attention” over all input tokens

▪ “self-attention” over each output token and previous tokens

▪ “cross-attention” between output tokens and input tokens

▪ Transformer also compute embeddings of all tokens in parallel

▪ Transformers are based on the following key ideas*
▪ “Self-attention” and “cross-attention” for computing the hidden states

▪ Positional encoding

▪ Residual connections

▪ Attention helps capture the context better and in a much more 
“global” manner in sequence data
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“Attention is all you need” (Vaswani et al, 2017)
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Positional Encoding

▪ Transformers also need a “positional encoding” for each token of the input since they 
don’t process the tokens sequentially (unlike RNNs)

▪ Let 𝒑𝑖 ∈ ℝ𝑑 be the positional encoding for location 𝑖. One way to define it is

▪ Given the positional encoding, we add them to the token embedding

▪ The above positional encoding is pre-defined but can also be learned
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Here 𝐶 denotes the 

maximum possible 

length of a sequence

Positional encoding 

vector for location 𝑖 
assuming 𝑑 = 4

ෝ𝒙𝑖 = 𝒙𝑖 + 𝒑𝑖

Note the smooth 

transition as the position 

index changes

Pic credit: PML-1 (Murphy, 2023)
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Zooming into the encoder and the decoder..
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An Encoder Block

   (N such blocks)

A Decoder Block connected with 

the corresponding encoder block

            (N such blocks)

Decoder’s output layer

Ƹ𝑡𝑚
(𝑁)

=  argmax𝑖=1,…,𝑉 softmax(𝑾𝑡𝑚
(𝑁)

)

With weight matrix 𝑊 

of size 𝑉 × 𝐷 where 

𝑉 is vocab size and 

𝐷 is the 

dimensionality of the 

last decoder block 

embeddings 𝑡𝑚
(𝑁)

Note the one position 

(towards right) shift 

between decoder’s 

input vs output

Each FF (feed-forward) 

is usually a linear layer + 

ReLU nonlinearity + 

another linear layer
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 from the 

previous step (𝑚 − 1) 

in the sequence 

“auto-regressive” 

generation

Blue arrows are the 

residual connections

Input (“source”) 

token embeddings 

Fixed in the first layer (obtained 

from an input embedding table) 

and learned for subsequent layers

Output (“target”) 

token embeddings 

𝑡𝑠 is a special start of 

sequence (SOS)token

𝑡𝑒 is a special end of 

sequence (EOS)token

Most likely output 

token at step 𝑚

FF operation is applied 

“position-wise” (for each 

token separately) but all 

FF blocks in the layer 

have same weights 

Like FF, linear 

operation is 

also applied 

position-wise

Layer normalization 

(batch normalization is 

difficult since difference 

input sequences can be 

of different lengths)
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Multi-head Attention (MHA)

▪ A single attention function can capture only one notion of similarity

▪ Transformers therefore use multi-head attention (MHA)
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Pic credit: https://huggingface.co/learn/nlp-course/chapter1/
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(Masked) Multi-head Attention (MHA)
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Pic  source: “Attention is all you need” (Vaswani et al, 2017)

Here, on the output side, 

we used “masked” MHA 

because during output 

generation, we don’t want 

to look at future tokens
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Computing Attention Efficiently

▪ The standard attention mechanism is inefficient for large sequences

▪ Many ways to make it more efficient, e.g., 

𝑯 =  softmax
𝑸𝑲⊤

𝑑
 𝑽

Sparse Attention 

𝑂(𝑇2) storage and 

computation cost for a 

𝑇 length sequence

Linearized Attention 

A nonlinear 

projection based 

on kernels

E.g., kernel 

random features 

projection

exp 𝑸𝑲⊤ ≈ 𝜙 𝑸 ⊤𝜙(𝑲)

Pic source: A Survey of Transformers (Lin et al, 2021)
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Popular Transformer Variants: BERT and GPT
▪ The standard transformer architecture is an encoder-decoder model

▪ Some models use just the encoder or the decoder of the transformer 

▪ BERT (Bidirectional Encoder Representations from Transformers)

▪ Basic BERT can be learned to encoder token sequences

▪ GPT (Generative Pretrained Transformer) 

▪ Basic GPT can be used to generate token sequences similar to its training data
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BERT

A transformer 

which contains 

only the encoder

Trained unsupervisedly 

using a missing token 

prediction objective

GPT

A transformer 

which contains 

only the decoder

Pre-trained using a 

next token 

prediction objective

Missing token which BERT tries to predict

This is just start of 

sentence token

This encoder can 

be used for other 

tasks by fine-tuning

Encoder Decoder

Also, no cross-attention 

since there is no encoder
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Transformers for Images: ViT
▪ Transformers can be used for images as well#. For image classification, it looks like this

▪ Early work showed ViT can outperform CNNs given very large amount of training data

▪ However, recent work* has shown that good old CNNs still rule! ViT and CNN perform 
comparably at scale, i.e., when both given large amount of compute and training data
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*ConvNets Match Vision Transformers at Scale (Smith et al, 2023)

Treat image 

patches as tokens 

of a sequence

Also use the 

position information

Only the encoder part of 

the transformer needed

On the output side, 

we just need an MLP 

with softmax outout 

# An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Dosovitskiy et al, 2020)


	Slide 1: Deep Neural Networks:  Attention Mechanism and Transformers
	Slide 2: Recap: RNNs
	Slide 3: Attention
	Slide 4: RNN with Attention
	Slide 5: Self-Attention
	Slide 6: Self-Attention
	Slide 7: Transformers
	Slide 8: Positional Encoding
	Slide 9: Zooming into the encoder and the decoder..
	Slide 10: Multi-head Attention (MHA)
	Slide 11: (Masked) Multi-head Attention (MHA)
	Slide 12: Computing Attention Efficiently
	Slide 13: Popular Transformer Variants: BERT and GPT
	Slide 14: Transformers for Images: ViT

