

Plan today

" Training deep neural nets using backpropagation

* Some important aspects related to training of deep neural nets
= \anishing/exploding gradients
= |nitialization
= Normalization layers (batch and layer normalization)
= Dropout as a means to regularization
» Residual/skip connections

CS771: Intro to ML

Backpropagation via a Simple Example

= Consider a single scalar input, single hidden layer with one node, and scalar output

o¢ _ 909 on
ow 99 oh ow

= Derivative of the loss € wirt. w is

: : . 07f d¢ 0y
= Derivative of the loss £ wirt. v is = = =22
ov dy dv
_ 0y _ 999y
dh v dh - . o\
Row i contains the gradient For a function f: RP - R?, the .
vector of y; = fi(x) wrt. x Jacobian J© € R*P (a matrix) A V‘/
ay a / Vfl (x) Likewi f f : . MPXQ RXS
f yl . ikewise, for a function f: R - R"*°,
—_ —]f]l] — a—]f — . (- IRQXP the Jacobian JI € REXSXPXQ (4D tensor)
0x X;
J _VfQ (x)_ More generally, for a function f: RI1*2X — RO1X02%

its Jacobian J € RO1X02%-XIiXl2X (3 tensor)

CS771: Intro to ML

Background: Gradient and Jacobian

"lety = f(x) where f:RF > R?, x € RF, y € RY Denote y = [f;(X), ..., fo(%)]
= The gradient of each componenty; = f;(x) € R (i = 1,2,...,0) wrt. x € RF is

Note: Gradient expressed here as a

6y- Gy] has th length
l l 1% P row vector (has the same length as x
e R

oV:
yl - which is a column vector) for
0xq 0Xp

Vfi(x) =§= [

= |ikewise, the gradient of whole vector y € R? wirt. vector x € R” can be defined
using the Q X P Jacobian matrix J/ whose rows consist of the above gradients

notational convenience later

Row i contains the gradient For a function f: RP - R?, the ﬂ
vector of y; = fi(x) wrt. x Jacobian J7 € R2*F (a matrix) > VI‘ /
Vfi(x)
ay f ayl . Likewise, for a function f: RF*Q — REXS,
—_ —]f] , = —]f — . (- RQXP the Jacobian JI € REXSXPXQ (4D tensor)
L] 0x:
0x J Vf, (%) e oo
Q More generally, for a function f: R'1*/2>" — RE1X02>"

its Jacobian J € RO1X02%-XIiXl2X (3 tensor)

CS771: Intro to ML

Background: Multivariate Chain Rule of Calculus

sletxeRP, y=g(x)€ RO z=f(y) €R where g:RF 5> R?, f:R?Y > R

X

1xP

Scalar derivative 1 X P vector derivative
B 1 X P vector
g f derivative a YA Q a 7 a yi Used chain rule of total derivatives
= — Sum is needed since z depends
7 2 _ _ um i i
yL 0x 1=1 ayl 0x on y, and y is a vector
" The above can be written as a product of a vector and a matrix
Turns out to be a product of 1 X Q gradient (same as 0 x P Jacobian of g
Jacobian of f and g in that order © _53’1] Jacobian since f'is scalar)
Vg1(x)7j
0z 0z 0z ox .
X V1 Yaq 0y, Vgp(x)
L Ox |

= More generally, letw € R, x =h(w) € R?, y=g(x) € R®, z = f(y) € R®

Product of the 3 Jacobians
in that order (simple! ©)

aZ Note that chain rule for scalar

= f X g X h = RSXP variables w, x, y, z is defined in a
aw]]] similar way as g—vzv =g R W) troto ML

Backpropagation (Backprop)

" Backprop is gradient descent with multivariate chain rule for derivatives

= Consider a two hidden layer neural network

L(W(l)'W(Z)'v) = ZTA{=1£(}’n, V) = 211;,:1371 h1(12) =g(z
. S (2)
= \We wish to minimize the loss we [3
hy,) = g(z,")
* The gradient based updates will be
oL oL W(l
= — S (@) = @ — | — —
v=v-1 o w w N Sw® (i=12)
d0¢ d¢
s < — 'N 9tn n_ e __
Since L =)\n—1 €5, we need to compute 5, and =5 (i =1,2)

L . PR 2
= Assume output activation o as identity (3, = vTh,(,L))

R Derivative of €,, w.rt. y
o¢, 94,09, n S

tn _ = ?'(y. 9. h'?
v 0y, dv O) b CS771: Intro to ML

Backpropagation in detail

! t ~ ~ 2
" | et's now look at aw?z) where £, = €(y,,, ¥,) and y,, = vTh,(,l)
0, 0L, 09, o9 09,
WD ~ 33, aw® ~ * i) 5ua) hY = g(z
09 _ 09w Ohy 09, 0v
W@ gp@ow® * gv oWw® D = gz
n n
_ , ov Using transpose since
= Since v doesn't depend on W(Z), = 0 | weassume gradient to
aw(z) be a row vector
Jacobian of size . 2) 2)
1% K, X Ky 0ty (9 0yn Oh,~ Oy 9)07 oh
aw®@ ~ © O @y T e IV 50
(2) "
dh;, - (2) _ (2) (2) _ 2) T (D) : :
= \We now need WD Using hy,” = g(z,,") where z,,” = w) h,” and g is elementwise
appl ineari h (2)
pplied nonlinearity on the vector z,,
) , 2) 2) 2) This Jacobian is a tensor
J;(acob;a{n of;lze ahn B ahn 5Zn _ di ((L (2) o (2) aZn of size K, X K, X K
A oW = 5, @ qw@ ~ 4289 (202) .9 (ZnKz))aw(Z)
n

Diagonal matrix of size K, X K, with Jacobian
(gradient vector) of g along the diagonals CS5771: Intro to ML

Backpropagation: Computation Reuse

= Summarizing, the required gradients/Jacobians for this network are

9.,

/ ~ 2
5, =1 On))by h® = gz
" 90) 09, oh” 9z¥ W
ow®@ ~ " I 5, @) 5,0 gw® B = 42D
o (@) 5 () (D) o (1)
0f ~ ~ 0V, Ohy~ 0z, Oh, 0z (1)
s =8 (Y Pn) e oy N

on? 927 an() azLP ow®

" Thus gradient computations done in upper layers can be stored
and reused when computing the gradients in the lower layers
(libraries like Tensorflow and Pytorch do so efficiently) | Gradents inowerlayers wil have product of many such

D

ah(i) 0 0 terms % If g"is small (e.g., gradient of sigmoid or
: . : . n . ; l / l Z,
. VanIShlng gradlents° aZ(i) = dlag (g (an) yer g (ZnKi)) tanh), the gradient becomes vanishingly small for lower
n

layers and becomes an issue (thus RelLlU and other with
non-saturating activations are preferred)

Backpropagation

Forward pass computes
hidden units and the loss

= Backprop iterates between a forward pass and a backward pass using current values of the

network weights W and v

Backward pass uses the loss
and hidden units’ values to
compute the gradient of the yn
loss, starting with weights v
in the last layer, updates the
weights, and proceeds to do
the same for other layers

Backward Pass h
nl Forward Pass

» Software frameworks such as Tensorflow and PyTorch support this already so you
don’t need to implement it by hand (so no worries of computing derivatives €461, 1o to Mt

Backpropagation through an example

Consider a single hidden layer MLP @ To use gradient methods for W, v, we need gradients.

k=1

@ Gradient of £ w.r.t. v is straightforward
or N K N
oy~ 2 (yn - ng(w;T"")) hoe = > _ €nho
n=1

@ Gradient of £ w.r.t. W requires chain rule

: : : : Owg L= Ohpy Owa
Assuming regression (o = identity), o - «
the loss function for this model = —(vn— >_ vkg(wy xn))vi = —envi
N Ohpy p—
1 T 2
- = — hy
£ 2 nzzl: (y" v h") Ohn = g’ (w, Xp)Xnd (note: hp = g(w, x,))
Wi
1N K 2 _
= 5 Z Vo — Z Vic Bk @ Forward prop computes errors e,, using current W, v.
n=1 k=1 Backprop updates NN params W, v using grad methods
2
1 “ :
= 52 (yn -> vkg(w;rxn)) @ Backprop caches many of the calculations for reuse
n=1 k=1

CS771: Intro to ML

Problem of Exploding/Vanishing Gradients

= MLPs/CNNs have many hidden layers and gradients in each
layer are a product of several Jacobians

" Result of these products depends on the eigenvalues of each
of these Jacobians

= If they are large (>1), gradients might blow up (explode) p®) = g(z

= |f they are small (<1), gradients might vanish

= To prevent blow up, we can use gradient clipping r{’ = g(z\;
= Simply cap the magnitude of the gradients!

" [0 prevent vanishing gradients, several options
= Use non-saturating activation functions (recall that the gradient is a
product of terms like ‘;h—§§= diag (g'(zgg),..., g'(zg,gi))), so the derivative g’
doesn't become too small

= Use other architectures such as skip- connections (will discuss later) 771 | ML
: Intro to

Training of DNNs: Some Important Aspects

- : VGG-110
= Deep neural net training can be hard due to YCD:25

non-convex loss functions

= Several ways to address this, €.g.,
* Good choice of learning rate of (S)GD

= We have already seen this
» Good initialization of parameters, e.g., initialize
each weight, say w;;, randomly as

wij ~ N(0,0%) or Wiwa, a) Resnet-56 Densenet-121
and set the “spread” of these distribution
as inversely proportional to ny, + Nout

Xavier/Gloret initialization,
LeCun init, He init, etc

= Careful design of the network architecture, e.g.,

= Networks with “skip connections” (will see later) which
lead to less non-convex (more smooth) loss surfaces
(figures on the right)

" Vanishing/exploding gradients (already saw)

Fig credit: https://www.cs.umd.edu/~tomg/projects/landscapes/ CS771: Intro to ML

https://www.cs.umd.edu/~tomg/projects/landscapes/

Note: Batch-norm assumes sufficiently large mini-

" » batch B to work well. There are variants such as Batch normalization is used
B a t C N O r m a I Z at I O n “layer normalization” and “instance normalization” in MLP. CNN, and various
that don't require a mini-batch can be computed .
using a single training example other architectures

| S |
» Fach hidden layer is a nonlinear transformation of the previous layer's inputs e’»/
» To prevent distribution drift in activations’ distribution, we often “standardize” each layer

» Standardize = activation h,,(f;{) should have zero mean and unit variance across all n
" |t is achieved by inserting a “batch normalization™ layer after each hidden layer

= To do so, during training, (omitting layer number £) we replace each h,, by h,,

Y and B are trainable
batch-norm parameters ~ ~ hn — Up

h,=vy0O h, +B En —
We compute ug and 2
0% using the dgta from A / O3 T €
the current minibatch 1 1
of examples B (thus — —z h 2 _ 2
the name "batch norm” Hz |B| heB Op = |B| zhEB (h MB)
= After training, we store ¥ and B + the statistics g and 6% computed on the whole

training data, and use these values to apply batch-norm on each test input

CS771: Intro to ML

Layer Normalization

* Normalization helps improve training and performance overall

= Unlike batch normalization (BN), which we already saw, layer normalization (LN) normalizes
each h,, across its dimensions (not across all minibatch examples)

= Often used for sequence data models (will see later) where BN is difficult to apply

= Also useful when batch sizes are small where BN statistics (mean/var) aren't reliable

After LN operation, we apply another
transformation defined by another set

* For an MLP the LN operation would look like this of learnable weights (just like we did
in BN using y and)

hﬁf) has zero mean and unit
std-dev along its dimensions

h,(ll) has zero mean and unit
std-dev along its dimensions

CS771: Intro to ML

Dropout Layer

" Deep neural networks can overfit when trained on small datasets
= Dropout is a method to regularize without using an explicit regularizer

" In every update of the network, drop neuron i in layer € with probability p

ei({)) ~ Bernoulli(1 — p)

" |f ei(f) = 0, set all outgoing weights Wi(f) from neuron i to O

» Fach update of weights will change a different subset of weights
" |n doing so, we are making individual neurons more self-reliant and less dependent on others

= At test time, no dropout is used. After training is complete, we multiply each weight
by the keep probability 1 — p and use these weights for predictions

CS771: Intro to ML

Residual/Skip Connections

* Many modern deep nets contain a very large number of layers

" |n general, just stacking lots of layer doesn't necessarily help a deep learning model
= Vanishing/exploding gradient may make learning difficult

= Skip connections or “residual connections” help if we want very deep networks
" This idea was popularized by "Residual Networks™ (ResNets) which can have hundreds of layers

= Basic idea: Don't force a layer to learn everything about a mapping | may need to perform an additional

These layers trying

function f(x)

*Deep Residual Learning for Image Recognition (He et al, 2015)
Pic source: https://www.d2l.ai/index.html

3
]
]
to learn some :
:
]
]
]
]

!

Activation function

A

-+ ——— - —— -

Weight layer

t

)

1
1
1
1
1
Activation function |
1
1
1
1
1

Weight layer

f

Activation function

fix) =g(x) +x

Weight layer
t

Activation function

%
Weight layer

A I

projection/adjustment to that the
sizes of x and g(x) match

Added a “residual branch” or “short-
cut” connection to connect x to the
residual output g(x) of these layers

Reducing their burden by just
asking them to learn the
‘residual” g(x) = f(x) — x

CS771: Intro to ML

https://www.d2l.ai/index.html

	Slide 1: Intro to Deep Neural Nets (Contd)
	Slide 2: Plan today
	Slide 3: Backpropagation via a Simple Example
	Slide 4: Background: Gradient and Jacobian
	Slide 5: Background: Multivariate Chain Rule of Calculus
	Slide 6: Backpropagation (Backprop)
	Slide 7: Backpropagation in detail
	Slide 8: Backpropagation: Computation Reuse
	Slide 9: Backpropagation
	Slide 10: Backpropagation through an example
	Slide 11: Problem of Exploding/Vanishing Gradients
	Slide 12: Training of DNNs: Some Important Aspects
	Slide 13: Batch Normalization
	Slide 14: Layer Normalization
	Slide 15: Dropout Layer
	Slide 16: Residual/Skip Connections

