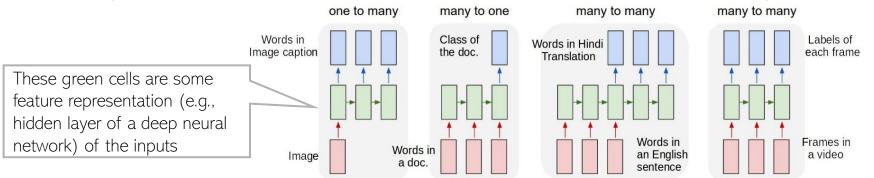
Deep Neural Metworks for Sequential Data

CS771: Introduction to Machine Learning Pivush Rai

Sequential Data

In many problems, each input, each output, or both may be in form of sequences

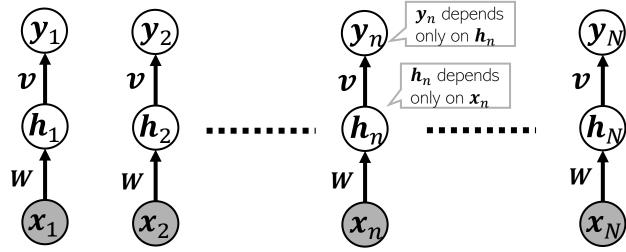


- Different inputs or outputs need not have the same length
- Some examples of prediction tasks in such problems
 - Image captioning: Input is image (not a sequence), output is the caption (word sequence)
 - Document classification: Input is a word sequence, output is a categorical label
 - Machine translation: Input is a word sequence, output is a word sequence (in different language)
 - Stock price prediction: Input is a sequence of stock prices, output is its predicted price tomorrow
 - No input just output (e.g., generation of random but plausible-looking text)

CS771: Intro to ML

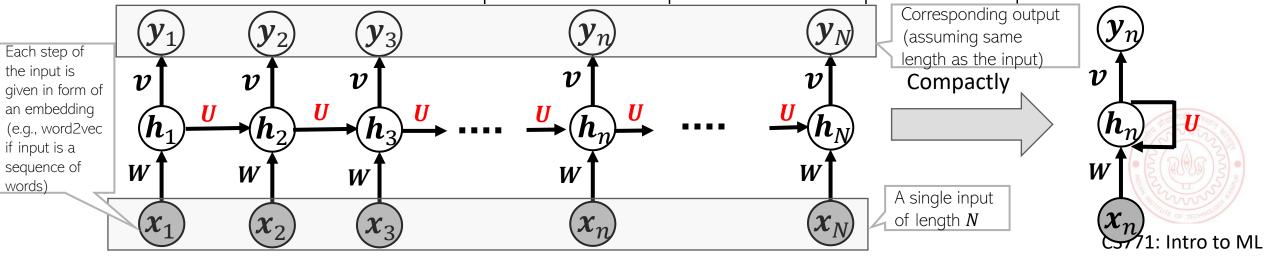
Recurrent Connections in Deep Neural Networks

Feedforward nets such as MLP and CNN assume independent observations



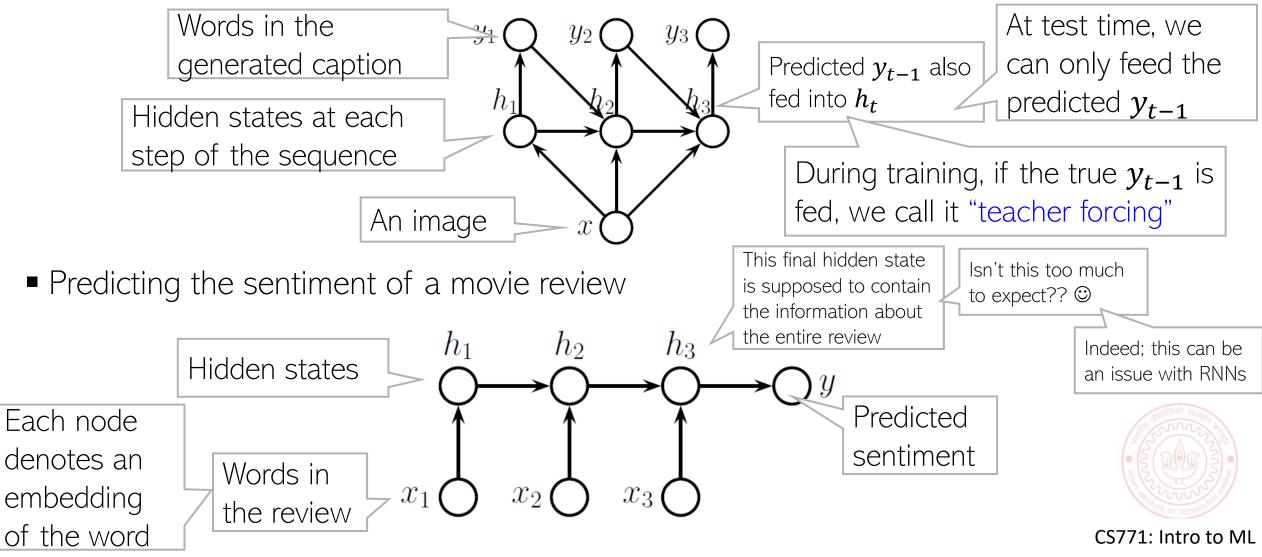
Feedforward neural networks are not ideal when inputs $[x_1, x_2, ..., x_N]$ and/or outputs $[y_1, y_2, ..., y_N]$ represent sequential data (e.g., sentences)

• A recurrent structure can be helpful if each input and/or output is a sequence



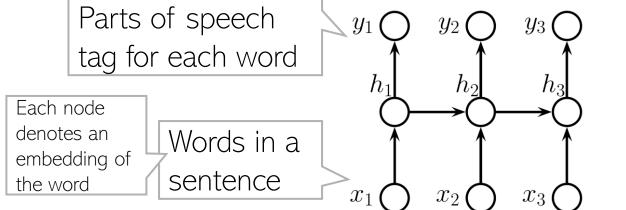
Recurrent Neural Networks: Some Examples

Consider generating a sequence y_1, y_2, \dots, y_T given an input x

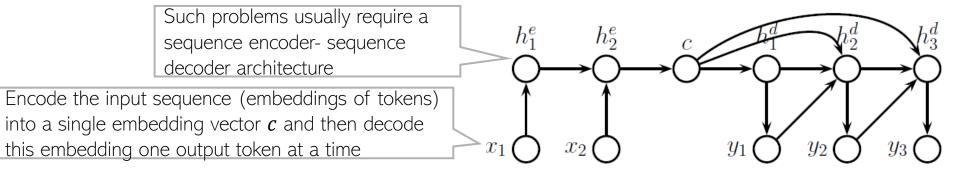


Recurrent Neural Networks: Some Examples

Parts of speech tagging (or "aligned" translation; input and output have same length)



"Unaligned" translation (input and output can have different lengths)

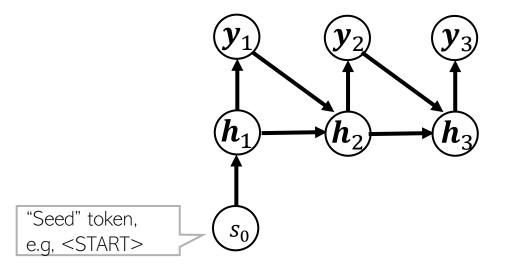


 In the unaligned case, generation stops when an "end" token (e.g., <END>) is generated on the output side

CS771: Intro to ML

Recurrent Neural Networks: Some Examples

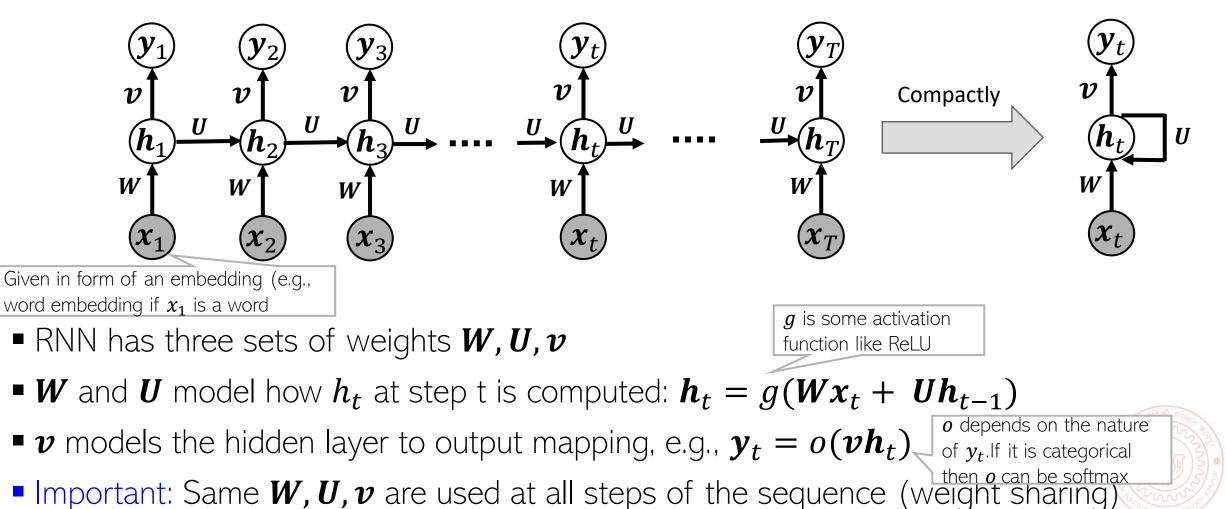
 Unconditional generation (no input, only an output sequence is generated given a RNN that was trained using some training data containing several sequences)



- Each generate word/token is fed to the next step's hidden state
- Generation stops when an "end" token (e.g., <END>) is generated

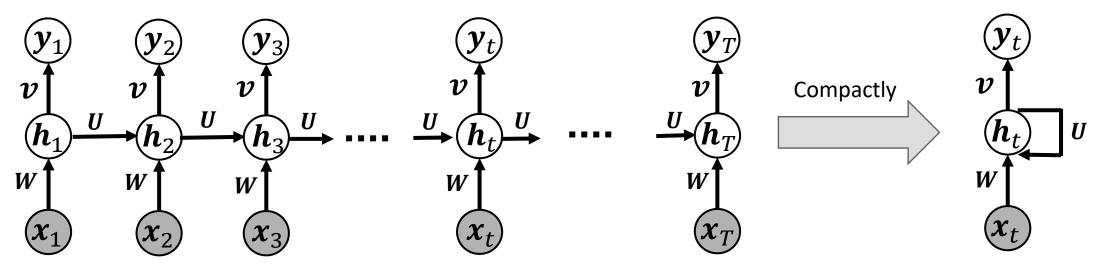
Recurrent Neural Networks

A basic RNN's architecture (assuming input and output sequence have same lengths)



For RNNs, Long Distant Past is Hard to Remember

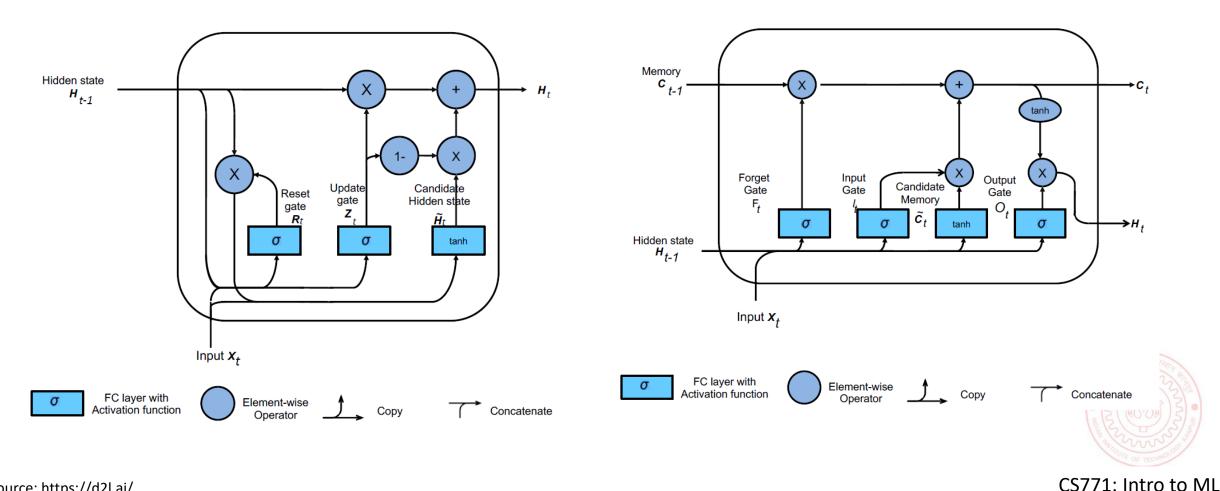
The hidden layer nodes h_t are supposed to summarize the past up to time t-1



- In theory, they should. In practice, they can't. Some reasons
 - Vanishing gradients along the sequence too past knowledge gets "diluted"
 - Hidden nodes also have limited capacity because of their finite dimensionality
- Various extensions of RNNs have been proposed to address forgetting
 - Gated Recurrent Units (GRU), Long Short Term Memory (LSTM)

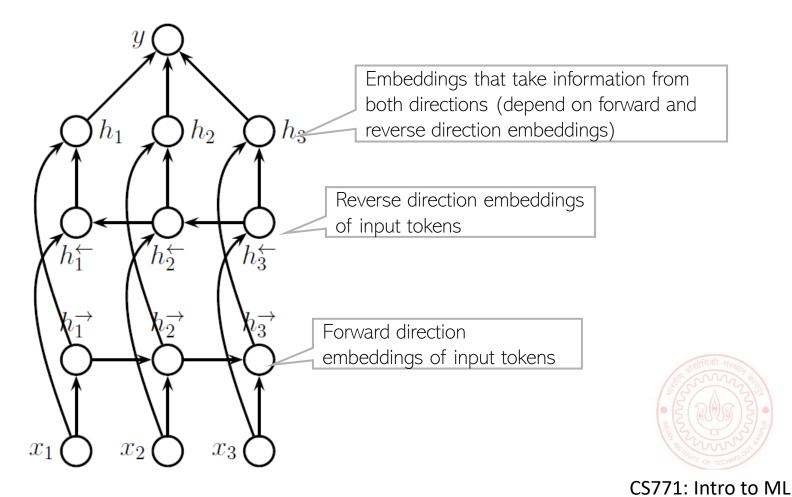
GRU and LSTM

 GRU and LSTM are variants of RNNs. These contain specialized units and "memory" which modulate what/how much information from the past to retain/forget



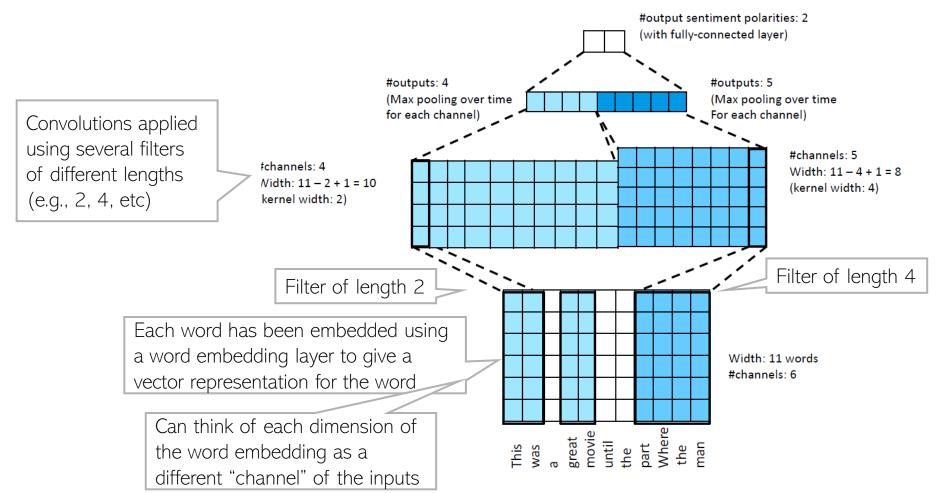
Bidirectional RNN

- RNNs and GRU and LSTM only remember the information from the previous tokens
- Bidirectional RNNs can remember information from the past and future tokens



CNN for Text

- CNNs can exploit sequential structure as well using convolutions
- Figure below is CNN for text data where the goal is to predict sentiment of a review

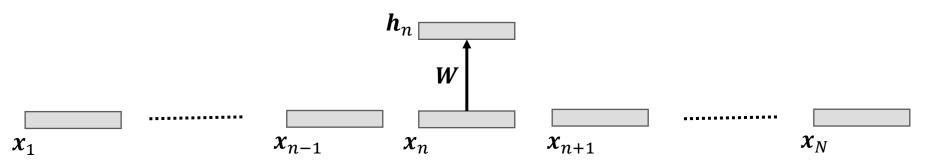


Need for Attention

- Each layer in standard deep neural nets computes a linear transform + nonlinearity
- For N inputs, collectively denoting inputs as $X \in \mathbb{R}^{N \times K_1}$ and outputs as $H \in \mathbb{R}^{N \times K_2}$

H = g(XW) Notation alert: Input X can be data (if H denotes first hidden layer) or the H of the previous hidden layer

- Here the weights $W \in \mathbb{R}^{K_1 \times K_2}$ do not depend on the inputs X
 - Output $h_n = g(W^T x_n) \in \mathbb{R}^{K_2}$ only depends on $x_n \in \mathbb{R}^{K_1}$ and pays no attention to x_m , $m \neq n$



 When different inputs outputs have inter-dependencies (e.g., they denote representations of words in a sentence, or patches in an image), paying attention to other inputs is helpful/needed CS771: Intro to ML

Attention Mechanism

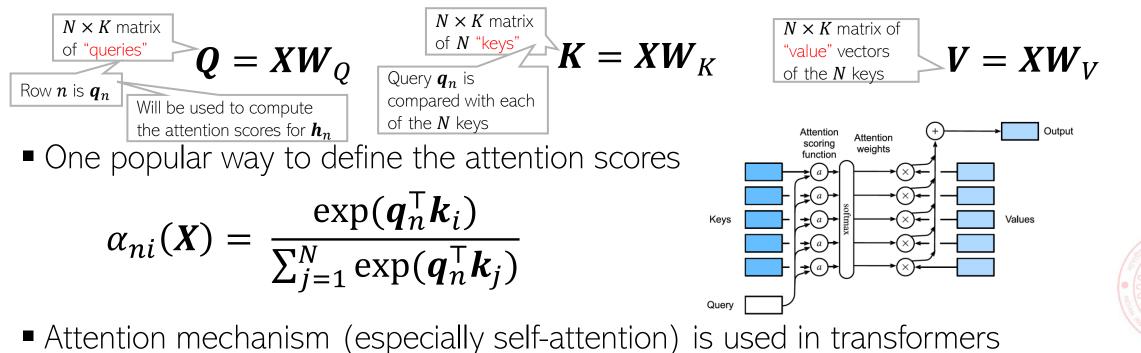
• Don't define output h_n as $h_n = g(Wx_n)$ but as a weighted combination of all inputs

$$\boldsymbol{h}_n = \sum_{i=1}^N \alpha_{ni}(\boldsymbol{X}) f(\boldsymbol{x}_i) = \sum_{i=1}^N \alpha_{ni}(\boldsymbol{X}) \boldsymbol{v}_i < \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

 α_{ni} is the attention score(to be learned) which tells us how much input x_i should attend to output h_n

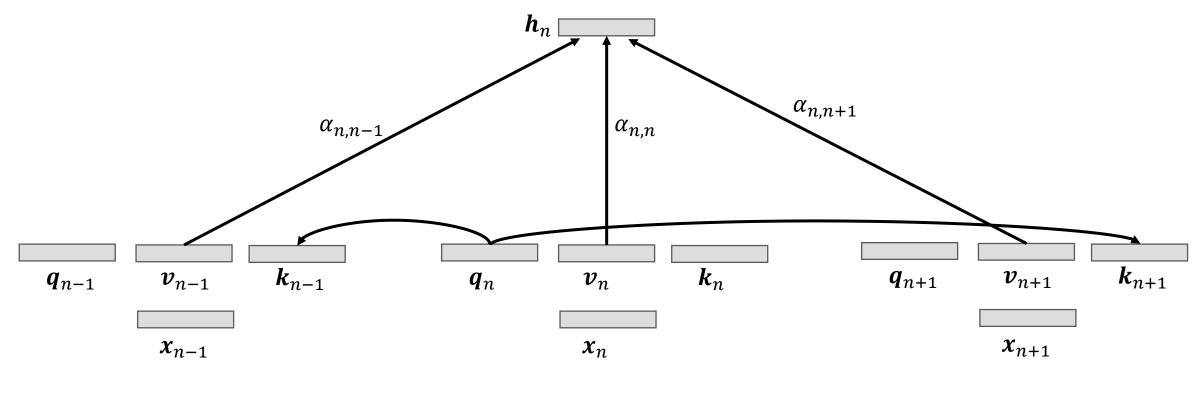
 \boldsymbol{v}_i is the "value" vector of input \boldsymbol{x}_i (how input \boldsymbol{x}_i should be used to compute the output \boldsymbol{h}_n)

• Attention scores $\alpha_{ni}(X)$ and "value" $v_i = f(x_i)$ of x_i can be defined in various ways



CS771: Intro to ML

Attention Mechanism



 $Q = XW_Q$ $K = XW_K$ $V = XW_V$

14