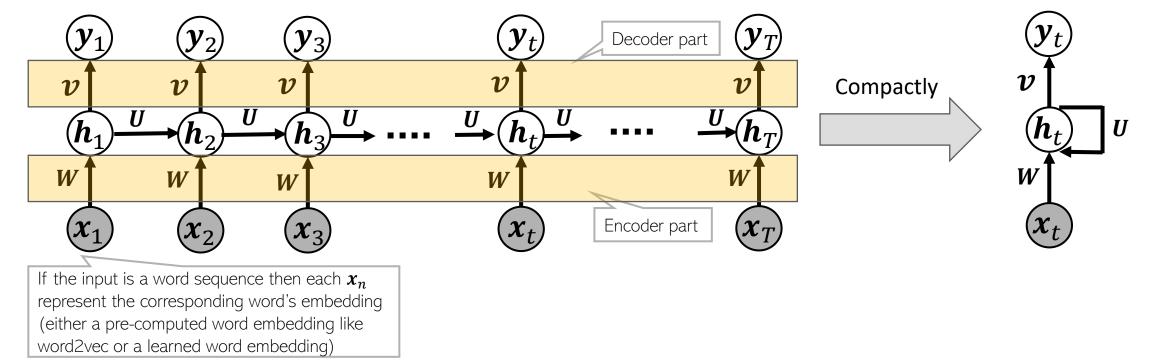
Deep Neural Networks: Augmin and Transformers

CS771: Introduction to Machine Learning
Pivush Rai

Recap: RNNs

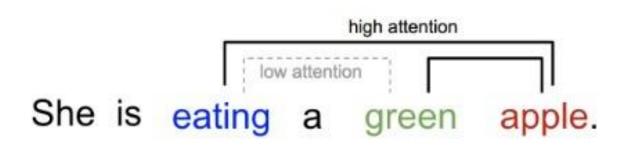
RNNs are used when each input or output or both are sequences of tokens



- Hidden state h_t is supposed to remember everything up to time t-1. However, in practice, RNNs have difficulties remembering the distant past
 - Variants such as LSTM, GRU, etc mitigate this issue to some extent
- ullet Slow processing is another major issue (e.g., can't compute h_t before computing h_{t-1})

Attention

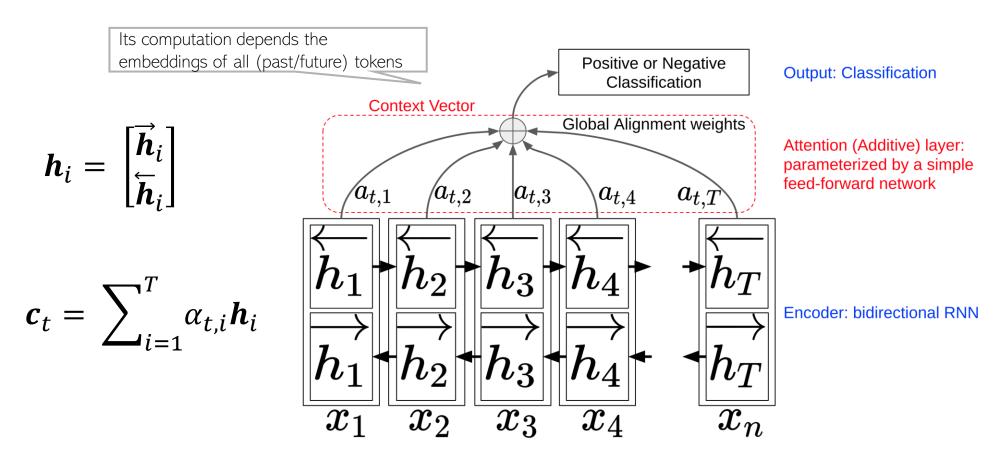
- We use attention to "focus" on some part of interest in an input
 - Other nearby relevant parts help us focus
 - Other irrelevant parts do not contribute in the process



• In sequence modeling problems, we can use attention between input and output tokens (between encoder and decoder parts), as well as among the inputs only within the encoder part)

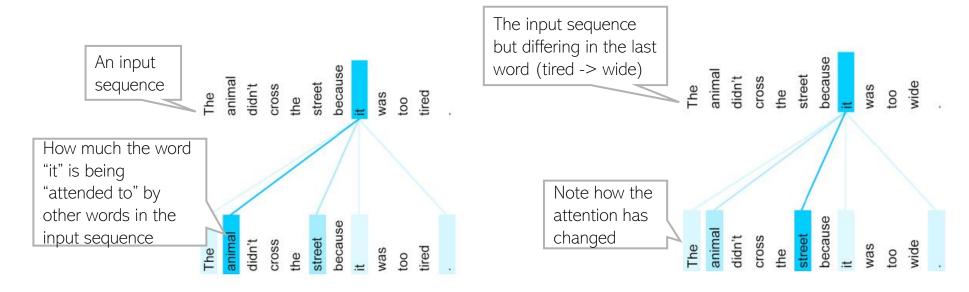
RNN with Attention

- RNNs have also been augmented with attention to help remember the distant past
- Attention mechanism for a bi-directional RNN encoder-decoder model



Self-Attention

ullet With self-attention, each token $oldsymbol{x}_n$ can "attend to" all other tokens of the same sequence when computing this token's embedding $oldsymbol{h}_n$



- Attention helps capture the context better and in a much more "global" manner
 - "Global": Long ranges captures and in both directions (previous and ahead)

Self-Attention

Provided in form of a *D*-dim embedding (e.g., word2vec)

- lacktriangle For an N length sequence, the attention scores for each token $oldsymbol{x}_n$ are computed using
 - \blacksquare A query vector q_n associated with that token
 - $N \text{ key vectors } K = \{k_1, k_2, ..., k_N\}$ (one per token)
 - N value vectors $V = \{v_1, v_2, ..., v_N\}$ associated with the key vectors

Assuming same

One way to compute the attention score is

How much token *i* attends to token n

 \blacksquare Given attention scores, encoder's hidden state for \boldsymbol{x}_n is

Row n is q_n

size d as query

"value" vectors of the N keys

 \boldsymbol{Q} and \boldsymbol{K} are assumed $N \times d$

 $N \times v$

the value vectors of all the tokens in the sequence

Thus the encoding of x_n depends on all the tokens in the sequence

Dividing by \sqrt{d} ensures variance of the dot product is 1

"Scaled" dot-product attention

CS771: Intro to ML

Attention-weighted sum of

Dot-product attention (query and key assumed d dimensional)

 $N \times d$ matrix of N "keys"

 $N \times K$ matrix of

 $N \times D$ matrix of original

 $N \times d$ matrix

of "queries"

embeddings from the input layer

Learnable $K = XW_K$

 $D \times K$ matrix.

 $D \times d$ matrix.

Learnable

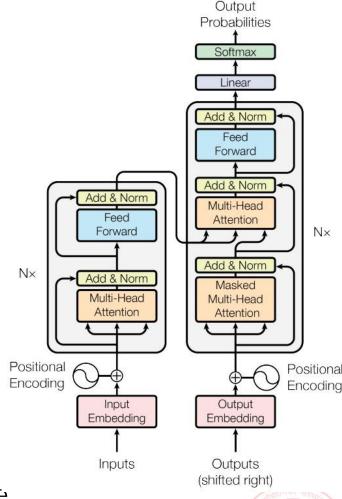
Linear projection

by $D \times d$ matrix

 $V = XW_{17}$

Transformers

- Transformers also use the idea of attention
 - "self-attention" over all input tokens
 - "self-attention" over each output token and previous tokens
 - "cross-attention" between output tokens and input tokens
- Transformer also compute embeddings of all tokens in parallel
- Transformers are based on the following key ideas*
 - "Self-attention" and "cross-attention" for computing the hidden states
 - Positional encoding
 - Residual connections
- Attention helps capture the context better and in a much more "global" manner in sequence data



THE OF TECHNOLOGY

Positional Encoding

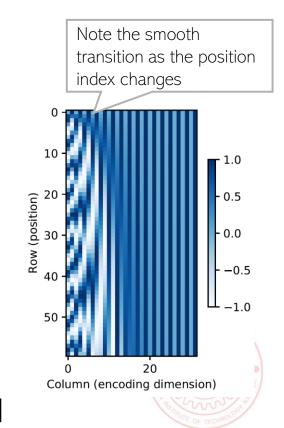
- Transformers also need a "positional encoding" for each token of the input since they don't process the tokens sequentially (unlike RNNs)
- Let $p_i \in \mathbb{R}^d$ be the positional encoding for location i. One way to define it is

Here
$$\mathcal{C}$$
 denotes the maximum possible length of a sequence
$$p_{i,2j} = \sin\left(\frac{i}{C^{2j/d}}\right), \ p_{i,2j+1} = \cos\left(\frac{i}{C^{2j/d}}\right)$$
Positional encoding vector for location i assuming $d=4$
$$p_i = \left[\sin(\frac{i}{C^{0/4}}), \cos(\frac{i}{C^{0/4}}), \sin(\frac{i}{C^{2/4}}), \cos(\frac{i}{C^{2/4}})\right]$$

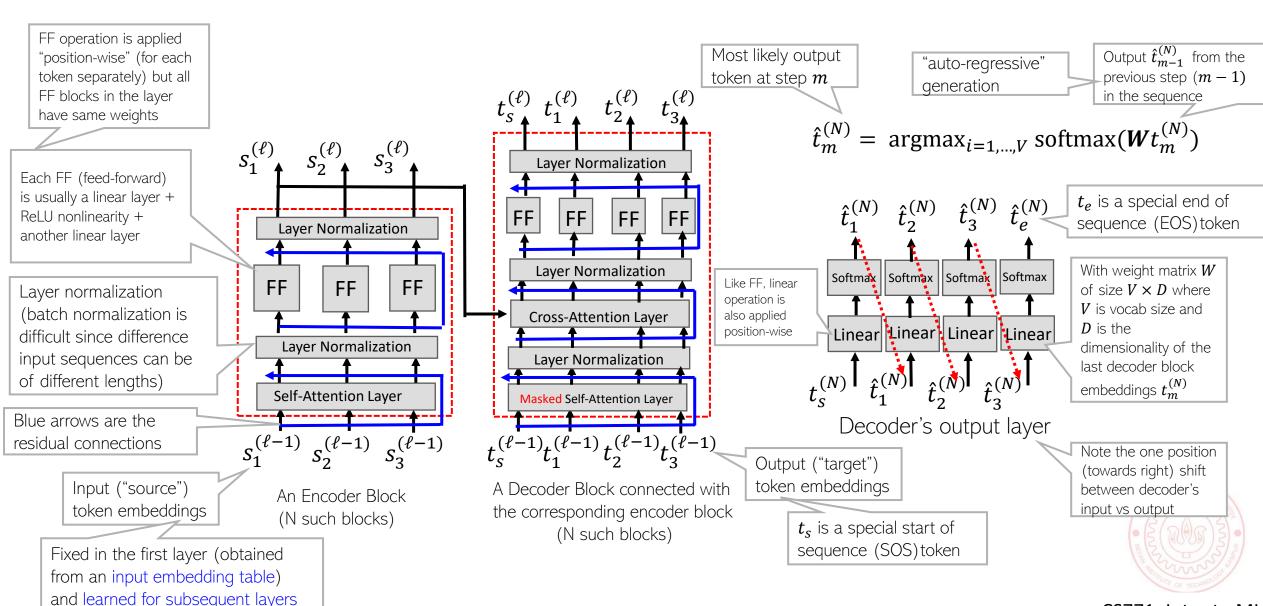
■ Given the positional encoding, we add them to the token embedding

$$\widehat{\boldsymbol{x}}_i = \boldsymbol{x}_i + \boldsymbol{p}_i$$

■ The above positional encoding is pre-defined but can also be learned



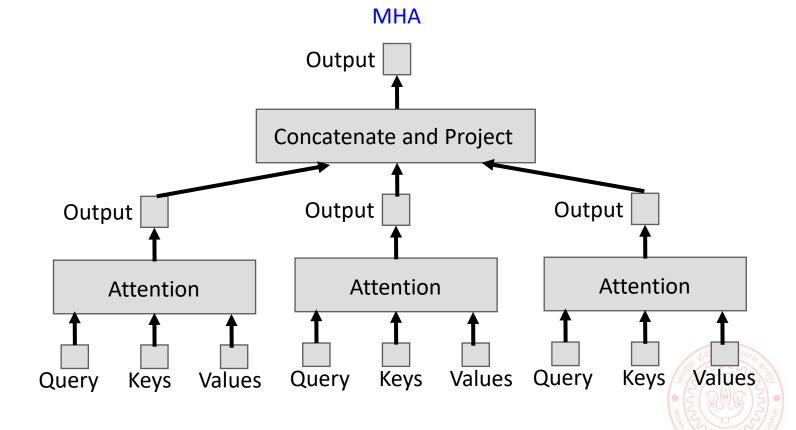
Zooming into the encoder and the decoder..



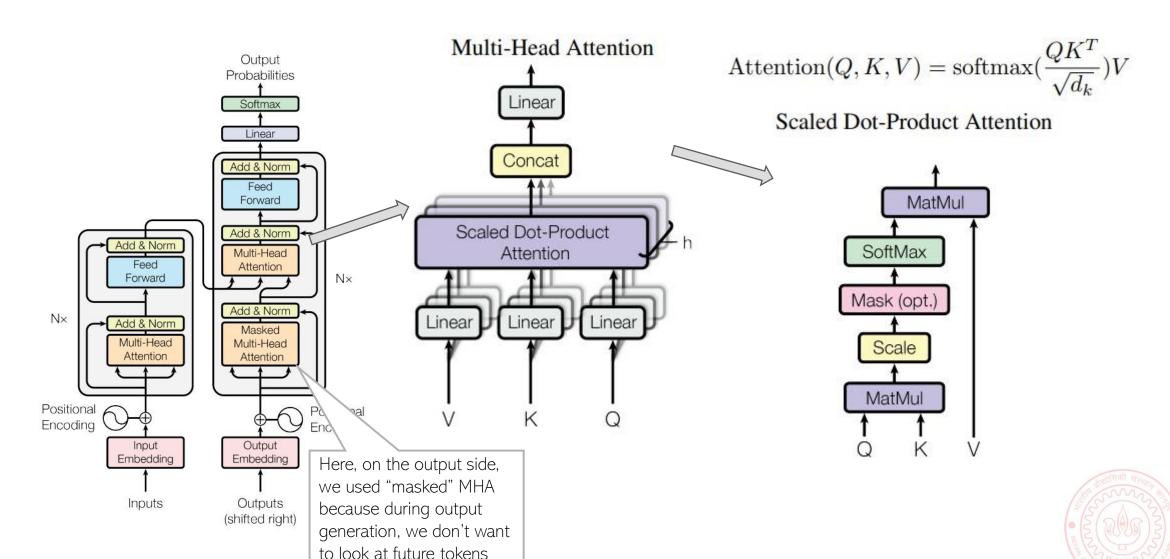
Multi-head Attention (MHA)

- A single attention function can capture only one notion of similarity
- Transformers therefore use multi-head attention (MHA)

Output Attention Query Keys Values



(Masked) Multi-head Attention (MHA)

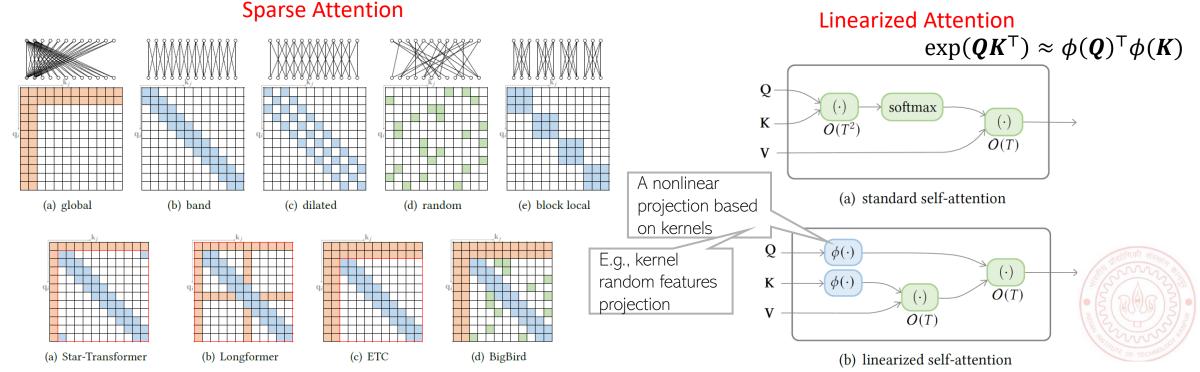


Computing Attention Efficiently

■ The standard attention mechanism is inefficient for large sequences

$$0(T^2)$$
 storage and computation cost for a T length sequence $H = \operatorname{softmax}\left(\frac{QK^{\mathsf{T}}}{\sqrt{d}}\right)V$

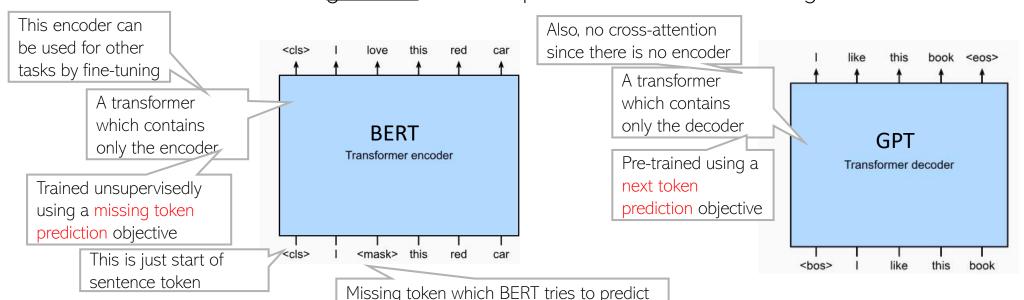
Many ways to make it more efficient, e.g.,

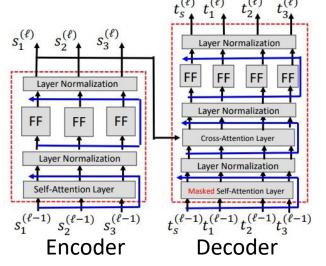


Pic source: A Survey of Transformers (Lin et al, 2021)

Popular Transformer Variants: BERT and GPT

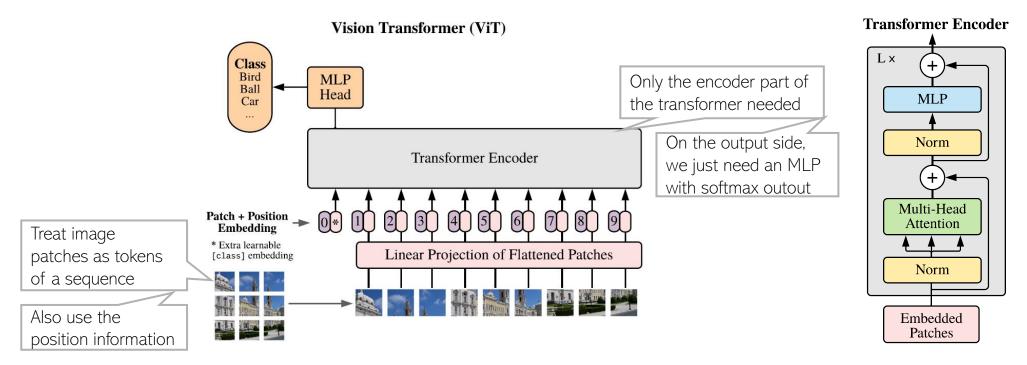
- The standard transformer architecture is an encoder-decoder model
- Some models use just the encoder <u>or</u> the decoder of the transformer
- BERT (Bidirectional Encoder Representations from Transformers)
 - Basic BERT can be learned to encoder token sequences
- GPT (Generative Pretrained Transformer)
 - Basic GPT can be used to generate token sequences similar to its training data





Transformers for Images: ViT

■ Transformers can be used for images as well[#]. For image classification, it looks like this



- Early work showed ViT can outperform CNNs given very large amount of training data
- However, recent work* has shown that good old CNNs still rule! ViT and CNN perform comparably at scale, i.e., when both given large amount of compute and training data