

Recap: RNNs

= RNNs are used when each input or output or both are sequences of tokens

R R0 A P
® @ @ @ el @ >

If the input is a word sequence then each x,,
represent the corresponding word's embedding
(either a pre-computed word embedding like
word2vec or a learned word embedding)

» Hidden state h; is supposed to remember everything up to time t — 1. However, in practice,
RNNs have difficulties remembering the distant past
= Variants such as LSTM, GRU, etc mitigate this issue to some extent

<

= Slow processing is another major issue (e.g., can’'t compute h; before computing h;_1)
CS771: Intro to ML

Attention

= \We use attention to "focus” on some part of interest in an input
= Other nearby relevant parts help us focus
= Other irrelevant parts do not contribute in the process

high attention

| ow atienuon | I‘

She is eating a green apple.

" |n sequence modeling problems, we can use attention between input and output
tokens (between encoder and decoder parts), as well as among the inputs only (only
within the encoder part)

Pic credit: https://lilianweng.github.io/posts/2018-06-24-attention/ CS771: Intro to ML

RNN with Attention

= RNNs have also been augmented with attention to help remember the distant past

= Attention mechanism for a bi-directional RNN encoder-decoder model

lts computation depends the
embeddings of all (past/future) tokens

o
h;

Context Vector

Positive or Negative
Classification

T
Ct = § aiih; S N
1=1

L1 L2

Pic source: https://matthewmcateer.me/blog/getting-started-with-attention-for-classification/

L3

> ?
ha™ Shr
L4 Ln

Output: Classification

Attention (Additive) layer:
parameterized by a simple
feed-forward network

Encoder: bidirectional RNN

CS771: Intro to ML

Self-Attention

= \With self-attention, each token x,, can "attend to" all other tokens of the same
sequence when computing this token's embedding h,,

The input sequence
but differing in the last

An input

. . O]
_ 9 word (tired -> wide) B o . 2
sequence cec2 T3, - 2£528,93Mg o3
S € 2 Ss2:oH < g 2 F ©c o o » o=z 8 3
E o ‘P/‘»;: ot -— //
7, /
How much the word . /
uitn iS being //’// //
“ " P& /
attended to" by : Note how the
other words in the 5 attention has
. w T“.
e R | - cundli) |
input sequence N @ 3 3 - changed o EE 8] 0 o 8
c B S o & 3§ @ 9 O = B 2 2 8 =
= | S S 23= = 8 5 F ©® © 0 = | = 2= 3

= Attention helps capture the context better and in a much more “global” manner
= “Global™ Long ranges captures and in both directions (previous and ahead)

Example credit: https://blog.research.google/2017/08/transformer-novel-neural-network.html CS771: Intro to ML

Provided in form of a D-dim

Selt-Attention
embedding (e.g., word2vec)

" For an N length sequence, the attention scores for each token x,, are computed using

N X D matrix of original Linear projection

= A query vector q,, associated with that token embeddings from the inputlayer | | by p x d matrix
N x d matri
= N key vectors K = {k4, Kk, ..., ky} (one per token) Rownis @y [| of Tque?:?x Q= XWO ~camable
= N value vectors V = {v4, V5, ..., vy} associated with the key vectors | D X d matrix.
Assuming same 1\; chkmatpx ~carmable
. . size d as query . - K — XWK
* One way to compute the attention score is | pyera—"
T Dot-product attention " >|< £ mattnx o Leamarglz .
How much token i . Ot-produc ‘value” vectors _
attends to token n — N (anl) (query and key assumed of the N keys V= XWV
n,t N Tp,. d dimensional)
Zj=1 exp(an]) Q and K are
. . , : : N X v
= Given attention scores, encoder's hidden state for x,, is assumed N X d

the value vectors of all the hn an ; vl H = S Oftm dX V

tokens in the sequence
i=1 _d

Dividing by vd ensures variance ') .
caled” dot-product attention
of the dot product is 1 P CS771: Intro to ML

Attention-weighted sum of 2 N N X v Q KT

Thus the encoding of xp,
depends on all the tokens
in the sequence

Transformers

Output
Probabilities

» Transformers also use the idea of attention
" “self-attention” over all input tokens (e ™
" “self-attention” over each output token and previous tokens e
= “cross-attention” between output tokens and input tokens e F‘ ﬁfﬁfﬁ
* Transformer also compute embeddings of all tokens in parallel Fovar }A“e}"t'(’”; N
. . Vo | ~CEED | | e
" ransformers are based on the following key ideas* e o
o ’ 1 o . 1 . . ;—) ;—}
= “Self-attention” and “cross-attention” for computing the hidden states — =
= Positional encoding ercoding QO & Encoding
Input Output
= Residual connections Emb%dm Embfdmg
Inputs Outputs

(shifted right)

= Attention helps capture the context better and in a much more
"global” manner in sequence data

“Attention is all you need” (Vaswani et al, 2017) CS771: Intro to ML

Positional Encoding

" Transformers also need a "positional encoding” for each token of the input since they
don't process the tokens sequentially (unlike RNNs)

= et p; € RY be the positional encoding for location i. One way to define it is

Here C denotes the

. . . . Note the smooth
maximum possible 1 l transition as the position
length of o5 = SI ;2741 = COS
ength of a sequence Di.2; S111 CQj/d s Pi2j+1 COS CQj/d index changes

Positional encoding

vector for location i 1 7} 1 1

assuming d = 4 - — |9] S 3 1.0
9 Pi [bln(co/4)360b(co/4)?bln(02/4)’00b(02/4)}

Row (paosition)

" Given the positional encoding, we add them to the token embedding

X; = X; + P

0 20
Column (encoding dimension)

" The above positional encoding is pre-defined but can also be learned

Pic credit: PML-1 (Murphy, 2023) CS771: Intro to ML

/ooming into the encoder and the decoder..

FF operation is applied

“position-wise" (for each Most likely output “auto-regressive” Output f,(,iv_)l from the
token separately) but all token at step m eneration previous step (m — 1)
FF blocks in the layer @ &) @) €3] g in the sequence
have same weights t t t t () V)
@® @) i’“'} """ 1 """ T """ f i t,m, = argmax;—, y softmax(Wt,, ")
A So2 4 S37, i Layer Normalization i
Fach FF (feed-forward) T i) /'y 3 3 |
is usually a linear layer + I — i t, is a special end of
N e D i - ! A(N) 2(N) 2(N) 2(N) e P
RelU nohl|near|ty N i | Layer Normalization | i i FF FF FF| |FF i t t3 t sequence (EOS)token
another linear layer H ' I 1 i
I < * +— ! i 1 | i f t t- t
i i : Layer Normalization — _ Soft ;\(Soft “‘a Soft 5 Softmax With weight matrix W
Layer normalization i | FF FF FF {]i 4 A L S— (Iglpi(eere'a:t'i:(;!]wi]sear etz |52 m,_i‘ oftma of size 7 x D where
" 1 . . % . .
(batch normalization is i 7' ¥ 5 i —i-» EraseAETien [Ever i also applicd T_‘ 1 2 t: 1 Vis vocab size and
difficult since difference | — ——— 1 | X L $—4J || position-wise Linear|[Linear{Linear|f{inear| | Disthe
, | Layer Normalization | ! 1 L —1 Lo Y A s < dimensionality of the
input sequences can be (5 ry 5 IJ} Laver*Normallza*tlon A : I ,ST B T 3 T last decoder block
of different lengths - 1 : : M2 ahHl v ~ (V)
he) { | self-Attention Layer i ! | Masked Self-Attention Layer || 1 t§) ty tg) t?(, 3 embeddings tp,
1 1 1
[y e —— wp— +--1- i w——" S ——— ——— o ,
Blue arrows are the p '1 a . 1 {)T $ Decoder'’s output layer
residual connections () (15’—1) S(f—l) t({’—l)t (¢-1) t(—1)t({’—1) , ” Note the one position
>1 >2 3 s 1 2 3 Output (“target’) (towards right) shift
Input ("source”) An Encoder Block A Decoder Block connected with | token embeddings between decoder’s
token embeddings the corresponding encoder block input vs output
(N such blocks) (N such blocks) ts is a special start of
Fixed in the first layer (obtained sequence (SOS)token

from an input embedding table)

and learned for subsequent layers CS771: Intro to ML

Multi-head Attention (MHA)

" A single attention function can capture only one notion of similarity

= Transformers therefore use multi-head attention (MHA)

Single Attention

Output

1

Attention
r t

Query Keys Values

Pic credit: https://huggingface.co/learn/nlp-course/chapterl/

Output

MHA

1

Concatenate and Project

f T

Output Output Output
| t |
Attention Attention Attention
t t+ ¢+ 1t t t 1 1 1
Query Keys Values Query Keys Values Query Keys Values

CS771: Intro to ML

(Masked) Multi-head Attention (MHA)

Multi-Head Attention

$ Attention(Q, K, V') = softmax(

Output
Probabilities
Linear
1
r\ Concat \5
Feed A4
Forward £ 11 1
~
e) ,% Scaled Dot-Product E-
Multi-Head Attention
Feed Attention | | 1
Forward T 7 Nx ‘, N— & A ‘» J
- — —~ — |
orm = : -
Nx | —{(Add & Norm) p— Linear pr| Linear PJ{ Linear
Multi-Head Multi-Head
Attention Attention
At T
k_ J _
Positional A Pa Qal
Encoding ®—O > Enc V K Q
Input Output
Embedding Embeddng J | Here, on the output side,
T we used “masked” MHA
Inputs Outputs :
ishifted right) because during output

generation, we don't want
to look at future tokens

Pic source: “Attention is all you need” (Vaswani et al, 2017)

|

MatMul

SoftMax

t

Mask (opt.)

t

Scale

MatMul

t 1
Q K

A

QKT
vy,

1%

Scaled Dot-Product Attention

CS771: Intro to ML

Computing Attention Efficiently

" The standard attention mechanism is inefficient for large sequences

0(T?) storage and KT

computation cost for a H = softmax V
T length sequence vd
= Many ways to make it more efficient, e.g.,
Sparse Attention Linearized Attention
(O O L, T O Y (O T ~ T
HH[N"M" i exp(QK") ~ ¢(Q) " ¢(K)
A ()
o
> (+) > softmax ——
v _/_/O(T)
A nonlinear) . ’
(a) global (b) band (c) dilated (d) random (e) block local projection based (a) standard self-attention
on kernels \
E.g., kernel Q ¢C) T 0
random features K 5 P() —— A '
I () — O(1)
projection vV 7
O(T)

(a) Star-Transformer (b) Longformer (c) ETC (d) BigBird

(b) linearized self-attention

CS771: Intro to ML

Pic source: A Survey of Transformers (Lin et al, 2021)

Popular Transformer Variants: BERT and GPT

£D (O (O O
= The standard transformer architecture is an encoder-decoder model SO O O t1'T

TLIL|

= Some models use just the encoder or the decoder of the transformer | [1.

4 |
: . . H Irl.ayerNormallzatlon ll |
T : : FF| |FF| |FE[i] | <& —h |
= BERT (Bidirectional Encoder Representations from Transformers) e il [NPT
, l Layer Normalization] E — er S i
= Basic BERT can be learned to encoder token sequences] RS SR -I' |
Self-Attention Layer ! Masked Self-Attention Layer E
. . gy e e =l o s
" GPT (Generative Pretrained Transformer) SOD (@) (D D@D @D -
» Basic GPT can be used to generate token sequences similar to its training data Encoder Decoder
This encoder can Also, no cross-attention
be used for other <cls> I love this red car since there is no encoder | ks this Book <aoss
tasks by fine-tuning I S O S (| A transformer R
A transformer which contains
which contains only the decoder
only the encoder. BERT ’ GPT
y Transformer encoder P . .
re-trained using a Transformer decoder
Trained unsupervisedly next token
using a missing token prediction objective
prediction objective | | | ' | |
This is jUSt start of <cls> I <mask> this red car <b(I)s> l Iille thlis bolok

sentence token Missing token which BERT tries to predict

CS771: Intro to ML

Transformers for Images: ViT

» Transformers can be used for images as well*. For image classification, it looks like this

Vision Transformer (ViT) Transfornzer Encoder
(0
MLP Only the encoder part of
Head
the transformer needed

On the output side, Norm
we just need an MLP

] vv|th softmax outout
Multi-Head
Patch + Posi n
Treat image agm':edgf“téo 4 @ﬁ ‘4 @ﬁ Attention

Transformer Encoder

QIE

A
patches as tokens [l] ‘embe dd ng Lmear PrO_]CCthH of Flattened Patches _E
of a sequence NE B L 1 | I Noj—,rm
”ml_*in%ﬁmew
Also use the i iﬂ R e " Embedded
position information : Patches

= Farly work showed ViT can outperform CNNs given very large amount of training data

» However, recent work™ has shown that good old CNNs still rule! ViT and CNN perform
comparably at scale, i.e., when both given large amount of compute and training data

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Dosovitskiy et al, 2020)
*ConvNets Match Vision Transformers at Scale (Smith et al, 2023) CS771: Intro to ML

	Slide 1: Deep Neural Networks: Attention Mechanism and Transformers
	Slide 2: Recap: RNNs
	Slide 3: Attention
	Slide 4: RNN with Attention
	Slide 5: Self-Attention
	Slide 6: Self-Attention
	Slide 7: Transformers
	Slide 8: Positional Encoding
	Slide 9: Zooming into the encoder and the decoder..
	Slide 10: Multi-head Attention (MHA)
	Slide 11: (Masked) Multi-head Attention (MHA)
	Slide 12: Computing Attention Efficiently
	Slide 13: Popular Transformer Variants: BERT and GPT
	Slide 14: Transformers for Images: ViT

