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Limitation of Linear Models

▪ Linear models: Output produced by taking a linear combination of input features

▪ A basic unit of the form 𝑦 = 𝑓(𝒘⊤𝒙) is known as the “Perceptron” (not to be confused 
with the Perceptron “algorithm”, which learns a linear classification model)

▪ This can’t however learn nonlinear functions or nonlinear decision boundaries
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𝑓 is some linear/nonlinear function 

(e.g., identity, sign, or sigmoid)

Although can kernelize to 

make them nonlinear

Linear regression, logistic 

regression, SVM, etc
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Neural Networks: Multi-layer Perceptron (MLP)

▪ An MLP is a network containing several Perceptron units across many layers

▪ An MLP consists of an input layer, an output layer, and one or more hidden layers
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Input Layer

(with D=3 visible units)

One hidden Layer

(with K=2 hidden units)

Output Layer

(with a scalar-valued output)
Hidden layer units/nodes 

(a.k.a. “neurons”) act as 

new features

The effective 𝑥 to 𝑦 

mapping is nonlinear (will 

see justification shortly)

Can think of this model as a 

combination of two predictions 

ℎ𝑛1 and ℎ𝑛2  of two simple 

functions (red and blue weights)

Learnable 
weights

Input layer units/nodes denote 

the original features of input 𝒙𝑛 MLP is also called feedforward fully-connected network

ො𝑦𝑛
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Illustration: Neural Net with Single Hidden Layer

▪ Compute 𝐾 pre-activations for each input 𝒙𝑛

▪ Apply nonlinear activation on each pre-act

▪ Apply a linear model with 𝒉𝑛 acting as features

▪ Finally, output is produced as

▪ Loss: ℒ 𝑾, 𝒗 = σ𝑛=1
𝑁 ℓ(𝑦𝑛, Ƹ𝑦𝑛)
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𝑧𝑛𝑘 = 𝒘𝑘
⊤𝒙𝑛 = 

𝑑=1

𝐷

𝑤𝑑𝑘𝑥𝑛𝑑

ℎ𝑛𝑘 = 𝑔(𝑧𝑛𝑘)

𝑠𝑛 = 𝒗⊤𝒉𝑛 =  
𝑘=1

𝐾

𝑣𝑘ℎ𝑛𝑘

ො𝑦𝑛 = 𝑜(𝑠𝑛)

(𝑘 = 1,2, … , 𝐾)

(𝑘 = 1,2, … , 𝐾)

Last layer activation function 𝑜 

can be an identify function too 

(e.g., for regression, ො𝑦𝑛 = 𝑠𝑛) 
or sigmod/softmax/sign etc 

Hidden layer 

activation function 𝑔 

must be nonlinear

Score of 

the input

Score converted to the 

actual prediction

A linear model with 

learnable weight vec 𝒘𝑘

A linear model with 

learnable weight vec 𝒗

Called a hidden unit

ො𝑦𝑛

𝑧𝑛1 𝑧𝑛2

ℎ𝑛1 ℎ𝑛2

𝑠𝑛
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Neural Nets: A Compact Illustration

▪ Note: Hidden layer pre-act 𝑧𝑛𝑘 and post-act ℎ𝑛𝑘 will be shown together for brevity

▪ Denoting 𝑾 = [𝒘1, 𝒘2, … , 𝒘𝐾], 𝒘𝑘 ∈ ℝ𝐷, 𝒉𝑛 = 𝑔 𝑾⊤𝒙𝑛 ∈ ℝ𝐾 (𝐾 = 2, 𝐷 = 3
above). Note: 𝑔 applied elementwise on pre-activation vector 𝒛𝑛 = 𝑾⊤𝒙𝑛
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Single

Hidden

Layer

More succinctly..

Will combine pre-act and post-act and 

directly show only ℎ𝑛𝑘 to denote the 

value computed by a hidden node

Will directly show 

the final output

Will denote a linear 

combination of inputs 

followed by a nonlinear 

operation on the result

ℎ𝑛𝑘 = 𝑔(𝒘𝑘
⊤𝒙𝑛)
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Activation Functions: Some Common Choices
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sigmoid tanh

ReLU
Leaky ReLU

h

a

h

a

h

a

Preferred more than 

sigmoid. Helps keep the 

mean of the next layer’s 

inputs close to zero (with 

sigmoid, it is close to 0.5)

For sigmoid as well as tanh, 

gradients saturate (become 

close to zero as the function 

tends to its extreme values)

Helps fix the dead 

neuron problem of 

ReLU when 𝑎 is a 

negative number

Imp: Without nonlinear 

activation, a deep neural 

network is equivalent to 

a linear model no matter 

how many layers we use

Most activation functions are 

monotonic but there exist 

some non-monotonic 

activation functions as well 

(e.g., Swish: 𝑎 × 𝜎(𝛽𝑎))

ReLU and Leaky ReLU 

are among the most 

popular ones (also 

efficient to compute)

𝑦 = 𝒗⊤ 𝑔 𝑾⊤𝑥

         = 𝒗⊤𝑾⊤𝑥

Still linear
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MLP Can Learn Any Nonlinear Function

▪ An MLP can be seen as a composition of multiple linear models combined nonlinearly
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Standard Single “Perceptron” Classifier (no hidden units)

score

Score monotonically increases. 

One-sided increase (not ideal for 

learning nonlinear decision 

boundaries). Just a linear model

A Multi-layer Perceptron Classifier

         (one hidden layer with 2 units)

 Capable of learning nonlinear boundaries

score score

scoreObtained by composing the two one-sided 

increasing score functions (using learnable 

weights  𝑣1 and 𝑣2 to “add“ them). This 

can now learn the nonlinear decision 

boundary (high score in the middle)

High-score in the middle and low-

score on either of the two sides 

of it. Exactly what we want for 

the given classification problem

A nonlinear 

classification problem

A single hidden layer MLP with sufficiently large 

number of hidden units can approximate any 

function (Hornik, 1991)

ො𝑦𝑛
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Superposition of two linear models = Nonlinear model
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Two sigmoids (blue and 

orange) can be combined via 

a shift and a subtraction 

operation to result in a 

nonlinear separation boundary

𝑥

𝑝(𝑦 = red|𝑥)

Nonlinear separation boundary

Likewise, more than two 

sigmoids can be combined to 

learn even more sophisticated 

separation boundaries
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Examples of some basic NN/MLP architectures

9
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Single Hidden Layer and Single Output

▪ One hidden layer with 𝐾 nodes and a single output (e.g., scalar-valued regression or 
binary classification)
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𝑔 is a nonlinear 

activation function

𝑜 is a suitable function (e.g., identity, 

sign, or sigmoid, etc) to convert the 

score into the actual response
ො𝑦𝑛 = 𝑜(𝒗⊤𝒉𝑛)
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Single Hidden Layer and Multiple Outputs

▪ One hidden layer with 𝐾 nodes and a vector of 𝐶 outputs (e.g., vector-valued 
regression or multi-class classification or multi-label classification)
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𝑔 is a nonlinear 

activation function

𝑜 is a suitable function (e.g., 

identity, sign, or softmax, etc) 

to convert the score into the 

actual response vector for 𝑥𝑛ෝ𝒚𝑛 = 𝑜(𝑽⊤𝒉𝑛)
ො𝑦𝑛1 ො𝑦𝑛2 ො𝑦𝑛𝐶
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Multiple Hidden Layers (One/Multiple Outputs)

▪ Most general case: Multiple hidden layers with (with same or different number of 
hidden nodes in each) and a scalar or vector-valued output
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Each hidden layer uses a 

nonlinear activation function 𝑔 

(essential, otherwise the 

network can’t learn nonlinear 

functions and reduces to a 

linear model)

Note: Nonlinearity 𝑔 

is applied element-

wise on its inputs 

so ℎ𝑛
(ℓ)

 has the 

same size as vector 

𝑊(ℓ)ℎ𝑛
(ℓ−1)
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The Bias Term

▪ Each layer’s pre-activations 𝒛𝑛
(ℓ)

have a an add bias term 

𝒃(ℓ) (has the same size as 𝒛𝑛
(ℓ)

and 𝒉𝑛
(ℓ)

) as well

▪ Bias term increases the expressiveness of the network 
and ensures that we have nonzero activations/pre-
activations even if  this layer’s input is a vector of all zeros 

▪ Note that the bias term is the same for all inputs (does 
not depend on 𝑛)

▪ The bias term 𝒃(ℓ) is also learnable
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𝒙𝑛

𝒉𝑛
(2)

ො𝑦𝑛

𝑾(1)

𝑾(2)

𝒗

𝒉𝑛
(1)

𝒛𝑛
(ℓ)

= 𝑾 ℓ ⊤
𝒉𝑛

(ℓ−1)
+ 𝒃(ℓ)

𝒉𝑛
(ℓ)

= 𝑔(𝒛𝑛
ℓ

)
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Neural Nets are Feature Learners

▪ Hidden layers can be seen as learning a feature rep. 𝜙 𝒙𝑛 for each input 𝒙𝑛

14

The last (𝐿𝑡ℎ) hidden 

layer’s nodes’ values 𝒉𝑛
(𝐿)
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Kernel Methods vs Neural Nets

▪ Recall the prediction rule for a kernel method (e.g., kernel SVM)

▪ It’s like a one hidden layer NN with 

▪ Pre-defined 𝑁 features 𝑘 𝒙𝑖 , 𝒙𝑛 𝑖=1
𝑁 acting as feature vector 𝒉𝑛

▪ 𝛼𝑖 𝑛=1
𝑁 are learnable output layer weights 

▪ It’s also like a one hidden layer NN with 
▪ Pre-defined 𝑀 features 𝜙(𝒙𝑛) (𝑀 being size of feature mapping 𝜙) acting as feature vector 𝒉𝑛

▪ 𝒘 ∈ ℝ𝑀 are learnable output layer weights 

▪ Both kernel methods and deep neural networks extract new features from the inputs
▪ For kernel methods, the features are pre-defined via the kernel function

▪ For deep NN, the features are learned by the network

▪ Note: Kernels can also be learned from data (“kernel learning”) in which case kernel 
methods and deep neural nets become even more similar in spirit ☺

15Also note that neural nets are faster 

than kernel methods at test time 

since kernel methods need to store 

the training examples at test time 

whereas neural nets do not 

𝑦𝑛 = 
𝑖=1

𝑁

𝛼𝑛𝑘(𝒙𝑖 , 𝒙𝑛)𝑦𝑛 = 𝒘⊤ 𝜙(𝒙𝑛) OR
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Features Learned by a Neural Network

▪ 𝒘𝑘
(ℓ)

∈ ℝ𝐾ℓ−1 denotes “feature detector” for feature 𝑘 of layer ℓ For 

▪ For input 𝒙𝑛, ℎ𝑛𝑘
(ℓ)

= 𝑔(𝒘𝑘
ℓ ⊤

𝒉𝑛
(ℓ−1)

) is the value of feature 𝑘 in layer ℓ
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All the incoming weights (a 

vector) to a hidden node can 

be seen as representing a 

pattern/feature-detector of 

previous layer’s inputs

E.g., 𝒘32
(2)

 denotes a 

feature detector

𝐾0 = 𝐷

𝑾(ℓ) = [𝒘1
ℓ

, 𝒘2
ℓ

, … , 𝒘𝐾ℓ

ℓ
] is 

𝐾ℓ−1 × 𝐾ℓ matrix of weights 

between layer ℓ − 1 and ℓ

𝑾(ℓ) collectively represents the 

𝐾ℓ feature detectors for layer ℓ

All the incoming weights (a 

vector) to a hidden node can 

be seen as representing  a 

pattern/feature-detector of 

previous layer’s inputs

E.g., 𝒘100
(1)

 denotes a 

feature detector
𝒉𝑛

(1)

𝒉𝑛
(2)

𝒉𝑛
(3)
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Why Neural Networks Work Better: Another View

▪ Linear models tend to only learn the “average” pattern
▪ E.g., Weight vector of a linear classification model represent average pattern of a class

▪ Deep models can learn multiple patterns (each hidden node can learn one pattern)
▪ Thus deep models can learn to capture more subtle variations that a simpler linear model

17
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Neural Nets: Some Aspects

▪ Much of the magic lies in the hidden layers

▪ Hidden layers learn and detect good features

▪ Need to consider a few aspects
▪ Number of hidden layers, number of units in each hidden layer

▪ Why bother about many hidden layers and not use a single very 
wide hidden layer (recall Hornik’s universal function 
approximator theorem)?

▪ Complex networks (several, very wide hidden layers) or simpler 
networks (few, moderately wide hidden layers)?

▪ Aren’t deep neural network prone to overfitting (since they 
contain a huge number of parameters)?

18

Choosing the right NN architecture is 

important and a research area in itself. 

Neural Architecture Search (NAS) is an 

automated technique to do this
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Representational Power of Neural Nets

▪ Consider a single hidden layer neural net with 𝐾 hidden nodes

▪ Recall that each hidden unit “adds” a simple function to the overall function

▪ Increasing 𝐾 (number of hidden units) will result in a more complex function

▪ Very large 𝐾 seems to overfit (see above fig). Should we instead prefer small 𝐾?

▪ No! It is better to use large 𝐾 and regularize well. Reason/justification:
▪ Simple NN with small 𝐾 will have a few local optima, some of which may be bad

▪ Complex NN with large 𝐾 will have many local optimal, all equally good (theoretical results on this)

▪ We can also use multiple hidden layers (each sufficiently large) and regularize well

19

K = 3 K = 6 K = 20
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Wide or Deep?

▪ While very wide single hidden layer can approx. any function, often we prefer many, 
less wide, hidden layers

▪ Higher layers help learn more directly useful/interpretable features (also useful for 
compressing data using a small number of features)

20
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