
Deep Neural Networks:
Attention Mechanism and Transformers

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

Recap: RNNs
▪ RNNs are used when each input or output or both are sequences of tokens

▪ Hidden state 𝒉𝑡 is supposed to remember everything up to time 𝑡 − 1. However, in practice,
RNNs have difficulties remembering the distant past

▪ Variants such as LSTM, GRU, etc mitigate this issue to some extent

▪ Slow processing is another major issue (e.g., can’t compute 𝒉𝑡 before computing 𝒉𝑡−1)

2

𝒙1

𝒉1

𝒚1

𝒙2

𝒉2

𝒚2

𝒙𝑇

𝒉𝑇

𝒚𝑇

𝒙𝑡

𝒉𝑡

𝒚𝑡

𝒙3

𝒉3

𝒚3

𝒙𝑡

𝒉𝑡

𝒚𝑡

𝑾

𝒗 𝒗 𝒗 𝒗 𝒗

𝑾 𝑾 𝑾 𝑾 𝑾

𝒗
𝑼 𝑼 𝑼 𝑼 𝑼 𝑼 𝑼

Compactly

If the input is a word sequence then each 𝒙𝑛

represent the corresponding word’s embedding

(either a pre-computed word embedding like

word2vec or a learned word embedding)

Encoder part

Decoder part

CS771: Intro to ML

Attention

▪ We use attention to “focus” on some part of interest in an input
▪ Other nearby relevant parts help us focus

▪ Other irrelevant parts do not contribute in the process

▪ In sequence modeling problems, we can use attention between input and output
tokens (between encoder and decoder parts), as well as among the inputs only (only
within the encoder part)

3

Pic credit: https://lilianweng.github.io/posts/2018-06-24-attention/

CS771: Intro to ML

RNN with Attention

▪ RNNs have also been augmented with attention to help remember the distant past

▪ Attention mechanism for a bi-directional RNN encoder-decoder model

4

𝒉𝑖 =
𝒉𝑖

𝒉𝑖

𝒄𝑡 = ෍
𝑖=1

𝑇

𝛼𝑡,𝑖𝒉𝑖

Its computation depends the

embeddings of all (past/future) tokens

Pic source: https://matthewmcateer.me/blog/getting-started-with-attention-for-classification/

CS771: Intro to ML

Self-Attention

▪ With self-attention, each token 𝒙𝑛 can “attend to” all other tokens of the same
sequence when computing this token’s embedding 𝒉𝑛

▪ Attention helps capture the context better and in a much more “global” manner
▪ “Global”: Long ranges captures and in both directions (previous and ahead)

5

An input

sequence

How much the word

“it” is being

“attended to” by

other words in the

input sequence

The input sequence

but differing in the last

word (tired -> wide)

Note how the

attention has

changed

Example credit: https://blog.research.google/2017/08/transformer-novel-neural-network.html

CS771: Intro to ML

Self-Attention

▪ For an 𝑁 length sequence, the attention scores for each token 𝒙𝑛 are computed using

▪ A query vector 𝒒𝑛 associated with that token

▪ 𝑁 key vectors 𝑲 = {𝒌1, 𝒌2, … , 𝒌𝑁} (one per token)

▪ 𝑁 value vectors 𝑽 = {𝒗1, 𝒗2, … , 𝒗𝑁} associated with the key vectors

▪ One way to compute the attention score is

▪ Given attention scores, encoder’s hidden state for 𝒙𝑛 is

6

𝛼𝑛,𝑖 =
exp(𝒒𝑛

⊤𝒌𝑖)

σ𝑗=1
𝑁 exp(𝒒𝑛

⊤𝒌𝑗)

How much token 𝑖
attends to token 𝑛

𝒉𝑛 = ෍
𝑖=1

𝑁

𝛼𝑛,𝑖 𝒗𝑖
Attention-weighted sum of

the value vectors of all the

tokens in the sequence 𝑯 = softmax
𝑸𝑲⊤

𝑑
 𝑽

Dot-product attention

(query and key assumed

𝑑 dimensional)

“Scaled” dot-product attention

𝑁 × 𝑣

𝑸 and 𝑲 are

assumed 𝑁 × 𝑑 𝑁 × 𝑣

Thus the encoding of 𝑥𝑛

depends on all the tokens

in the sequence

Provided in form of a 𝐷-dim

embedding (e.g., word2vec)

𝑸 = 𝑿𝑾𝑄

𝑲 = 𝑿𝑾𝐾

𝑽 = 𝑿𝑾𝑉

𝑁 × 𝑑 matrix

of “queries”

𝑁 × 𝑑 matrix

of 𝑁 “keys”

𝑁 × 𝐾 matrix of

“value” vectors

of the 𝑁 keys

Row 𝑛 is 𝒒𝑛

Linear projection

by 𝐷 × 𝑑 matrix

𝑁 × 𝐷 matrix of original

embeddings from the input layer

Learnable

Assuming same

size 𝑑 as query

𝐷 × 𝑑 matrix.

Learnable

𝐷 ×K matrix.

Learnable

Dividing by 𝑑 ensures variance

of the dot product is 1

CS771: Intro to ML

Transformers

▪ Transformers also use the idea of attention

▪ “self-attention” over all input tokens

▪ “self-attention” over each output token and previous tokens

▪ “cross-attention” between output tokens and input tokens

▪ Transformer also compute embeddings of all tokens in parallel

▪ Transformers are based on the following key ideas*
▪ “Self-attention” and “cross-attention” for computing the hidden states

▪ Positional encoding

▪ Residual connections

▪ Attention helps capture the context better and in a much more
“global” manner in sequence data

7

“Attention is all you need” (Vaswani et al, 2017)

CS771: Intro to ML

Positional Encoding

▪ Transformers also need a “positional encoding” for each token of the input since they
don’t process the tokens sequentially (unlike RNNs)

▪ Let 𝒑𝑖 ∈ ℝ𝑑 be the positional encoding for location 𝑖. One way to define it is

▪ Given the positional encoding, we add them to the token embedding

▪ The above positional encoding is pre-defined but can also be learned

8

Here 𝐶 denotes the

maximum possible

length of a sequence

Positional encoding

vector for location 𝑖
assuming 𝑑 = 4

ෝ𝒙𝑖 = 𝒙𝑖 + 𝒑𝑖

Note the smooth

transition as the position

index changes

Pic credit: PML-1 (Murphy, 2023)

CS771: Intro to ML

Zooming into the encoder and the decoder..
9

Self-Attention Layer

Layer Normalization

FF FF FF

𝑠1
(ℓ)

𝑠2
(ℓ) 𝑠3

(ℓ)

Layer Normalization

Masked Self-Attention Layer

Layer Normalization

FF FF FF FF

Cross-Attention Layer

Layer Normalization

Layer Normalization

𝑠1
(ℓ−1)

𝑠2
(ℓ−1)

𝑠3
(ℓ−1)

𝑡𝑠
(ℓ−1)

𝑡1
(ℓ−1) 𝑡2

(ℓ−1)
𝑡3

(ℓ−1)

𝑡𝑠
(ℓ)

𝑡1
(ℓ) 𝑡2

(ℓ)
𝑡3

(ℓ)

𝑡𝑠
(𝑁)

Linear Linear Linear Linear

Softmax Softmax Softmax Softmax

Ƹ𝑡1
(𝑁) Ƹ𝑡2

(𝑁) Ƹ𝑡3
(𝑁) Ƹ𝑡𝑒

(𝑁)

An Encoder Block

 (N such blocks)

A Decoder Block connected with

the corresponding encoder block

 (N such blocks)

Decoder’s output layer

Ƹ𝑡𝑚
(𝑁)

= argmax𝑖=1,…,𝑉 softmax(𝑾𝑡𝑚
(𝑁)

)

With weight matrix 𝑊

of size 𝑉 × 𝐷 where

𝑉 is vocab size and

𝐷 is the

dimensionality of the

last decoder block

embeddings 𝑡𝑚
(𝑁)

Note the one position

(towards right) shift

between decoder’s

input vs output

Each FF (feed-forward)

is usually a linear layer +

ReLU nonlinearity +

another linear layer

Ƹ𝑡1
(𝑁)

Ƹ𝑡2
(𝑁) Ƹ𝑡3

(𝑁)

Output Ƹ𝑡𝑚−1
(𝑁)

 from the

previous step (𝑚 − 1)

in the sequence

“auto-regressive”

generation

Blue arrows are the

residual connections

Input (“source”)

token embeddings

Fixed in the first layer (obtained

from an input embedding table)

and learned for subsequent layers

Output (“target”)

token embeddings

𝑡𝑠 is a special start of

sequence (SOS)token

𝑡𝑒 is a special end of

sequence (EOS)token

Most likely output

token at step 𝑚

FF operation is applied

“position-wise” (for each

token separately) but all

FF blocks in the layer

have same weights

Like FF, linear

operation is

also applied

position-wise

Layer normalization

(batch normalization is

difficult since difference

input sequences can be

of different lengths)

CS771: Intro to ML

Multi-head Attention (MHA)

▪ A single attention function can capture only one notion of similarity

▪ Transformers therefore use multi-head attention (MHA)

10

Pic credit: https://huggingface.co/learn/nlp-course/chapter1/

Query Keys Values

Output

Attention

Concatenate and Project

Output

Attention

Output

Attention

Output

Attention

Output
Single Attention

MHA

Query Keys Values Query Keys Values Query Keys Values

CS771: Intro to ML

(Masked) Multi-head Attention (MHA)
11

Pic source: “Attention is all you need” (Vaswani et al, 2017)

Here, on the output side,

we used “masked” MHA

because during output

generation, we don’t want

to look at future tokens

CS771: Intro to ML

Computing Attention Efficiently

▪ The standard attention mechanism is inefficient for large sequences

▪ Many ways to make it more efficient, e.g.,

𝑯 = softmax
𝑸𝑲⊤

𝑑
 𝑽

Sparse Attention

𝑂(𝑇2) storage and

computation cost for a

𝑇 length sequence

Linearized Attention

A nonlinear

projection based

on kernels

E.g., kernel

random features

projection

exp 𝑸𝑲⊤ ≈ 𝜙 𝑸 ⊤𝜙(𝑲)

Pic source: A Survey of Transformers (Lin et al, 2021)

CS771: Intro to ML

Popular Transformer Variants: BERT and GPT
▪ The standard transformer architecture is an encoder-decoder model

▪ Some models use just the encoder or the decoder of the transformer

▪ BERT (Bidirectional Encoder Representations from Transformers)

▪ Basic BERT can be learned to encoder token sequences

▪ GPT (Generative Pretrained Transformer)

▪ Basic GPT can be used to generate token sequences similar to its training data

13

BERT

A transformer

which contains

only the encoder

Trained unsupervisedly

using a missing token

prediction objective

GPT

A transformer

which contains

only the decoder

Pre-trained using a

next token

prediction objective

Missing token which BERT tries to predict

This is just start of

sentence token

This encoder can

be used for other

tasks by fine-tuning

Encoder Decoder

Also, no cross-attention

since there is no encoder

CS771: Intro to ML

Transformers for Images: ViT
▪ Transformers can be used for images as well#. For image classification, it looks like this

▪ Early work showed ViT can outperform CNNs given very large amount of training data

▪ However, recent work* has shown that good old CNNs still rule! ViT and CNN perform
comparably at scale, i.e., when both given large amount of compute and training data

14

*ConvNets Match Vision Transformers at Scale (Smith et al, 2023)

Treat image

patches as tokens

of a sequence

Also use the

position information

Only the encoder part of

the transformer needed

On the output side,

we just need an MLP

with softmax outout

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Dosovitskiy et al, 2020)

	Slide 1: Deep Neural Networks: Attention Mechanism and Transformers
	Slide 2: Recap: RNNs
	Slide 3: Attention
	Slide 4: RNN with Attention
	Slide 5: Self-Attention
	Slide 6: Self-Attention
	Slide 7: Transformers
	Slide 8: Positional Encoding
	Slide 9: Zooming into the encoder and the decoder..
	Slide 10: Multi-head Attention (MHA)
	Slide 11: (Masked) Multi-head Attention (MHA)
	Slide 12: Computing Attention Efficiently
	Slide 13: Popular Transformer Variants: BERT and GPT
	Slide 14: Transformers for Images: ViT

