

Recap

= Multi-layer Perceptrons (MLP)

» Backpropagation algorithm to learn the weights

hy = g(z
' d0f

All these gradients / A 2
are basicily product a; =4 (yn; yn)hﬁ(l) X
of Jacobians ~ 2) 2) h1(1) =g(z

Oy _ o o) 090 Oy 0z

@ ~ ¢ V)@) gw @
ow oh,” 0z, OW

0fn_ _ prer 5y 99n on'® az® anM 9z
w® = ¥ On) on? 927 anl) a2\ ow®

" Backprop is based on reuse of previous computations to efficiently compute the
gradients required for updating the network weights using (stochastic) GD

CS771: Intro to ML

Limitations/Shortcomings of MLP Comentuise ominearty applie

on these linear projections

= MLP uses fully connected layers defined by matrix multiplications + nonlinearity

(1) _ O
hn gw Xn) h7(12) — g(W(Z)Thg))
(2)
W@ w
X, h%”

* MLP ignores structure (e.g., spatial/sequential) in the inputs
= Not ideal for data such as images, text, etc. which are flattened as vectors when used with MLP

" Fully connected nature of MLP requires massive number of weights

= Fven a "smallish” 200x200x3 (3 channels — R,G,B) image will need 120,000 weights for each
neuron in the first hidden layer (for K neurons, we will need 120,000 x K weights).

= Recall that each layer is fully connected so each layer needs a massive number of weights!
CS771: Intro to ML

Convolutional Neural Networks (CNN)

» CNNs use connections between layers that are different from MLPs in two key ways

Standard
MLP

Don't connect ™
everything with -~
everything % "_ Share welghts

6‘066¢¢); ocooooooo b

16 but only 4 distinct weights

- -
e,

Total 36 weights Only 16 weights
= Change 1: Each hidden layer node is connected only to a local patch in previous layer

» Change 2: Same set of weights used for each local patch (purple, blue, green, pink is
one set of weights, and this same set of used for all patches)

" These changes help in
= Substantial reduction on the number of weights to be learned
" | earning the local structures within the inputs
= Capturing local and global structure in the inputs by repeating the same across layers €S771: Intro to ML

Convolutional Neural Networks (CNN)

= CNN consists of a sequence of operations to transform an input to output
= Convolution (a linear transformation but more “local” than the one in MLP)
= Nonlinearity (e.g., sigmoid, RelU, etc) after the convolution operation
= Pooling (aggregates local features into global features and reduce representation size)

Last (or last few) layer(s)
of CNN is (are) usually fully

Hidden layers
\

< '\ connected just like MLP
Input layer | Convolution Pooling Convolution Pooling
v 3
'.\' " -
<= \’ :"%[—
Kernel |
Input Image Featured Pooled Featured Pooled Flatten 2

maps Featured maps maps Featured maps layer

Figure credit: https://www.analyticsvidhya.com/blog/2022/01/convolutional-neural-network-an-overview/ CS771: Intro to ML

Convolution

Sometimes also called a “kernel”,
though not the kernel we have
seen in kernel methods ©

= Convolution moves the same “filter”/"template” w over different patches of input x

= Flter is like a set of weights (like in MLP) but only operate on local regions of x

= Convolution = dot product of w with different patches of the input x

X

w

Each entry is result of
conv on one patch

v

h |

W
X

Each entry is result of
conv on one patch

~— h

» Qutput h of the convolution operation is also called a "feature map”
" lf xisng X ny, wisky X ky thenhis(ng —ky +1) X (ny —ky +1)
= |[f we want h to have larger size than then we do zero-padding at boundaries of x

CS771: Intro to ML

Convolution

" High "match” of a filter/kernel with a patch gives high values in the feature map

" [n CNN, these weights/filters are learnable. Also, usually multiple filters are used

= Fach filter gives us a different feature map (K filters will give K feature maps)
» Fach map can be seen as representing a different type of feature in the inputs

“north-west” filter

0

g

-1

0
1

‘north-east” filter
0 -1 -2

|

1
2

0
1

-1
0

|

= When "moving” the filter across the input, the stride size can be one or more than one

= Stride means how much the filter moves between successive convolutions

x ‘

Stride of 1

X

Stride of 2

CS771: Intro to ML

Multiple Input Channels

" [f the input has multiple channels (e.g., images with R,G,B channels), then each filter/kernel

also needs to have multiple channels, as shown below (left figure)

= We perform per-channel convolution followed by an aggregation (sum across channels)

Input

Input with 3 channels

P

I‘IaITIM

Input Kernel Input Kernel Output
1123
112
415|6)| =%
1 314
ol1]2 3 7(8]9 56 | 72
« = -+ =
31415 =13 ol 2 104120
6|7]|8 011
314|5]|*
213
67|38

wn w o L&) w &

-] =~ =] B (-] 0

@« ~ (5] o L] LS

@ L] -~ w o @ —

5
4
4
a
9
3

Bl | M| oW ow

6x6x3

Filter 1

4x4

4x4

Output with 2 channels (since
we used two filters here)

QOutput

i

dx4x2

= Note that (right figure above) we typically also have multiple such filters (each with
multiple channels) which will give us multiple such feature maps

Figure credit: PML-1 (Murphy, 2022),

CS771: Intro to ML

Pooling

= CNNs also consist of a pooling operation after each conv layer

2*2 pooling field Pooling stride

C——l 2 3

» Pooling plays two important roles 2 |2 e] et [
» Reducing the size of the feature maps 2| alo | s Dovnscled feare

' . | SR
» Combining local features to make global features aoalz |,
Veraga ool
-1 | -2 | 2 1 &L‘; B 0
* Need to specify the size of group to pool, and pooling Stride e mp fom s comotuionst s .

Downscaled feature map

= Max pooling and average pooling are popular pooling methods

©0
o0
“ ' L ' ' Vi %
= "Global average pooling” (GAP) is another option o %8 9
= Given feature map of size h X w X d (e.g, if there are d channels), it o 8% gcsg » = Og
averages all h X w locations to give a 1 X d feature map < o o |/ g
= Reduces the number of features significantly and also allows handling i ;
feature maps of different heights and widths v

CS771: Intro to ML

CNNs have Translation Invariance!

" Fven if the object of interest has shifted/translated, CNN don't face a problem (it
will be detected regardless of its location in the image)

" The simple example below shows how (max) pooling helps with this

| S| T Y
SRS ikt] ==

J

|

Conv Filter of Ouput of Conv Output of Max
size:(4,4) layer Pooling layer

Input image of letter 'C'

1{1]1)1 ' TT \ -
i 1000 1 P =1
| —> 1 | 00 0 . | | L | J
1 1/1]1]1
) Conv Filter of Ouput of Conv Output of Max
Input image of letter size:(4,4) layer Pooling layer

'C' shifted down

* CNNs use a combination of conv + pooling operations in several hidden layers so
CNNs remain invariant to even more significant translations

Pic credit: https://divsoni2012.medium.com/translation-invariance-in-convolutional-neural-networks-61d9b6fa03df CS771: Intro to ML

CNN: Summary of the overall architecture

" The overall structure of a CNN looks something like this

Thickness of this box denotes how many filters we
used (each filter itself may consist of multiple T) ”r
channels if the input has multiple channels) owards the end, we usually flatten

- the feature map (or use GAP to get a

Pooling only downscales the height and width; flattened input) and use one or more

. . . . fully connected layers like in MLP
The size of the other dimension remains the y y
same as in the previous conv layer 7
- ?]]] —CAR
— ak H] — TRUCK
T]]] — VAN
—] | —1
- e - -
4 [] [] — BICYCLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING ELATTEN FULLY o ortmax
N Y CONNECTED
FEATURE LEARNING CLASSIFICATION

Figure credit: PML-1 (Murphy, 2022), CS771: Intro to ML

	Slide 1: Beyond MLPs: Convolutional Neural Networks
	Slide 2: Recap
	Slide 3: Limitations/Shortcomings of MLP
	Slide 4: Convolutional Neural Networks (CNN)
	Slide 5: Convolutional Neural Networks (CNN)
	Slide 6: Convolution
	Slide 7: Convolution
	Slide 8: Multiple Input Channels
	Slide 9: Pooling
	Slide 10: CNNs have Translation Invariance!
	Slide 11: CNN: Summary of the overall architecture

