
Deep Neural Networks for
Sequential Data

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

Sequential Data

▪ In many problems, each input, each output, or both may be in form of sequences

▪ Different inputs or outputs need not have the same length

▪ Some examples of prediction tasks in such problems
▪ Image captioning: Input is image (not a sequence), output is the caption (word sequence)

▪ Document classification: Input is a word sequence, output is a categorical label

▪ Machine translation: Input is a word sequence, output is a word sequence (in different language)

▪ Stock price prediction: Input is a sequence of stock prices, output is its predicted price tomorrow

▪ No input – just output (e.g., generation of random but plausible-looking text)

2

These green cells are some

feature representation (e.g.,

hidden layer of a deep neural

network) of the inputs

CS771: Intro to ML

Recurrent Connections in Deep Neural Networks

▪ Feedforward nets such as MLP and CNN assume independent observations

▪ A recurrent structure can be helpful if each input and/or output is a sequence

3

𝒙1

𝒉1

𝒚1

𝒙2

𝒉2

𝒚2

𝒙𝑁

𝒉𝑁

𝒚𝑁
𝒚𝑛 depends

only on 𝒉𝑛

𝒙𝑛

𝒉𝑛

𝒚𝑛

𝒉𝑛 depends

only on 𝒙𝑛 Feedforward neural networks are not

ideal when inputs [𝒙1, 𝒙2, … , 𝒙𝑁] and/or

outputs [𝒚1, 𝒚2, … , 𝒚𝑁] represent

sequential data (e.g., sentences)

𝒙1

𝒉1

𝒚1

𝒙2

𝒉2

𝒚2

𝒙𝑁

𝒉𝑁

𝒚𝑁

𝒙𝑛

𝒉𝑛

𝒚𝑛

𝒙3

𝒉3

𝒚3

𝒙𝑛

𝒉𝑛

𝒚𝑛

𝑾 𝑾 𝑾 𝑾

𝒗 𝒗 𝒗 𝒗

𝑾

𝒗 𝒗 𝒗 𝒗 𝒗

𝑾 𝑾 𝑾 𝑾 𝑾

𝒗
𝑼 𝑼 𝑼 𝑼 𝑼 𝑼 𝑼

Compactly

A single input

of length 𝑁

Corresponding output

(assuming same

length as the input)Each step of

the input is

given in form of

an embedding

(e.g., word2vec

if input is a

sequence of

words)

CS771: Intro to ML

Recurrent Neural Networks: Some Examples

▪ Consider generating a sequence 𝑦1, 𝑦2, … , 𝑦𝑇 given an input 𝑥

▪ Predicting the sentiment of a movie review

4

An image

Words in the

generated caption

Words in

the review

Predicted

sentiment

Hidden states at each

step of the sequence

Hidden states

Predicted 𝑦𝑡−1 also

fed into ℎ𝑡

At test time, we

can only feed the

predicted 𝑦𝑡−1

During training, if the true 𝑦𝑡−1 is

fed, we call it “teacher forcing”

This final hidden state

is supposed to contain

the information about

the entire review

Isn’t this too much

to expect?? ☺

Indeed; this can be

an issue with RNNs

Each node

denotes an

embedding

of the word

CS771: Intro to ML

Recurrent Neural Networks: Some Examples

▪ Parts of speech tagging (or “aligned” translation; input and output have same length)

▪ “Unaligned” translation (input and output can have different lengths)

▪ In the unaligned case, generation stops when an “end” token (e.g., <END>) is
generated on the output side

5

Words in a

sentence

Parts of speech

tag for each word

Such problems usually require a

sequence encoder- sequence

decoder architecture

Encode the input sequence (embeddings of tokens)

into a single embedding vector 𝑐 and then decode

this embedding one output token at a time

Each node

denotes an

embedding of

the word

CS771: Intro to ML

Recurrent Neural Networks: Some Examples

▪ Unconditional generation (no input, only an output sequence is generated given a
RNN that was trained using some training data containing several sequences)

▪ Each generate word/token is fed to the next step’s hidden state

▪ Generation stops when an “end” token (e.g., <END>) is generated

6

𝒉1

𝒚1

𝒉2

𝒚2

𝒉3

𝒚3

𝑠0 “Seed” token,

e.g, <START>

CS771: Intro to ML

Recurrent Neural Networks

▪ A basic RNN’s architecture (assuming input and output sequence have same lengths)

▪ RNN has three sets of weights 𝑾, 𝑼, 𝒗

▪ 𝑾 and 𝑼 model how ℎ𝑡 at step t is computed: 𝒉𝑡 = 𝑔(𝑾𝒙𝑡 + 𝑼𝒉𝑡−1)

▪ 𝒗 models the hidden layer to output mapping, e.g., 𝒚𝑡 = 𝑜(𝒗𝒉𝑡)

▪ Important: Same 𝑾, 𝑼, 𝒗 are used at all steps of the sequence (weight sharing)

7

𝒙1

𝒉1

𝒚1

𝒙2

𝒉2

𝒚2

𝒙𝑇

𝒉𝑇

𝒚𝑇

𝒙𝑡

𝒉𝑡

𝒚𝑡

𝒙3

𝒉3

𝒚3

𝒙𝑡

𝒉𝑡

𝒚𝑡

𝑾

𝒗 𝒗 𝒗 𝒗 𝒗

𝑾 𝑾 𝑾 𝑾 𝑾

𝒗
𝑼 𝑼 𝑼 𝑼 𝑼 𝑼 𝑼

Compactly

𝑔 is some activation

function like ReLU

𝑜 depends on the nature

of 𝑦𝑡 .If it is categorical

then 𝑜 can be softmax

Given in form of an embedding (e.g.,

word embedding if 𝑥1 is a word

CS771: Intro to ML

For RNNs, Long Distant Past is Hard to Remember

▪ The hidden layer nodes ℎ𝑡 are supposed to summarize the past up to time 𝑡 − 1

▪ In theory, they should. In practice, they can’t. Some reasons
▪ Vanishing gradients along the sequence too – past knowledge gets “diluted”

▪ Hidden nodes also have limited capacity because of their finite dimensionality

▪ Various extensions of RNNs have been proposed to address forgetting
▪ Gated Recurrent Units (GRU), Long Short Term Memory (LSTM)

8

𝒙1

𝒉1

𝒚1

𝒙2

𝒉2

𝒚2

𝒙𝑇

𝒉𝑇

𝒚𝑇

𝒙𝑡

𝒉𝑡

𝒚𝑡

𝒙3

𝒉3

𝒚3

𝒙𝑡

𝒉𝑡

𝒚𝑡

𝑾

𝒗 𝒗 𝒗 𝒗 𝒗

𝑾 𝑾 𝑾 𝑾 𝑾

𝒗
𝑼 𝑼 𝑼 𝑼 𝑼 𝑼 𝑼

Compactly

CS771: Intro to ML

GRU and LSTM

▪ GRU and LSTM are variants of RNNs. These contain specialized units and “memory”
which modulate what/how much information from the past to retain/forget

9

Pic source: https://d2l.ai/

CS771: Intro to ML

Bidirectional RNN

▪ RNNs and GRU and LSTM only remember the information from the previous tokens

▪ Bidirectional RNNs can remember information from the past and future tokens

10

Forward direction

embeddings of input tokens

Reverse direction embeddings

of input tokens

Embeddings that take information from

both directions (depend on forward and

reverse direction embeddings)

CS771: Intro to ML

CNN for Text

▪ CNNs can exploit sequential structure as well using convolutions

▪ Figure below is CNN for text data where the goal is to predict sentiment of a review

11

Each word has been embedded using

a word embedding layer to give a

vector representation for the word

Can think of each dimension of

the word embedding as a

different “channel” of the inputs

Convolutions applied

using several filters

of different lengths

(e.g., 2, 4, etc)

Filter of length 2
Filter of length 4

CS771: Intro to ML

Need for Attention

▪ Each layer in standard deep neural nets computes a linear transform + nonlinearity

▪ For 𝑁 inputs, collectively denoting inputs as 𝑿 ∈ ℝ𝑁×𝐾1 and outputs as 𝑯 ∈ ℝ𝑁×𝐾2

▪ Here the weights 𝑾 ∈ ℝ𝐾1×𝐾2 do not depend on the inputs 𝑿

▪ Output 𝒉𝑛 = 𝑔 𝑾⊤𝒙𝑛 ∈ ℝ𝐾2 only depends on 𝒙𝑛 ∈ ℝ𝐾1 and pays no attention to 𝒙𝑚, 𝑚 ≠ 𝑛

▪ When different inputs outputs have inter-dependencies (e.g., they denote representations of words
in a sentence, or patches in an image), paying attention to other inputs is helpful/needed

12

𝑯 = 𝑔(𝑿𝑾)

𝒉𝑛

𝒙𝑛𝒙𝑛−1 𝒙𝑛+1𝒙1 𝒙𝑁

𝑾

Notation alert: Input 𝑿 can be data (if 𝑯 denotes first

hidden layer) or the 𝑯 of the previous hidden layer

CS771: Intro to ML

Attention Mechanism

▪ Don’t define output 𝒉𝑛 as 𝒉𝑛 = 𝑔(𝑾𝒙𝑛) but as a weighted combination of all inputs

▪ Attention scores 𝛼𝑛𝑖 𝑿 and “value” 𝒗𝑖 = 𝑓(𝒙𝑖) of 𝒙𝑖 can be defined in various ways

▪ One popular way to define the attention scores

▪ Attention mechanism (especially self-attention) is used in transformers

13

𝛼𝑛𝑖 𝑿 =
exp(𝒒𝑛

⊤𝒌𝑖)

σ𝑗=1
𝑁 exp(𝒒𝑛

⊤𝒌𝑗)

𝑸 = 𝑿𝑾𝑄 𝑲 = 𝑿𝑾𝐾 𝑽 = 𝑿𝑾𝑉

𝑁 × 𝐾 matrix

of “queries”

𝑁 × 𝐾 matrix

of 𝑁 “keys”
𝑁 × 𝐾 matrix of

“value” vectors

of the 𝑁 keys
Row 𝑛 is 𝒒𝑛

Query 𝒒𝑛 is

compared with each

of the 𝑁 keys

𝒉𝑛 =
𝑖=1

𝑁

𝛼𝑛𝑖 𝑿 𝑓(𝒙𝑖) =
𝑖=1

𝑁

𝛼𝑛𝑖 𝑿 𝒗𝑖

𝛼𝑛𝑖 is the attention

score(to be learned) which

tells us how much input 𝒙𝑖

should attend to output 𝒉𝑛

𝒗𝑖 is the “value” vector of input 𝒙𝑖

(how input 𝒙𝑖 should be used to

compute the output 𝒉𝑛)

Will be used to compute

the attention scores for 𝒉𝑛

CS771: Intro to ML

Attention Mechanism

𝒙𝑛−1

𝒒𝑛−1 𝒗𝑛−1 𝒌𝑛−1

𝒙𝑛

𝒒𝑛 𝒗𝑛 𝒌𝑛

𝒙𝑛+1

𝒒𝑛+1 𝒗𝑛+1 𝒌𝑛+1

𝒉𝑛

𝛼𝑛,𝑛−1

𝛼𝑛,𝑛+1
𝛼𝑛,𝑛

𝑸 = 𝑿𝑾𝑄 𝑲 = 𝑿𝑾𝐾 𝑽 = 𝑿𝑾𝑉

14

	Slide 1: Deep Neural Networks for Sequential Data
	Slide 2: Sequential Data
	Slide 3: Recurrent Connections in Deep Neural Networks
	Slide 4: Recurrent Neural Networks: Some Examples
	Slide 5: Recurrent Neural Networks: Some Examples
	Slide 6: Recurrent Neural Networks: Some Examples
	Slide 7: Recurrent Neural Networks
	Slide 8: For RNNs, Long Distant Past is Hard to Remember
	Slide 9: GRU and LSTM
	Slide 10: Bidirectional RNN
	Slide 11: CNN for Text
	Slide 12: Need for Attention
	Slide 13: Attention Mechanism
	Slide 14: Attention Mechanism

