
Intro to Deep Neural Nets
(Contd)

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

Plan today

▪ Training deep neural nets using backpropagation

▪ Some important aspects related to training of deep neural nets
▪ Vanishing/exploding gradients

▪ Initialization

▪ Normalization layers (batch and layer normalization)

▪ Dropout as a means to regularization

▪ Residual/skip connections

2

CS771: Intro to ML

Backpropagation via a Simple Example

▪ Consider a single scalar input, single hidden layer with one node, and scalar output

▪ Derivative of the loss ℓ w.r.t. 𝑤 is
𝜕ℓ

𝜕𝑤
=

𝜕ℓ

𝜕 ො𝑦

𝜕 ො𝑦

𝜕ℎ

𝜕ℎ

𝜕𝑤

▪ Derivative of the loss ℓ w.r.t. 𝑣 is
𝜕ℓ

𝜕𝑣
=

𝜕ℓ

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝑣

▪
𝜕 ො𝑦

𝜕ℎ
=

𝜕 ො𝑦

𝜕𝑣

𝜕𝑣

𝜕ℎ

3

𝜕𝒚

𝜕𝒙
= 𝐽𝑓 𝐽𝑖𝑗

𝑓
=

𝜕𝑦𝑖

𝜕𝑥𝑗
𝐽𝑓 =

∇𝑓1(𝒙)
⋮

∇𝑓𝑄(𝒙)
∈ ℝ𝑄×𝑃

For a function 𝑓: ℝ𝑃 → ℝ𝑄, the

Jacobian 𝐽𝑓 ∈ ℝ𝑄×𝑃 (a matrix)

Likewise, for a function 𝑓: ℝ𝑃×𝑄 → ℝ𝑅×𝑆,

the Jacobian 𝐽𝑓 ∈ ℝ𝑅×𝑆×𝑃×𝑄 (4D tensor)

More generally, for a function 𝑓: ℝ𝐼1×𝐼2×⋯ → ℝ𝑂1×𝑂2×⋯ ,

its Jacobian 𝐽𝑓 ∈ ℝ𝑂1×𝑂2×..×𝐼1×𝐼2×⋯ (a tensor)

Row 𝑖 contains the gradient

vector of 𝑦𝑖 = 𝑓𝑖 𝒙 w.r.t. 𝒙

𝑥 ℎ ො𝑦 ℓ(𝑦, ො𝑦)𝑤 𝑣

CS771: Intro to ML

Background: Gradient and Jacobian

▪ Let 𝒚 = 𝑓(𝒙), where 𝑓: ℝ𝑃 → ℝ𝑄, 𝒙 ∈ ℝ𝑃, 𝒚 ∈ ℝ𝑄. Denote 𝒚 = [𝑓1 𝒙 , … , 𝑓𝑄 𝒙]

▪ The gradient of each component 𝑦𝑖 = 𝑓𝑖 𝒙 ∈ ℝ (𝑖 = 1,2, … , 𝑄) w.r.t. 𝒙 ∈ ℝ𝑃 is

▪ Likewise, the gradient of whole vector 𝒚 ∈ ℝ𝑄 w.r.t. vector 𝒙 ∈ ℝ𝑃 can be defined
using the 𝑄 × 𝑃 Jacobian matrix 𝐽𝑓 whose rows consist of the above gradients

4

𝜕𝒚

𝜕𝒙
= 𝐽𝑓 𝐽𝑖𝑗

𝑓
=

𝜕𝑦𝑖

𝜕𝑥𝑗
𝐽𝑓 =

∇𝑓1(𝒙)
⋮

∇𝑓𝑄(𝒙)
∈ ℝ𝑄×𝑃

∇𝑓𝑖 𝒙 =
𝜕𝑦𝑖

𝜕𝒙
=

𝜕𝑦𝑖

𝜕𝑥1
…

𝜕𝑦𝑖

𝜕𝑥𝑃
 ∈ ℝ1×𝑃

For a function 𝑓: ℝ𝑃 → ℝ𝑄, the

Jacobian 𝐽𝑓 ∈ ℝ𝑄×𝑃 (a matrix)

Likewise, for a function 𝑓: ℝ𝑃×𝑄 → ℝ𝑅×𝑆,

the Jacobian 𝐽𝑓 ∈ ℝ𝑅×𝑆×𝑃×𝑄 (4D tensor)

More generally, for a function 𝑓: ℝ𝐼1×𝐼2×⋯ → ℝ𝑂1×𝑂2×⋯ ,

its Jacobian 𝐽𝑓 ∈ ℝ𝑂1×𝑂2×..×𝐼1×𝐼2×⋯ (a tensor)

Note: Gradient expressed here as a

row vector (has the same length as 𝒙

which is a column vector) for

notational convenience later

Row 𝑖 contains the gradient

vector of 𝑦𝑖 = 𝑓𝑖 𝒙 w.r.t. 𝒙

CS771: Intro to ML

Background: Multivariate Chain Rule of Calculus

▪ Let 𝒙 ∈ ℝ𝑃, 𝒚 = 𝑔(𝒙) ∈ ℝ𝑄, 𝑧 = 𝑓(𝒚) ∈ ℝ, where 𝑔: ℝ𝑃 → ℝ𝑄, 𝑓: ℝ𝑄 → ℝ

▪ The above can be written as a product of a vector and a matrix

▪ More generally, let 𝒘 ∈ ℝ𝑃, 𝒙 = ℎ(𝒘) ∈ ℝ𝑄, 𝒚 = 𝑔(𝒙) ∈ ℝ𝑅, 𝒛 = 𝑓(𝒚) ∈ ℝ𝑆

5

Used chain rule of total derivatives

Sum is needed since 𝑧 depends

on 𝒚, and 𝒚 is a vector

𝜕𝑧

𝜕𝒙
=

𝜕𝑧

𝜕𝑦1
…

𝜕𝑧

𝜕𝑦𝑄
×

𝜕𝑦1

𝜕𝒙
⋮

𝜕𝑦𝑄

𝜕𝒙

= ∇𝑓(𝒚) ×
∇𝑔1(𝒙)

⋮
∇𝑔𝑃(𝒙)

g f

𝒙 𝒚
𝑧

𝜕𝑧

𝜕𝒙
= ෍

𝑖=1

𝑄 𝜕𝑧

𝜕𝑦𝑖

𝜕𝑦𝑖

𝜕𝒙

= ∇𝑓(𝒚) × 𝐽𝑔

Turns out to be a product of

Jacobian of 𝑓 and 𝑔 in that order ☺

1 × 𝑄 gradient (same as

Jacobian since 𝑓 is scalar)
𝑄 × 𝑃 Jacobian of 𝑔1 × 𝑃

𝜕𝒛

𝜕𝒘
= 𝐽𝑓 × 𝐽𝑔 × 𝐽ℎ ∈ ℝ𝑆×𝑃Product of the 3 Jacobians

in that order (simple! ☺)

Note that chain rule for scalar

variables 𝑤, 𝑥, 𝑦, 𝑧 is defined in a

similar way as
𝜕𝒛

𝜕𝒘
= 𝑓′(𝑦)𝑔′(𝑥)ℎ′(𝑤)

1 × 𝑃 vector derivativeScalar derivative
1 × 𝑃 vector

derivative

CS771: Intro to ML

Backpropagation (Backprop)
▪ Backprop is gradient descent with multivariate chain rule for derivatives

▪ Consider a two hidden layer neural network

▪ We wish to minimize the loss

▪ The gradient based updates will be

▪ Since ℒ = σ𝑛=1
𝑁 ℓ𝑛, we need to compute

𝜕ℓ𝑛

𝜕𝒗
and

𝜕ℓ𝑛

𝜕𝑾(𝑖) (𝑖 = 1,2)

▪ Assume output activation 𝑜 as identity (ො𝑦𝑛 = 𝒗⊤𝒉𝑛
(2)

)

6

ℒ 𝑾(1), 𝑾(2), 𝒗 = σ𝑛=1
𝑁 ℓ(𝑦𝑛, ො𝑦𝑛) = σ𝑛=1

𝑁 ℓ𝑛

𝒗 = 𝒗 − 𝜂
𝜕ℒ

𝜕𝒗
𝑾(𝑖) = 𝑾(𝑖) − 𝜂

𝜕ℒ

𝜕𝑾(𝑖)

𝜕ℓ𝑛

𝜕𝒗
=

𝜕ℓ𝑛

𝜕 ො𝑦𝑛

𝜕 ො𝑦𝑛

𝜕𝒗
= ℓ′(𝑦𝑛, ො𝑦𝑛)𝒉𝑛

(2)

(𝑖 = 1,2)
𝒙𝑛

𝒉𝑛
(2)

= 𝑔(𝒛𝑛
(2)

)

ො𝑦𝑛

𝑾(1)

𝑾(2)

𝒗

𝒉𝑛
(1)

= 𝑔(𝒛𝑛
(1)

)

Derivative of ℓ𝑛 w.r.t. ො𝑦𝑛

CS771: Intro to ML

Backpropagation in detail

▪ Let’s now look at
𝜕ℓ𝑛

𝜕𝑾(2) where ℓ𝑛 = ℓ(𝑦𝑛, ො𝑦𝑛) and ො𝑦𝑛 = 𝒗⊤𝒉𝑛
(2)

▪ Since 𝑣 doesn’t depend on 𝑾(2),
𝜕𝒗

𝜕𝑾(2) = 0

▪ We now need
𝜕𝒉𝑛

(2)

𝜕𝑾(2). Using 𝒉𝑛
(2)

= 𝑔(𝒛𝑛
2

) where 𝒛𝑛
2

= 𝑾 2 ⊤
𝒉𝑛

(1)
and 𝑔 is elementwise

applied nonlinearity on the vector 𝒛𝑛
2

7

𝜕ℓ𝑛

𝜕𝑾(2)
=

𝜕ℓ𝑛

𝜕 ො𝑦𝑛

𝜕 ො𝑦𝑛

𝜕𝑾(2)
= ℓ′(𝑦𝑛, ො𝑦𝑛)

𝜕 ො𝑦𝑛

𝜕𝑾(2)

𝜕 ො𝑦𝑛

𝜕𝑾(2)
=

𝜕 ො𝑦𝑛

𝜕𝒉𝑛
(2)

𝜕𝒉𝑛
(2)

𝜕𝑾(2)
+

𝜕 ො𝑦𝑛

𝜕𝒗

𝜕𝒗

𝜕𝑾(2)

𝜕ℓ𝑛

𝜕𝑾(2)
= ℓ′(𝑦𝑛, ො𝑦𝑛)

𝜕 ො𝑦𝑛

𝜕𝒉𝑛
(2)

𝜕𝒉𝑛
(2)

𝜕𝑾(2) = ℓ′ 𝑦𝑛, ො𝑦𝑛 𝒗⊤
𝜕𝒉𝑛

(2)

𝜕𝑾(2)

𝜕𝒉𝑛
(2)

𝜕𝑾(2)
=

𝜕𝒉𝑛
(2)

𝜕𝒛𝑛
2

𝜕𝒛𝑛
(2)

𝜕𝑾(2)
= diag 𝑔′ 𝑧𝑛1

2
, … , 𝑔′ 𝑧𝑛𝐾2

2 𝜕𝒛𝑛
(2)

𝜕𝑾(2)

This Jacobian is a tensor

of size 𝐾2 × 𝐾2 × 𝐾1

Diagonal matrix of size 𝐾2 × 𝐾2 with Jacobian

(gradient vector) of g along the diagonals

Jacobian of size

𝐾2 × 𝐾2 × 𝐾1

Jacobian of size

1 × 𝐾2 × 𝐾1

Using transpose since

we assume gradient to

be a row vector

𝒙𝑛

𝒉𝑛
(2)

= 𝑔(𝒛𝑛
(2)

)

ො𝑦𝑛

𝑾(1)

𝑾(2)

𝒗

𝒉𝑛
(1)

= 𝑔(𝒛𝑛
(1)

)

CS771: Intro to ML

Backpropagation: Computation Reuse
▪ Summarizing, the required gradients/Jacobians for this network are

▪ Thus gradient computations done in upper layers can be stored
and reused when computing the gradients in the lower layers
(libraries like Tensorflow and Pytorch do so efficiently)

▪ Vanishing gradients:

8

𝜕ℓ𝑛

𝜕𝒗
= ℓ′ 𝑦𝑛, ො𝑦𝑛 𝒉𝑛

(2)

𝜕ℓ𝑛

𝜕𝑾(2)
= ℓ′(𝑦𝑛, ො𝑦𝑛)

𝜕 ො𝑦𝑛

𝜕𝒉𝑛
(2)

𝜕𝒉𝑛
(2)

𝜕𝒛𝑛
2

𝜕𝒛𝑛
(2)

𝜕𝑾(2)

𝜕ℓ𝑛

𝜕𝑾(1) = ℓ′(𝑦𝑛, ො𝑦𝑛)
𝜕 ො𝑦𝑛

𝜕𝒉𝑛
(2)

𝜕𝒉𝑛
(2)

𝜕𝒛𝑛
2

𝜕𝒛𝑛
(2)

𝜕𝒉𝑛
(1)

𝜕𝒉𝑛
(1)

𝜕𝒛𝑛
1

𝜕𝒛𝑛
(1)

𝜕𝑾(1)

𝜕𝒉𝑛
(𝑖)

𝜕𝒛𝑛
𝑖

= diag 𝑔′ 𝑧𝑛1
𝑖

, … , 𝑔′ 𝑧𝑛𝐾𝑖

𝑖

Gradients in lower layers will have product of many such

terms
𝜕𝒉𝑛

(𝑖)

𝜕𝒛𝑛
𝑖 . If 𝑔′ is small (e.g., gradient of sigmoid or

tanh), the gradient becomes vanishingly small for lower

layers and becomes an issue (thus ReLU and other with

non-saturating activations are preferred)

𝒙𝑛

𝒉𝑛
(2)

= 𝑔(𝒛𝑛
(2)

)

ො𝑦𝑛

𝑾(1)

𝑾(2)

𝒗

𝒉𝑛
(1)

= 𝑔(𝒛𝑛
(1)

)

CS771: Intro to ML

Backpropagation

▪ Backprop iterates between a forward pass and a backward pass

▪ Software frameworks such as Tensorflow and PyTorch support this already so you
don’t need to implement it by hand (so no worries of computing derivatives etc)

9

Forward Pass

Backward Pass

Forward pass computes

hidden units and the loss

using current values of the

network weights 𝑾 and 𝒗

Backward pass uses the loss

and hidden units’ values to

compute the gradient of the

loss, starting with weights 𝒗

in the last layer, updates the

weights, and proceeds to do

the same for other layers

CS771: Intro to ML

Backpropagation through an example
10

CS771: Intro to ML

Problem of Exploding/Vanishing Gradients

▪ MLPs/CNNs have many hidden layers and gradients in each
layer are a product of several Jacobians

▪ Result of these products depends on the eigenvalues of each
of these Jacobians
▪ If they are large (>1), gradients might blow up (explode)

▪ If they are small (<1), gradients might vanish

▪ To prevent blow up, we can use gradient clipping
▪ Simply cap the magnitude of the gradients!

▪ To prevent vanishing gradients, several options
▪ Use non-saturating activation functions (recall that the gradient is a

product of terms like 𝜕𝒉𝑛
(𝑖)

𝜕𝒛𝑛
𝑖 = diag 𝑔′ 𝑧𝑛1

𝑖 , … , 𝑔′ 𝑧𝑛𝐾𝑖

𝑖), so the derivative 𝑔′

doesn’t become too small

▪ Use other architectures such as skip- connections (will discuss later)

11

𝒙𝑛

𝒉𝑛
(2)

= 𝑔(𝒛𝑛
(2)

)

ො𝑦𝑛

𝑾(1)

𝑾(2)

𝒗

𝒉𝑛
(1)

= 𝑔(𝒛𝑛
(1)

)

CS771: Intro to ML

Training of DNNs: Some Important Aspects

▪ Deep neural net training can be hard due to
non-convex loss functions

▪ Several ways to address this, e.g.,
▪ Good choice of learning rate of (S)GD

▪ We have already seen this

▪ Good initialization of parameters, e.g., initialize
each weight, say 𝑤𝑖𝑗 , randomly as

▪ Careful design of the network architecture, e.g.,

▪ Networks with “skip connections” (will see later) which
lead to less non-convex (more smooth) loss surfaces
(figures on the right)

▪ Vanishing/exploding gradients (already saw)

12

VGG-56 VGG-110

Fig credit: https://www.cs.umd.edu/~tomg/projects/landscapes/

𝑤𝑖𝑗 ∼ 𝒩(0, 𝜎2) 𝑤𝑖𝑗 ∼ Uniform(−𝑎, 𝑎)or

and set the “spread” of these distribution

as inversely proportional to 𝑛in + 𝑛out

Resnet-56 Densenet-121

Xavier/Gloret initialization,

LeCun init, He init, etc

https://www.cs.umd.edu/~tomg/projects/landscapes/

CS771: Intro to ML

Batch Normalization

▪ Each hidden layer is a nonlinear transformation of the previous layer’s inputs

▪ To prevent distribution drift in activations’ distribution, we often “standardize” each layer

▪ Standardize = activation ℎ𝑛𝑘
(ℓ)

should have zero mean and unit variance across all 𝑛

▪ It is achieved by inserting a “batch normalization” layer after each hidden layer

▪ To do so, during training, (omitting layer number ℓ) we replace each 𝒉𝑛 by ෩𝒉𝑛

▪ After training, we store 𝜸 and 𝜷 + the statistics 𝝁 and 𝝈2 computed on the whole
training data, and use these values to apply batch-norm on each test input

13

෩𝒉𝑛 = 𝜸 ⊙ ෡𝒉𝑛 + 𝜷 ෡𝒉𝑛 =
𝒉𝑛 − 𝝁ℬ

𝝈ℬ
2 + 𝜖

𝝁ℬ =
1

|ℬ|
෍

𝒉∈ℬ
𝒉 𝝈ℬ

2 =
1

|ℬ|
෍

𝒉∈ℬ
𝒉 − 𝝁ℬ

2

𝜸 and 𝜷 are trainable

batch-norm parameters

We compute 𝝁ℬ and

𝝈ℬ
2 using the data from

the current minibatch

of examples ℬ (thus

the name “batch norm”

Note: Batch-norm assumes sufficiently large mini-

batch ℬ to work well. There are variants such as

“layer normalization” and “instance normalization”

that don’t require a mini-batch can be computed

using a single training example

Batch normalization is used

in MLP, CNN, and various

other architectures

CS771: Intro to ML

Layer Normalization
▪ Normalization helps improve training and performance overall

▪ Unlike batch normalization (BN), which we already saw, layer normalization (LN) normalizes
each 𝒉𝑛 across its dimensions (not across all minibatch examples)

▪ Often used for sequence data models (will see later) where BN is difficult to apply

▪ Also useful when batch sizes are small where BN statistics (mean/var) aren’t reliable

▪ For an MLP, the LN operation would look like this

14

0.5 0.9 0.7

0.1 0.8 0.3

𝒙𝑛

𝒉𝑛
(1)

𝒉𝑛
(2)

-1.22

𝒙𝑛

𝒉𝑛
(1)

𝒉𝑛
(2)

1.22 0.0

-1.02 1.36 -0.34

𝒉𝑛
(1)

 has zero mean and unit

std-dev along its dimensions

𝒉𝑛
(2)

 has zero mean and unit

std-dev along its dimensions
After LN

After LN operation, we apply another

transformation defined by another set

of learnable weights (just like we did

in BN using 𝛾 and 𝛽)

CS771: Intro to ML

Dropout Layer

▪ Deep neural networks can overfit when trained on small datasets

▪ Dropout is a method to regularize without using an explicit regularizer

▪ In every update of the network, drop neuron 𝑖 in layer ℓ with probability 𝑝

▪ If 𝜖𝑖
(ℓ)

= 0, set all outgoing weights 𝑤𝑖𝑗
(ℓ)

from neuron 𝑖 to 0

▪ Each update of weights will change a different subset of weights
▪ In doing so, we are making individual neurons more self-reliant and less dependent on others

▪ At test time, no dropout is used. After training is complete, we multiply each weight
by the keep probability 1 − 𝑝 and use these weights for predictions

15

𝜖𝑖
(ℓ)

∼ Bernoulli(1 − 𝑝)

CS771: Intro to ML

Residual/Skip Connections
▪ Many modern deep nets contain a very large number of layers

▪ In general, just stacking lots of layer doesn’t necessarily help a deep learning model

▪ Vanishing/exploding gradient may make learning difficult

▪ Skip connections or “residual connections” help if we want very deep networks

▪ This idea was popularized by “Residual Networks”* (ResNets) which can have hundreds of layers

▪ Basic idea: Don’t force a layer to learn everything about a mapping

16

*Deep Residual Learning for Image Recognition (He et al, 2015)

These layers trying

to learn some

function 𝑓(𝑥) Reducing their burden by just

asking them to learn the

“residual” 𝑔 𝑥 = 𝑓 𝑥 − 𝑥

Added a “residual branch” or “short-

cut” connection to connect 𝑥 to the

residual output 𝑔(𝑥) of these layers

May need to perform an additional

projection/adjustment to that the

sizes of 𝑥 and 𝑔(𝑥) match

Pic source: https://www.d2l.ai/index.html

https://www.d2l.ai/index.html

	Slide 1: Intro to Deep Neural Nets (Contd)
	Slide 2: Plan today
	Slide 3: Backpropagation via a Simple Example
	Slide 4: Background: Gradient and Jacobian
	Slide 5: Background: Multivariate Chain Rule of Calculus
	Slide 6: Backpropagation (Backprop)
	Slide 7: Backpropagation in detail
	Slide 8: Backpropagation: Computation Reuse
	Slide 9: Backpropagation
	Slide 10: Backpropagation through an example
	Slide 11: Problem of Exploding/Vanishing Gradients
	Slide 12: Training of DNNs: Some Important Aspects
	Slide 13: Batch Normalization
	Slide 14: Layer Normalization
	Slide 15: Dropout Layer
	Slide 16: Residual/Skip Connections

