

Limitation of Linear Models

" | inear models: Output produced by taking a linear combination of input features
D
_ D Linear regression, logistic m
Yn = dz: WdTnd Yp = f (Z wdfﬁnd> regression, SVM, etc ;.;,:‘ /
=1

(el (S

f is some linear/nonlinear function
(e.g., identity, sign, or sigmoid)

= A basic unit of the form y = f(w'x) is known as the “Perceptron” (not to be confused
with the Perceptron “algorithm”, which learns a linear classification model)

Although can kernelize to
make them nonlinear

® This can't however learn nonlinear functions or nonlinear decision boundaries
CS771: Intro to ML

Neural Networks: Multi-layer Perceptron (MLP)

= An MLP is a network containing several Perceptron units across many layers
= An MLP consists of an input layer, an output layer, and one or more hidden layers

K
Output Layer yn .
(with a scalar-valued output) Yn =0 2 : Pk
Hidden layer units/nodes k=1
(a.k.a. “neurons”) act as Learnable
new features weights
_ D
One hidden Layer S
(with K=2 hidden units) '°"1 nk =g E WakTnd
d=1
Can think of this model as a a

combination of two predictions AR | /

h,q and h,, of two simple e»
)

functions (red and blue weights

The effective x to y
mapping is nonlinear (will
see justification shortly)

Input Layer T
(with D=3 visible units) *“ 101

Input layer units/nodes denote

the original features of input x,, | IMLP IS also called feedforward fully-connected network CST71: Intro to ML

Illustration: Neural Net with Single Hidden Layer

» Compute K pre-activations for each input x, o f
3 ast layer activation function o

A linear model with

learnable weight vec wy, - D can be an identify function too
Znk = Wk X, = E WgirXnd *k=12,..,K) Sn (e.g.., for regression, yn = S,)
d=1 or sigmod/softmax/sign etc

= Apply nonlinear activation on each pre-act

Called a hidden unit hnk — g(an) (k=12,..,K) hnl /
Y Hidden layer

activation function g
must be nonlinear

* Apply a linear model with h,, acting as features

A linear model with

learnable weight vec v T K
Score of Sn =D hn — vk hnk
the input k=1

" Finally, output is produced as
Score converted to the yn = O(STL)

actual prediction

" Loss: LW, v) = Y3_1 £(Vn, Jn) 'Tnl

Will denote a linear

Neural Nets: A Compact lllustration @ Cion oy s romen

operation on the result

* Note: Hidden layer pre-act z,; and post-act hy; will be shown together for brevity

Will directly show
the final output

Will combine pre-act and post-act and In
directly show only h,; to denote the

Single : value computed by a hidden node
. e .
s More succinctly..
Il:lldden y S wdkﬂ'nd)
e N '
-
wll g(kan)

= Denoting W = [wy,wy, ..., wg]. W, ERP h, =gW'x,) EREK (K=2,D=3
above). Note: g applied elementwise on pre-activation vector z, = WXy comi: o to ML

Activation Functions: Some Common Choices

sigmoid tanh Preferred more than
1 For sigmoid as well as tanh, 1 sigmoid. Helps keep the
gradients saturate (become mean of the next layer's
h close to zero as the function h inputs close to zero (with
0 tends to its extreme values) 0 sigmoid, it is close to 0.5)
=1 -1
120 1 1 20 1
Sigmoid: h = 0(a) = 5= tanh (tan hyperbolic): h = Z);E)Ezh::gg_j% =20(2a) — 1
ReLU ReLU and Leaky RelU Leaky ReLU y = vT(g(WTx)) Imp: Without nonlinear
- are among the most 1 —TWTx act|vat|or.1, a dgep neural
popular ones (also ne.tvvork is equivalent to
efficient to compute) — a linear model no matter
h 0 0 N inear how many layers we use
Helps fix the dead — '
neuron problem of Most act|yat|on funchon; are A
1 RelLU when a is a 1 monotonic but therg exist ‘.\.’:‘ /
B a activation functions as well
ReLU (Rectified Linear Unit): h = max(0, a) Leaky ReLU: h = max(f3a, a)| (eg. Swish: a x a(Ba)) ‘-r

where (3 is a small postive number
CS771: Intro to ML

MLP Can Learn Any Nonlinear Function

[

= An MLP can be seen as a composition of multiple linear models combined nonlinearly

Score monotonically increases.
One-sided increase (not ideal for
learning nonlinear decision
boundaries). Just a linear model

A single hidden layer MLP with sufficiently large
number of hidden units can approximate any

Standard Single “Perceptron” Classifier (no hidden units) -« / a’; 1
e» n

function (Hornik, 1991)

High-score in the middle and low-
score on either of the two sides
of it. Exactly what we want for
the given classification problem

Obtained by composing the two one-sided ore
increasing score functions (using learnable
weights v; and v, to "add" them). This
can now learn the nonlinear decision
boundary (high score in the middle)

A A A score T

A nonlinear
classification problem

A Multi-layer Perceptron Classifier

(one hidden layer with 2 uniﬁ%)
Capable of learning nonlinear bo leés Intro to ML

Superposition of two linear models = Nonlinear model

A

.o
1.0 — Sigmoid 1 orange) can be combined via > v 4 /
—— Sigmoid 2 (Shifted) . .
—— Sigmoid 1 - Sigmoid 2 a shift and a subtraction
operation to result in a ‘

Two sigmoids (blue and

0.8 nonlinear separation boundary
0.6 4 Likewise, more than two
— sigmoids can be combined to
= red|x
p(y |) learn even more sophisticated
0.4 separation boundaries

Nonlinear separation boundary

J

0.0 1

CS771: Intro to ML

Examples of some basic NN/MLP architectures

CS771: Intro to ML

Single Hidden Layer and Single Output

* One hidden layer with K nodes and a single output (e.g., scalar-valued regression or

biﬂary ClaSSiﬂcaJ[iOﬂ) 0 is a suitable function (e.g., identity,
U — 0 (vT hn) sign, or sigmoid, etc) to convert the

score into the actual response

n

g is a nonlinear
activation function

CS771: Intro to ML

Single Hidden Layer and Multiple Outputs

" One hidden layer with K nodes and a vector of € outputs (e.g., vector-valued

regression or multi-class classification or multi-label classification) 0 15 a suitable function (e.g.
identity, sign, or softmax, etc)

a A ~ to convert the score into the

Yn1 Ynz a ynC n = 0 (VT hn) actual response vector for x;,

vir - V10

V= }
Uk1 '+ UVKC

h h — g(WT T) g i; a honlinear
nl n n activation function

W11 Wik

W = : }
Wp1 WDK

CS771: Intro to ML

Multiple Hidden Layers (One/Multiple Outputs)

= Most general case: Multiple hidden layers with (with same or different number of
hidden nodes in each) and a scalar or vector-valued output

Each hidden layer uses a
nonlinear activation function g
(essential, otherwise the

W(ﬁ) 18 Kg_l X Kg

network can't learn nonlinear i 5
functions and reduces to a (E_l LandKO—D)
linear model) | g T

hglz) — g (W(2) h/E],l)) h n a K2 hidden units

Note: Nonlinearity g

is applied element- T —
wise onts inputs | = (W =) By
SO h,(f) has the

same size as vector

W(f) h%‘g—l) :L‘nl 'CE’RD . D input units

W3 is K, x K,

CS771: Intro to ML

The Bias Term

" Fach layer's pre-activations z,(f) have a an add bias term
b (has the same size as Z,(f) and hgf)) as well

2 =w®O R + p®
£ £
hy = g(z)

" Bias term increases the expressiveness of the network
and ensures that we have nonzero activations/pre-
activations even if this layer's input is a vector of all zeros

» Note that the bias term is the same for all inputs (does
not depend on n)

» The bias term b is also learnable CS771: Intro to ML

Neural Nets are Feature Learners

» Hidden layers can be seen as learning a feature rep. ¢ (x;,) for each input x,,
Ynl @%2@ JnC C output units
Yn = VT(b(mn)

The last (L") hidden
n: layer's nodes' values h,(,LL)

. Alearned mapping, unlike kernel methods where
(1§ the mapping was pre-defined by the choice of kernel :

CS771: Intro to ML

Also note that neural nets are faster
than kernel methods at test time

Kern6| I\/lethOdS VS Neural Ne-tS since kernel methods need to store m

the training examples at test time ..
whereas neural nets do not N /
» Recall the prediction rule for a kernel method (e.g.,lbemel SVM) &

Yn = w' ¢ (xn) OR Yn = Z._lank(xi'xn)
= |t's like a one hidden layer NN with .

= Pre-defined N features {k(x;, x,,)}, acting as feature vector h,,
= {a;}V_. are learnable output layer weights

" |t's also like a one hidden layer NN with
= Pre-defined M features ¢(x,,) (M being size of feature mapping ¢) acting as feature vector h,,
= w € RM are learnable output layer weights

» Both kernel methods and deep neural networks extract new features from the inputs
" For kernel methods, the features are pre-defined via the kernel function
» For deep NN, the features are learned by the network

* Note: Kernels can also be learned from data (“kernel learning”) in which case kernel
methods and deep neural nets become even more similar in spirit © CS771: Intro to ML

) = w({)),wg’?), ...,wg) IS
Features Learned by a Neural Networklx,_, .. %

K,_q1 X K, matrix of weights
between layer £ — 1 and £
()

"w, "’ € REe-1 denotes “feature detector” for feature k of layer € | W® coliectively represents the

(f)T K{) feature detectors for Iayer vy

* For input xy,, h,,(f;{) = g(w,, hg_l)) is the value of feature k in layer €

Unl N2/ o
> > '
> All the incoming weights (a
vector) to a hidden node can Eg., wgzz) denotes a
WO - o) . & il be seen as representing a feature detector
Even higher-level feature detectors g" .,.'T, Q ﬁ m pattem/ feature_dete(:tor Of
(make classification easy) - -’ - -

previous layer's inputs

All the incoming weights (a

vector) to a hidden node can 1)

b : E.g. w;,, denotes a
e seen as representing a ; g

pattern/feature-detector of eature detector

previous layer's inputs

higher-level feature detectors
(e.g., parts of face)

Low-level feature detectors
(e.g., detect edges)

CS771: Intro to ML

Why Neural Networks Work Better: Another View

" | inear models tend to only learn the "average” pattern
= £.g., Weight vector of a linear classification model represent average pattern of a class

" Deep models can learn multiple patterns (each hidden node can learn one pattern)
" Thus deep models can learn to capture more subtle variations that a simpler linear model

CS771: Intro to ML

Neural Nets: Some Aspects

* Much of the magic lies in the hidden layers

* Hidden layers learn and detect good features

Choosing the right NN architecture is
important and a research area in itself.
: Neural Architecture Search (NAS) is an
" Need o COﬂS|der d feW aSpeCtS automated technigue to do this

= Number of hidden layers, number of units in each hidden layer

= Why bother about many hidden layers and not use a single very
wide hidden layer (recall Hornik's universal function
approximator theorem)?

= Complex networks (several, very wide hidden layers) or simpler
networks (few, moderately wide hidden layers)?

= Aren't deep neural network prone to overfitting (since they
contain a huge number of parameters)?

CS771: Intro to ML

Representational Power of Neural Nets

» Consider a single hidden layer neural net with K hidden nodes
K=3 K=6 K

20

| © =)
° [} ® © ° ®,
@)
° e o P ®. 9 ° o 9
° o @ L L ° °
® ° o ®
= o—9 > 4 < I s
® o e : L
° © ° ° e L
» 5
°
| @ o P
Qo ®

» Recall that each hidden unit "adds™ a simple function to the overall function
" Increasing K (number of hidden units) will result in a more complex function
" Very large K seems to overtfit (see above fig). Should we instead prefer small K7

= No! It is better to use large K and regularize well. Reason/|justification:
= Simple NN with small K will have a few local optima, some of which may be bad
= Complex NN with large K will have many local optimal, all equally good (theoretical results on this)

» We can also use multiple hidden layers (each sufficiently large) and regularize well
CS771: Intro to ML

Wide or Deep?

= While very wide single hidden layer can approx. any function, often we prefer many;
less wide, hidden layers

D . " e o 1™ 3 ¥y ey
(3) _1,,3) (3) 454
W=, wy, | Behd
Even higher-level feature detectors f oy
(make classification easy) .' -~ 9 -t -

@) _1,.(2 (2) e
W =[w,...w5;] § !

higher-level feature detectors
(e.g., parts of face)

) _ (1) (1), R
W —[wl ’wwo 4 =F ISt L1

Low-level feature detectors
(e.g., detect edges)

" Higher layers help learn more directly useful/interpretable features (also useful for

compressing data using a small number of features)
CS771: Intro to ML

	Slide 1: Intro to Deep Neural Networks: Multi-layer Perceptrons
	Slide 2: Limitation of Linear Models
	Slide 3: Neural Networks: Multi-layer Perceptron (MLP)
	Slide 4: Illustration: Neural Net with Single Hidden Layer
	Slide 5: Neural Nets: A Compact Illustration
	Slide 6: Activation Functions: Some Common Choices
	Slide 7: MLP Can Learn Any Nonlinear Function
	Slide 8: Superposition of two linear models = Nonlinear model
	Slide 9: Examples of some basic NN/MLP architectures
	Slide 10: Single Hidden Layer and Single Output
	Slide 11: Single Hidden Layer and Multiple Outputs
	Slide 12: Multiple Hidden Layers (One/Multiple Outputs)
	Slide 13: The Bias Term
	Slide 14: Neural Nets are Feature Learners
	Slide 15: Kernel Methods vs Neural Nets
	Slide 16: Features Learned by a Neural Network
	Slide 17: Why Neural Networks Work Better: Another View
	Slide 18: Neural Nets: Some Aspects
	Slide 19: Representational Power of Neural Nets
	Slide 20: Wide or Deep?

