
Intro to Deep Neural Networks:
Multi-layer Perceptrons

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

Limitation of Linear Models

▪ Linear models: Output produced by taking a linear combination of input features

▪ A basic unit of the form 𝑦 = 𝑓(𝒘⊤𝒙) is known as the “Perceptron” (not to be confused
with the Perceptron “algorithm”, which learns a linear classification model)

▪ This can’t however learn nonlinear functions or nonlinear decision boundaries

2

𝑓 is some linear/nonlinear function

(e.g., identity, sign, or sigmoid)

Although can kernelize to

make them nonlinear

Linear regression, logistic

regression, SVM, etc

CS771: Intro to ML

Neural Networks: Multi-layer Perceptron (MLP)

▪ An MLP is a network containing several Perceptron units across many layers

▪ An MLP consists of an input layer, an output layer, and one or more hidden layers

3

Input Layer

(with D=3 visible units)

One hidden Layer

(with K=2 hidden units)

Output Layer

(with a scalar-valued output)
Hidden layer units/nodes

(a.k.a. “neurons”) act as

new features

The effective 𝑥 to 𝑦

mapping is nonlinear (will

see justification shortly)

Can think of this model as a

combination of two predictions

ℎ𝑛1 and ℎ𝑛2 of two simple

functions (red and blue weights)

Learnable
weights

Input layer units/nodes denote

the original features of input 𝒙𝑛 MLP is also called feedforward fully-connected network

ො𝑦𝑛

CS771: Intro to ML

Illustration: Neural Net with Single Hidden Layer

▪ Compute 𝐾 pre-activations for each input 𝒙𝑛

▪ Apply nonlinear activation on each pre-act

▪ Apply a linear model with 𝒉𝑛 acting as features

▪ Finally, output is produced as

▪ Loss: ℒ 𝑾, 𝒗 = σ𝑛=1
𝑁 ℓ(𝑦𝑛, Ƹ𝑦𝑛)

4

𝑧𝑛𝑘 = 𝒘𝑘
⊤𝒙𝑛 =

𝑑=1

𝐷

𝑤𝑑𝑘𝑥𝑛𝑑

ℎ𝑛𝑘 = 𝑔(𝑧𝑛𝑘)

𝑠𝑛 = 𝒗⊤𝒉𝑛 =
𝑘=1

𝐾

𝑣𝑘ℎ𝑛𝑘

ො𝑦𝑛 = 𝑜(𝑠𝑛)

(𝑘 = 1,2, … , 𝐾)

(𝑘 = 1,2, … , 𝐾)

Last layer activation function 𝑜

can be an identify function too

(e.g., for regression, ො𝑦𝑛 = 𝑠𝑛)
or sigmod/softmax/sign etc

Hidden layer

activation function 𝑔

must be nonlinear

Score of

the input

Score converted to the

actual prediction

A linear model with

learnable weight vec 𝒘𝑘

A linear model with

learnable weight vec 𝒗

Called a hidden unit

ො𝑦𝑛

𝑧𝑛1 𝑧𝑛2

ℎ𝑛1 ℎ𝑛2

𝑠𝑛

CS771: Intro to ML

Neural Nets: A Compact Illustration

▪ Note: Hidden layer pre-act 𝑧𝑛𝑘 and post-act ℎ𝑛𝑘 will be shown together for brevity

▪ Denoting 𝑾 = [𝒘1, 𝒘2, … , 𝒘𝐾], 𝒘𝑘 ∈ ℝ𝐷, 𝒉𝑛 = 𝑔 𝑾⊤𝒙𝑛 ∈ ℝ𝐾 (𝐾 = 2, 𝐷 = 3
above). Note: 𝑔 applied elementwise on pre-activation vector 𝒛𝑛 = 𝑾⊤𝒙𝑛

5

Single

Hidden

Layer

More succinctly..

Will combine pre-act and post-act and

directly show only ℎ𝑛𝑘 to denote the

value computed by a hidden node

Will directly show

the final output

Will denote a linear

combination of inputs

followed by a nonlinear

operation on the result

ℎ𝑛𝑘 = 𝑔(𝒘𝑘
⊤𝒙𝑛)

CS771: Intro to ML

Activation Functions: Some Common Choices
6

sigmoid tanh

ReLU
Leaky ReLU

h

a

h

a

h

a

Preferred more than

sigmoid. Helps keep the

mean of the next layer’s

inputs close to zero (with

sigmoid, it is close to 0.5)

For sigmoid as well as tanh,

gradients saturate (become

close to zero as the function

tends to its extreme values)

Helps fix the dead

neuron problem of

ReLU when 𝑎 is a

negative number

Imp: Without nonlinear

activation, a deep neural

network is equivalent to

a linear model no matter

how many layers we use

Most activation functions are

monotonic but there exist

some non-monotonic

activation functions as well

(e.g., Swish: 𝑎 × 𝜎(𝛽𝑎))

ReLU and Leaky ReLU

are among the most

popular ones (also

efficient to compute)

𝑦 = 𝒗⊤ 𝑔 𝑾⊤𝑥

 = 𝒗⊤𝑾⊤𝑥

Still linear

CS771: Intro to ML

MLP Can Learn Any Nonlinear Function

▪ An MLP can be seen as a composition of multiple linear models combined nonlinearly

7

Standard Single “Perceptron” Classifier (no hidden units)

score

Score monotonically increases.

One-sided increase (not ideal for

learning nonlinear decision

boundaries). Just a linear model

A Multi-layer Perceptron Classifier

 (one hidden layer with 2 units)

 Capable of learning nonlinear boundaries

score score

scoreObtained by composing the two one-sided

increasing score functions (using learnable

weights 𝑣1 and 𝑣2 to “add“ them). This

can now learn the nonlinear decision

boundary (high score in the middle)

High-score in the middle and low-

score on either of the two sides

of it. Exactly what we want for

the given classification problem

A nonlinear

classification problem

A single hidden layer MLP with sufficiently large

number of hidden units can approximate any

function (Hornik, 1991)

ො𝑦𝑛

CS771: Intro to ML

Superposition of two linear models = Nonlinear model
8

Two sigmoids (blue and

orange) can be combined via

a shift and a subtraction

operation to result in a

nonlinear separation boundary

𝑥

𝑝(𝑦 = red|𝑥)

Nonlinear separation boundary

Likewise, more than two

sigmoids can be combined to

learn even more sophisticated

separation boundaries

CS771: Intro to ML

Examples of some basic NN/MLP architectures

9

CS771: Intro to ML

Single Hidden Layer and Single Output

▪ One hidden layer with 𝐾 nodes and a single output (e.g., scalar-valued regression or
binary classification)

10

𝑔 is a nonlinear

activation function

𝑜 is a suitable function (e.g., identity,

sign, or sigmoid, etc) to convert the

score into the actual response
ො𝑦𝑛 = 𝑜(𝒗⊤𝒉𝑛)

CS771: Intro to ML

Single Hidden Layer and Multiple Outputs

▪ One hidden layer with 𝐾 nodes and a vector of 𝐶 outputs (e.g., vector-valued
regression or multi-class classification or multi-label classification)

11

𝑔 is a nonlinear

activation function

𝑜 is a suitable function (e.g.,

identity, sign, or softmax, etc)

to convert the score into the

actual response vector for 𝑥𝑛ෝ𝒚𝑛 = 𝑜(𝑽⊤𝒉𝑛)
ො𝑦𝑛1 ො𝑦𝑛2 ො𝑦𝑛𝐶

CS771: Intro to ML

Multiple Hidden Layers (One/Multiple Outputs)

▪ Most general case: Multiple hidden layers with (with same or different number of
hidden nodes in each) and a scalar or vector-valued output

12

Each hidden layer uses a

nonlinear activation function 𝑔

(essential, otherwise the

network can’t learn nonlinear

functions and reduces to a

linear model)

Note: Nonlinearity 𝑔

is applied element-

wise on its inputs

so ℎ𝑛
(ℓ)

 has the

same size as vector

𝑊(ℓ)ℎ𝑛
(ℓ−1)

CS771: Intro to ML

The Bias Term

▪ Each layer’s pre-activations 𝒛𝑛
(ℓ)

have a an add bias term

𝒃(ℓ) (has the same size as 𝒛𝑛
(ℓ)

and 𝒉𝑛
(ℓ)

) as well

▪ Bias term increases the expressiveness of the network
and ensures that we have nonzero activations/pre-
activations even if this layer’s input is a vector of all zeros

▪ Note that the bias term is the same for all inputs (does
not depend on 𝑛)

▪ The bias term 𝒃(ℓ) is also learnable

13

𝒙𝑛

𝒉𝑛
(2)

ො𝑦𝑛

𝑾(1)

𝑾(2)

𝒗

𝒉𝑛
(1)

𝒛𝑛
(ℓ)

= 𝑾 ℓ ⊤
𝒉𝑛

(ℓ−1)
+ 𝒃(ℓ)

𝒉𝑛
(ℓ)

= 𝑔(𝒛𝑛
ℓ

)

CS771: Intro to ML

Neural Nets are Feature Learners

▪ Hidden layers can be seen as learning a feature rep. 𝜙 𝒙𝑛 for each input 𝒙𝑛

14

The last (𝐿𝑡ℎ) hidden

layer’s nodes’ values 𝒉𝑛
(𝐿)

CS771: Intro to ML

Kernel Methods vs Neural Nets

▪ Recall the prediction rule for a kernel method (e.g., kernel SVM)

▪ It’s like a one hidden layer NN with

▪ Pre-defined 𝑁 features 𝑘 𝒙𝑖 , 𝒙𝑛 𝑖=1
𝑁 acting as feature vector 𝒉𝑛

▪ 𝛼𝑖 𝑛=1
𝑁 are learnable output layer weights

▪ It’s also like a one hidden layer NN with
▪ Pre-defined 𝑀 features 𝜙(𝒙𝑛) (𝑀 being size of feature mapping 𝜙) acting as feature vector 𝒉𝑛

▪ 𝒘 ∈ ℝ𝑀 are learnable output layer weights

▪ Both kernel methods and deep neural networks extract new features from the inputs
▪ For kernel methods, the features are pre-defined via the kernel function

▪ For deep NN, the features are learned by the network

▪ Note: Kernels can also be learned from data (“kernel learning”) in which case kernel
methods and deep neural nets become even more similar in spirit ☺

15Also note that neural nets are faster

than kernel methods at test time

since kernel methods need to store

the training examples at test time

whereas neural nets do not

𝑦𝑛 =
𝑖=1

𝑁

𝛼𝑛𝑘(𝒙𝑖 , 𝒙𝑛)𝑦𝑛 = 𝒘⊤ 𝜙(𝒙𝑛) OR

CS771: Intro to ML

Features Learned by a Neural Network

▪ 𝒘𝑘
(ℓ)

∈ ℝ𝐾ℓ−1 denotes “feature detector” for feature 𝑘 of layer ℓ For

▪ For input 𝒙𝑛, ℎ𝑛𝑘
(ℓ)

= 𝑔(𝒘𝑘
ℓ ⊤

𝒉𝑛
(ℓ−1)

) is the value of feature 𝑘 in layer ℓ

16

All the incoming weights (a

vector) to a hidden node can

be seen as representing a

pattern/feature-detector of

previous layer’s inputs

E.g., 𝒘32
(2)

 denotes a

feature detector

𝐾0 = 𝐷

𝑾(ℓ) = [𝒘1
ℓ

, 𝒘2
ℓ

, … , 𝒘𝐾ℓ

ℓ
] is

𝐾ℓ−1 × 𝐾ℓ matrix of weights

between layer ℓ − 1 and ℓ

𝑾(ℓ) collectively represents the

𝐾ℓ feature detectors for layer ℓ

All the incoming weights (a

vector) to a hidden node can

be seen as representing a

pattern/feature-detector of

previous layer’s inputs

E.g., 𝒘100
(1)

 denotes a

feature detector
𝒉𝑛

(1)

𝒉𝑛
(2)

𝒉𝑛
(3)

CS771: Intro to ML

Why Neural Networks Work Better: Another View

▪ Linear models tend to only learn the “average” pattern
▪ E.g., Weight vector of a linear classification model represent average pattern of a class

▪ Deep models can learn multiple patterns (each hidden node can learn one pattern)
▪ Thus deep models can learn to capture more subtle variations that a simpler linear model

17

CS771: Intro to ML

Neural Nets: Some Aspects

▪ Much of the magic lies in the hidden layers

▪ Hidden layers learn and detect good features

▪ Need to consider a few aspects
▪ Number of hidden layers, number of units in each hidden layer

▪ Why bother about many hidden layers and not use a single very
wide hidden layer (recall Hornik’s universal function
approximator theorem)?

▪ Complex networks (several, very wide hidden layers) or simpler
networks (few, moderately wide hidden layers)?

▪ Aren’t deep neural network prone to overfitting (since they
contain a huge number of parameters)?

18

Choosing the right NN architecture is

important and a research area in itself.

Neural Architecture Search (NAS) is an

automated technique to do this

CS771: Intro to ML

Representational Power of Neural Nets

▪ Consider a single hidden layer neural net with 𝐾 hidden nodes

▪ Recall that each hidden unit “adds” a simple function to the overall function

▪ Increasing 𝐾 (number of hidden units) will result in a more complex function

▪ Very large 𝐾 seems to overfit (see above fig). Should we instead prefer small 𝐾?

▪ No! It is better to use large 𝐾 and regularize well. Reason/justification:
▪ Simple NN with small 𝐾 will have a few local optima, some of which may be bad

▪ Complex NN with large 𝐾 will have many local optimal, all equally good (theoretical results on this)

▪ We can also use multiple hidden layers (each sufficiently large) and regularize well

19

K = 3 K = 6 K = 20

CS771: Intro to ML

Wide or Deep?

▪ While very wide single hidden layer can approx. any function, often we prefer many,
less wide, hidden layers

▪ Higher layers help learn more directly useful/interpretable features (also useful for
compressing data using a small number of features)

20

	Slide 1: Intro to Deep Neural Networks: Multi-layer Perceptrons
	Slide 2: Limitation of Linear Models
	Slide 3: Neural Networks: Multi-layer Perceptron (MLP)
	Slide 4: Illustration: Neural Net with Single Hidden Layer
	Slide 5: Neural Nets: A Compact Illustration
	Slide 6: Activation Functions: Some Common Choices
	Slide 7: MLP Can Learn Any Nonlinear Function
	Slide 8: Superposition of two linear models = Nonlinear model
	Slide 9: Examples of some basic NN/MLP architectures
	Slide 10: Single Hidden Layer and Single Output
	Slide 11: Single Hidden Layer and Multiple Outputs
	Slide 12: Multiple Hidden Layers (One/Multiple Outputs)
	Slide 13: The Bias Term
	Slide 14: Neural Nets are Feature Learners
	Slide 15: Kernel Methods vs Neural Nets
	Slide 16: Features Learned by a Neural Network
	Slide 17: Why Neural Networks Work Better: Another View
	Slide 18: Neural Nets: Some Aspects
	Slide 19: Representational Power of Neural Nets
	Slide 20: Wide or Deep?

