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CS771: Intro to ML

Sequential Data

▪ In many problems, each input, each output, or both may be in form of sequences

▪ Different inputs or outputs need not have the same length

▪ Some examples of prediction tasks in such problems
▪ Image captioning: Input is image (not a sequence), output is the caption (word sequence)

▪ Document classification: Input is a word sequence, output is a categorical label

▪ Machine translation: Input is a word sequence, output is a word sequence (in different language)

▪ Stock price prediction: Input is a sequence of stock prices, output is its predicted price tomorrow

▪ No input – just output (e.g., generation of random but plausible-looking text)
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These green cells are some 
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network) of the inputs
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Recurrent Connections in Deep Neural Networks

▪ Feedforward nets such as MLP and CNN assume independent observations

▪ A recurrent structure can be helpful if  each input and/or output is a sequence
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Recurrent Neural Networks: Some Examples

▪ Consider generating a sequence 𝑦1, 𝑦2, … , 𝑦𝑇 given an input 𝑥

▪ Predicting the sentiment of a movie review
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Recurrent Neural Networks: Some Examples

▪ Parts of speech tagging (or “aligned” translation; input and output have same length)

▪ “Unaligned” translation (input and output can have different lengths)

▪ In the unaligned case, generation stops when an “end” token (e.g., <END>) is 
generated on the output side
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Recurrent Neural Networks: Some Examples

▪ Unconditional generation (no input, only an output sequence is generated given a 
RNN that was trained using some training data containing several sequences)

▪ Each generate word/token is fed to the next step’s hidden state

▪ Generation stops when an “end” token (e.g., <END>) is generated

6

𝒉1

𝒚1

𝒉2

𝒚2

𝒉3

𝒚3

𝑠0 “Seed” token, 

e.g, <START>



CS771: Intro to ML

Recurrent Neural Networks

▪ A basic RNN’s architecture (assuming input and output sequence have same lengths)

▪ RNN has three sets of weights 𝑾, 𝑼, 𝒗

▪ 𝑾 and 𝑼 model how ℎ𝑡 at step t is computed: 𝒉𝑡 = 𝑔(𝑾𝒙𝑡 + 𝑼𝒉𝑡−1)

▪ 𝒗 models the hidden layer to output mapping, e.g., 𝒚𝑡 = 𝑜(𝒗𝒉𝑡)

▪ Important: Same 𝑾, 𝑼, 𝒗 are used at all steps of the sequence (weight sharing)
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For RNNs, Long Distant Past is Hard to Remember 

▪ The hidden layer nodes ℎ𝑡 are supposed to summarize the past up to time 𝑡 − 1

▪ In theory, they should. In practice, they can’t. Some reasons
▪ Vanishing gradients along the sequence too – past knowledge gets “diluted”

▪ Hidden nodes also have limited capacity because of their finite dimensionality

▪ Various extensions of RNNs have been proposed to address forgetting
▪ Gated Recurrent Units (GRU), Long Short Term Memory (LSTM)
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GRU and LSTM

▪ GRU and LSTM are variants of RNNs. These contain specialized units and “memory” 
which modulate what/how much information from the past to retain/forget
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Pic source: https://d2l.ai/
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Bidirectional RNN

▪ RNNs and GRU and LSTM only remember the information from the previous tokens

▪ Bidirectional RNNs can remember information from the past and future tokens
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CNN for Text

▪ CNNs can exploit sequential structure as well using convolutions

▪ Figure below is CNN for text data where the goal is to predict sentiment of a review
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Need for Attention

▪ Each layer in standard deep neural nets computes a linear transform + nonlinearity

▪ For 𝑁 inputs, collectively denoting inputs as 𝑿 ∈ ℝ𝑁×𝐾1 and outputs as 𝑯 ∈ ℝ𝑁×𝐾2

▪ Here the weights 𝑾 ∈ ℝ𝐾1×𝐾2 do not depend on the inputs 𝑿

▪ Output 𝒉𝑛 = 𝑔 𝑾⊤𝒙𝑛 ∈ ℝ𝐾2 only depends on 𝒙𝑛 ∈ ℝ𝐾1 and pays no attention to 𝒙𝑚, 𝑚 ≠ 𝑛

▪ When different inputs outputs have inter-dependencies (e.g., they denote representations of words 
in a sentence, or patches in an image), paying attention to other inputs is helpful/needed
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Attention Mechanism

▪ Don’t define output 𝒉𝑛 as 𝒉𝑛 = 𝑔(𝑾𝒙𝑛) but as a weighted combination of all inputs

▪ Attention scores 𝛼𝑛𝑖 𝑿 and “value” 𝒗𝑖 = 𝑓(𝒙𝑖) of 𝒙𝑖 can be defined in various ways

▪ One popular way to define the attention scores

▪ Attention mechanism (especially self-attention) is used in transformers
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Attention Mechanism
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