


Recap

= Multi-layer Perceptrons (MLP)

» Backpropagation algorithm to learn the weights
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" Backprop is based on reuse of previous computations to efficiently compute the
gradients required for updating the network weights using (stochastic) GD
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Limitations/Shortcomings of MLP Comentuise ominearty applie

on these linear projections

= MLP uses fully connected layers defined by matrix multiplications + nonlinearity
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* MLP ignores structure (e.g., spatial/sequential) in the inputs
= Not ideal for data such as images, text, etc. which are flattened as vectors when used with MLP

" Fully connected nature of MLP requires massive number of weights

= Fven a "smallish” 200x200x3 (3 channels — R,G,B) image will need 120,000 weights for each
neuron in the first hidden layer (for K neurons, we will need 120,000 x K weights).

= Recall that each layer is fully connected so each layer needs a massive number of weights!
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Convolutional Neural Networks (CNN)

» CNNs use connections between layers that are different from MLPs in two key ways

Standard
MLP
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Total 36 weights Only 16 weights
= Change 1: Each hidden layer node is connected only to a local patch in previous layer

» Change 2: Same set of weights used for each local patch (purple, blue, green, pink is
one set of weights, and this same set of used for all patches)

" These changes help in
= Substantial reduction on the number of weights to be learned
" | earning the local structures within the inputs
= Capturing local and global structure in the inputs by repeating the same across layers  €S771: Intro to ML



Convolutional Neural Networks (CNN)

= CNN consists of a sequence of operations to transform an input to output
= Convolution (a linear transformation but more “local” than the one in MLP)
= Nonlinearity (e.g., sigmoid, RelU, etc) after the convolution operation
= Pooling (aggregates local features into global features and reduce representation size)

Last (or last few) layer(s)
of CNN is (are) usually fully

Hidden layers
\

< '\ connected just like MLP
Input layer | Convolution  Pooling  Convolution Pooling
v 3
'.\' " -
<= \’ :"%[ —
Kernel |
Input Image Featured Pooled Featured Pooled Flatten 2

maps Featured maps maps Featured maps layer

Figure credit: https://www.analyticsvidhya.com/blog/2022/01/convolutional-neural-network-an-overview/ CS771: Intro to ML



Convolution

Sometimes also called a “kernel”,
though not the kernel we have
seen in kernel methods ©

= Convolution moves the same “filter”/"template” w over different patches of input x

= Flter is like a set of weights (like in MLP) but only operate on local regions of x

= Convolution = dot product of w with different patches of the input x

X

w

Each entry is result of
conv on one patch

v

h |

W
X

Each entry is result of
conv on one patch

~— h

» Qutput h of the convolution operation is also called a "feature map”
" lf xisng X ny, wisky X ky thenhis(ng —ky +1) X (ny —ky +1)
= |[f we want h to have larger size than then we do zero-padding at boundaries of x
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Convolution

" High "match” of a filter/kernel with a patch gives high values in the feature map

" [n CNN, these weights/filters are learnable. Also, usually multiple filters are used

= Fach filter gives us a different feature map (K filters will give K feature maps)
» Fach map can be seen as representing a different type of feature in the inputs
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= When "moving” the filter across the input, the stride size can be one or more than one

= Stride means how much the filter moves between successive convolutions
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Multiple Input Channels

" [f the input has multiple channels (e.g., images with R,G,B channels), then each filter/kernel

also needs to have multiple channels, as shown below (left figure)

= We perform per-channel convolution followed by an aggregation (sum across channels)
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= Note that (right figure above) we typically also have multiple such filters (each with
multiple channels) which will give us multiple such feature maps

Figure credit: PML-1 (Murphy, 2022),
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Pooling

= CNNs also consist of a pooling operation after each conv layer

2*2 pooling field Pooling stride
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» Pooling plays two important roles 2 |2 e ] et [
» Reducing the size of the feature maps 2| alo | s Dovnscled feare
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Downscaled feature map

= Max pooling and average pooling are popular pooling methods
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= "Global average pooling” (GAP) is another option o %8 9
= Given feature map of size h X w X d (e.g, if there are d channels), it o 8% gcsg » = Og
averages all h X w locations to give a 1 X d feature map < o o |/ g
= Reduces the number of features significantly and also allows handling i ;
feature maps of different heights and widths v
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CNNs have Translation Invariance!

" Fven if the object of interest has shifted/translated, CNN don't face a problem (it
will be detected regardless of its location in the image)

" The simple example below shows how (max) pooling helps with this
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'C' shifted down

* CNNs use a combination of conv + pooling operations in several hidden layers so
CNNs remain invariant to even more significant translations

Pic credit: https://divsoni2012.medium.com/translation-invariance-in-convolutional-neural-networks-61d9b6fa03df CS771: Intro to ML



CNN: Summary of the overall architecture

" The overall structure of a CNN looks something like this

Thickness of this box denotes how many filters we
used (each filter itself may consist of multiple T ) ”r
channels if the input has multiple channels) owards the end, we usually flatten

- the feature map (or use GAP to get a

Pooling only downscales the height and width; flattened input) and use one or more

. . . . fully connected layers like in MLP
The size of the other dimension remains the y y
same as in the previous conv layer 7
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Figure credit: PML-1 (Murphy, 2022), CS771: Intro to ML
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