
Data and Features, Supervised
Learning by Computing Distances

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

Announcements
▪ Python + NumPy refresher: Aug 5 (Saturday), 6pm, RM-101

▪ Conducted by CSE PhD students Avideep and Soumya

▪ Also plan to have a maths refresher next week (an extra session)

▪ Add-drop requests: Will be cleared by noon tomorrow (Aug 4)

2

CS771: Intro to ML

Data and Features
3

▪ML algos require a numeric feature representation of the inputs

▪ Features can be obtained using one of the two approaches

▪ Approach 1: Extracting/constructing features manually from raw inputs

▪ Approach 2: Learning the features from raw inputs

▪ Approach 1 is what we will focus on primarily for now

▪ Approach 2 is what is followed in Deep Learning algorithms (will see later)

▪ Approach 1 is not as powerful as Approach 2 but still used widely

Features represent semantics of the inputs.

Being able to extract good features is key

to the success of ML algos

CS771: Intro to ML

Example: Feature Extraction for Text Data
4

▪ Consider some text data consisting of the following sentences:
▪ John likes to watch movies

▪ Mary likes movies too

▪ John also likes football

▪Want to construct a feature representation for these sentences

▪Here is a “bag-of-words” (BoW) feature representation of these sentences

▪ Each sentence is now represented as a binary vector (each feature is a binary value,
denoting presence or absence of a word). BoW is also called “unigram” rep.

BoW is just one of the many ways of doing

feature extraction for text data. Not the most

optimal one, and has various flaws (can you think

of some?), but often works reasonably well

Other similar approaches such

as TF-IDF (term frequency,

inverse document frequency)

are also widely used

CS771: Intro to ML

Example: Feature Extraction for Image Data
5

▪ A very simple feature extraction approach for image data is flattening

▪ Histogram of visual patterns is another popular feature extr. method for images

▪ Many other manual feature extraction techniques developed in computer vision and
image processing communities (SIFT, HoG, and others)

7x7 image

(49 pixels)
Vector of pixel

 intensities

Flattening and histogram based

methods destroy the spatial

information in the image but often

still work reasonably well

Pic credit: cat.uab.cat/Research/object-recognition

Suppose these are typical patterns

in the images in the dataset

Bar heights in the histogram denote how the

frequency of occurrence of each of the

patterns in the given image (this vector of

frequencies can be used as the extracted

feature vector for this image)

CS771: Intro to ML

Feature Selection
6

▪Not all the extracted features may be relevant for learning the model (some may
even confuse the learner)

▪ Feature selection (a step after feature extraction) can be used to identify the
features that matter, and discard the others, for more effective learning

▪Many techniques exist – some based on intuition, some based on algorithmic
principles (will visit feature selection later)

▪More common in supervised learning but can also be done for unsup. learning

Age
Gender
Height
Weight
Eye color

Body-mass index (BMI)

Calculating BMI from this

data doesn’t require ML

but this simple example is

just to illustrate the idea of

feature selection ☺

CS771: Intro to ML

Some More Postprocessing: Feature Scaling
7

▪ Even after feature selection, the features may not be on the same scale

▪ This can be problematic when comparing two inputs – features that have larger scales may
dominate the result of such comparisons

▪ Therefore helpful to standardize the features (e.g., by bringing all of them on the same scale
such as between 0 to 1)

▪ Also helpful for stabilizing the optimization techniques used in ML algos

Pic credit: https://becominghuman.ai/demystifying-feature-scaling-baff53e9b3fd, https://stackoverflow.com/

CS771: Intro to ML

Deep Learning: An End-to-End Approach to ML
8

Raw Input Learned Features

(penultimate layer)

Deep Learning = ML with automated feature learning from the raw inputs

Feature extraction part is automated via the feature learning module

Pic an adaptation of the original from: https://deepai.org/

https://deepai.org/

CS771: Intro to ML

Some Notation/Nomenclature/Convention
9

▪ Sup. learning requires training data as 𝑁 input-output pairs { 𝐱𝐧, 𝑦𝑛 }𝑛=1
𝑁

▪ Unsupervised learning requires training data as 𝑁 inputs {𝐱𝐧}𝑛=1
𝑁

▪ Each input 𝐱𝐧 is (usually) a vector containing the values of the features or attributes or
covariates that encode properties of the it represents, e.g.,

▪ For a 7 × 7 image: 𝐱𝐧 can be a 49 × 1 vector of pixel intensities

▪ (In sup. learning) Each 𝑦𝑛 is the output or response or label associated with input 𝐱𝐧
(and its value is known for the training inputs)

▪ Output can be a scalar, a vector of numbers, or even an structured object (more on this later)

Size or length of the input 𝐱𝐧 is commonly

known as data/input dimensionality or

feature dimensionality

RL and other flavors

of ML problems also

use similar notation

CS771: Intro to ML

Types of Features and Types of Outputs
10

▪ Features as well as outputs can be real-valued, binary, categorical, ordinal, etc.

▪ Real-valued: Pixel intensity, house area, house price, rainfall amount, temperature, etc

▪ Binary: Male/female, adult/non-adult, or any yes/no or present/absent type value

▪ Categorical/Discrete: Zipcode, blood-group, or any “one from a finite many choices“ value

▪ Ordinal: Grade (A/B/C etc.) in a course, or any other type where relative values matter

▪ Often, the features can be of mixed types (some real, some categorical, some ordinal, etc.)

CS771: Intro to ML

Supervised Learning
11

Supervised Learning

Algorithm
“dog”

“cat”

Labeled

 Training

 Data

“cat”

“cat”

“dog”

Cat vs Dog
Prediction model

Cat vs Dog
Prediction model

A test image

Predicted Label

(cat/dog)

Important: In ML (not just sup. learning

but also unsup. and RL), training and test

datasets should be “similar” (we don’t like

“out-of-syllabus” questions in exams ☺)

More formally, the train and

test data distributions should

be the same

In the above example, it

means that we can’t have test

data with BnW images or

sketches of cats and dogs

Does it mean ML is useless if

this assumption is violated?

Of course not. ☺ Many ML

techniques exist to handle such

situations (a bit advanced but

will touch upon those later)

Will give you just the names for

now – domain adaptation,

covariate shift, transfer learning, etc

CS771: Intro to ML

Some Types of Supervised Learning Problems
12

▪Consider building an ML module for an e-mail client

▪Some tasks that we may want this module to perform
▪ Predicting whether an email of spam or normal: Binary Classification

▪ Predicting which of the many folders the email should be sent to: Multi-class Classification

▪ Predicting all the relevant tags for an email: Tagging or Multi-label Classification

▪ Predicting what’s the spam-score of an email: Regression

▪ Predicting which email(s) should be shown at the top: Ranking

▪ Predicting which emails are work/study-related emails: One-class Classification

▪ These predictive modeling tasks can be formulated as supervised learning problems

▪ Today: A very simple supervised learning model for binary/multi-class classification
▪ This model doesn’t require any fancy maths – just computing means and distances

CS771: Intro to ML

Some Notation and Conventions
13

▪ In ML, inputs are usually represented by vectors

▪A vector consists of an array of scalar values

▪Geometrically, a vector is just a point in a vector space, e.g.,
▪ A length 2 vector is a point in 2-dim vector space

▪ A length 3 vector is a point in 3-dim vector space

▪Unless specified otherwise
▪ Small letters in bold font will denote vectors, e.g., 𝐱, 𝐚, 𝐛 etc.

▪ Small letters in normal font to denote scalars, e.g. 𝑥, 𝑎, 𝑏, etc
▪ Capital letters in bold font will denote matrices (2-dim arrays), e.g., 𝐗, 𝐀, 𝐁, etc

0.5 0.3 0.6 0.1 0.2 0.5 0.9 0.2 0.1 0.5

0.5 0.3

0.5 0.3 0.6

(0.5,0.3) (0.5,0.3,0.6)

Likewise for higher

dimensions, even though

harder to visualize

CS771: Intro to ML

Some Notation and Conventions
14

▪ A single vector will be assumed to be of the form 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝐷

▪ Unless specified otherwise, vectors will be assumed to be column vectors
▪ So we will assume 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝐷 to be a column vector of size 𝐷 × 1
▪ Assuming each element to be real-valued scalar, 𝐱 ∈ ℝ𝐷×1 or 𝐱 ∈ ℝ𝐷 (ℝ: space of reals)

▪ If 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝐷 is a feature vector representing, say an image, then
▪ 𝐷 denotes the dimensionality of this feature vector (number of features)

▪ 𝑥𝑖 (a scalar) denotes the value of 𝑖𝑡ℎ feature in the image

▪ For denoting multiple vectors, we will use a subscript with each vector, e.g.,
▪ N images denoted by N feature vectors 𝐱1, 𝐱2, … , 𝐱N, or compactly as 𝐱𝑛 𝑛=1

𝑁

▪ The vector 𝐱𝑛 denotes the 𝑛𝑡ℎ image

▪ 𝑥𝑛𝑖 (a scalar) denotes the 𝑖𝑡ℎ feature (𝑖 = 1,2, … , 𝐷) of the 𝑛𝑡ℎ image

CS771: Intro to ML

Some Basic Operations on Vectors
15

▪ Addition/subtraction of two vectors gives another vector of the same size

▪ The mean 𝜇(average or centroid) of 𝑁 vectors 𝐱𝒏 𝑛=1
𝑁

▪ The inner/dot product of two vectors 𝒂 ∈ ℝ𝐷 and 𝒃 ∈ ℝ𝐷

▪ For a vector 𝒂 ∈ ℝ𝐷, its Euclidean norm is defined via its inner product with itself

𝜇 =
1

𝑁
෍

𝑛=1

𝑁

𝐱𝑛

𝒂, 𝒃 = 𝒂⊤𝒃 = σ𝑖=1
𝐷 𝑎𝑖𝑏𝑖

(of the same size as each 𝐱𝑛)

(a real-valued number denoting how “similar” 𝒂 and 𝒃 are)

𝒂 2 = 𝒂⊤𝒂 = σ𝑖=1
𝑑 𝑎𝑖

2

Assuming both 𝒂 and 𝒃

have unit Euclidean norm

▪ Also the Euclidean distance of 𝒂 from origin

▪ Note: Euclidean norm is also called L2 norm

CS771: Intro to ML

Computing Distances
16

▪ Euclidean (L2 norm) distance between two vectors 𝒂 ∈ ℝ𝐷 and 𝒃 ∈ ℝ𝐷

▪Weighted Euclidean distance between two vectors 𝒂 ∈ ℝ𝐷 and 𝒃 ∈ ℝ𝐷

▪ Absolute (L1 norm) distance between two vectors 𝒂 ∈ ℝ𝐷 and 𝒃 ∈ ℝ𝐷

𝑑2 𝒂, 𝒃 = | 𝒂 − 𝒃 |2 = ෍
𝑖=1

𝐷

𝑎𝑖 − 𝑏𝑖
2 = 𝒂 − 𝒃 ⊤ 𝒂 − 𝒃 = 𝒂⊤𝒂 + 𝒃⊤𝒃 − 2𝒂⊤𝒃

𝑑𝑤 𝒂, 𝒃 = ෍
𝑖=1

𝐷

𝑤𝑖 𝑎𝑖 − 𝑏𝑖
2 = 𝒂 − 𝒃 ⊤𝐖 𝒂 − 𝒃

𝐖 is a DxD diagonal matrix with weights 𝑤𝑖 on

its diagonals. Weights may be known or even

learned from data (in ML problems)

Useful tip: Can achieve the effect of

feature scaling by using weighted

Euclidean distances!

Note: If 𝐖 is a DxD symmetric matrix

then it is called the Mahalanobis

distance (more on this later)

𝑑1 𝒂, 𝒃 = | 𝒂 − 𝒃 |1 = ෍
𝑖=1

𝐷

|𝑎𝑖 − 𝑏𝑖|

Sqrt of Inner product of

the difference vector!

Another expression in terms of inner

products of individual vectors

L1 norm distance is also known as the

Manhattan distance or Taxicab norm

(it’s a very natural notion of distance

between two points in some vector space)

Yes. Another, although less commonly

used, distance is the L-infinity distance

(equals to max of abs-value of element-

wise difference between two vectors

Apart from L2 and L1.

there other ways of

defining distances?

CS771: Intro to ML

Our First Supervised Learner

17

CS771: Intro to ML

Prelude: A Very Primitive Classifier
18

▪ Consider a binary classification problem – cat vs dog

▪ Assume training data with just 2 images – one and one

▪ Given a new test image (cat/dog), how do we predict its label?

▪ A simple idea: Predict using its distance from each of the 2 training images

d(,) < d(,) ? Predict cat else dog Test
image

Test
image

The idea also applies to multi-class

classification: Use one image per

class, and predict label based on

the distances of the test image

from all such images

Wait. Is it ML? Seems to be

like just a simple “rule”. Where

is the “learning” part in this?

Excellent question! Glad you asked!

Even this simple model can be

learned. For example, for the feature

extraction/selection part and/or for

the distance computation part

Some possibilities: Use a feature

learning/selection algorithm to

extract features, and use a

Mahalanobis distance where you

learn the W matrix (instead of using

a predefined W), using “distance

metric learning” techniques

CS771: Intro to ML

Improving Our Primitive Classifier
19

▪ Just one input per class may not sufficiently capture variations in a class

▪ A natural improvement can be by using more inputs per class

▪We will consider two approaches to do this
▪ Learning with Prototypes (LwP), also called “Nearest Class Mean” (NCM)

▪ Nearest Neighbors (NN – not “neural networks”, at least not for now ☺)

▪ Both LwP and NN will use multiple inputs per class but in different ways

“dog”

“cat”

“cat”

“dog”

“dog”

“cat”

CS771: Intro to ML

Learning with Prototypes (LwP)
20

▪ Basic idea: Represent each class by a “prototype” vector

▪ Class Prototype: The “mean” or “average” of inputs from that class

▪ Predict label of each test input based on its distances from the class prototypes
▪ Predicted label will be the class that is the closest to the test input

▪ How we compute distances can have an effect on the accuracy of this model
(may need to try Euclidean, weight Euclidean, Mahalanobis, or something else)

Averages (prototypes) of each of the handwritten digits 1-9

Pic from: https://www.reddit.com/r/dataisbeautiful/comments/3wgbv9/average_handwritten_digit_oc/

CS771: Intro to ML

Learning with Prototypes (LwP): An Illustration
21

▪ Suppose the task is binary classification (two classes assumed pos and neg)

▪ Training data: 𝑁 labelled examples { 𝐱𝑛, 𝑦𝑛 }𝑛=1
𝑁 , 𝐱𝑛∈ ℝ𝐷, 𝑦𝑛 ∈ {−1, +1}

▪ Assume 𝑁+ example from positive class, 𝑁− examples from negative class

▪ Assume green is positive and red is negative

𝜇− 𝜇+

Test example Test example

LwP straightforwardly generalizes to

more than 2 classes as well (multi-

class classification) – K prototypes

for K classes

𝜇− =
1

𝑁−
෍

𝑦𝑛=−1

𝐱𝑛 𝜇+ =
1

𝑁+
෍

𝑦𝑛=+1

𝐱𝑛

For LwP, the prototype

vectors (𝜇+ and 𝜇− here)

define the “model”

CS771: Intro to ML

LwP: The Prediction Rule, Mathematically
22

▪What does the prediction rule for LwP look like mathematically?

▪ Assume we are using Euclidean distances here

𝜇− 𝜇+

Test example 𝐱

𝝁− − 𝐱
2

= 𝝁−
2

+ 𝐱
2

− 2 𝝁−, 𝐱

𝝁+ − 𝐱
2

= 𝝁+
2

+ 𝐱
2

− 2 𝝁+, 𝐱

Prediction Rule: Predict label as +1 if 𝑓 𝐱 = 𝝁− − 𝐱
2
 − 𝝁+ − 𝐱

2
> 0 otherwise -1

CS771: Intro to ML

LwP: The Prediction Rule, Mathematically
23

▪ Let’s expand the prediction rule expression a bit more

▪ Thus LwP with Euclidean distance is equivalent to a linear model with
▪ Weight vector 𝐰 = 2(𝝁+ − 𝝁−)

▪ Bias term 𝑏 = 𝝁−
2

 − 𝝁+
2

▪ Prediction rule therefore is: Predict +1 if 𝐰, 𝐱 + 𝑏 > 0, else predict -1

𝑓 𝐱 = 𝝁− − 𝐱
2
 − 𝝁+ − 𝐱

2

 = 𝝁−
2

+ 𝐱
2

− 2 𝝁−, 𝐱 − 𝝁+
2

− 𝐱
2

+ 2 𝝁+, 𝐱

 = 2 𝝁+ − 𝝁−, 𝐱 + 𝝁−
2

 − 𝝁+
2

 = 𝐰, 𝐱 + 𝑏

Will look at linear models

more formally and in more

detail later

CS771: Intro to ML

LwP: Some Failure Cases
24

▪Here is a case where LwP with Euclidean distance may not work well

▪ In general, if classes are not equisized and spherical, LwP with Euclidean
distance will usually not work well (but improvements possible; will discuss later)

𝜇−
𝜇+

Test example 𝐱

Can use feature scaling or use

Mahalanobis distance to handle

such cases (will discuss this in

the next lecture)

CS771: Intro to ML

LwP: Some Key Aspects
25

▪ Very simple, interpretable, and lightweight model
▪ Just requires computing and storing the class prototype vectors

▪Works with any number of classes (thus for multi-class classification as well)

▪ Can be generalized in various ways to improve it further, e.g.,
▪ Modeling each class by a probability distribution rather than just a prototype vector

▪ Using distances other than the standard Euclidean distance (e.g., Mahalanobis)

▪With a learned distance function, can work very well even with very few examples
from each class (used in some “few-shot learning” models nowadays – if
interested, please refer to “Prototypical Networks for Few-shot Learning”)

CS771: Intro to ML

Next Class
26

▪Nearest Neighbors

▪Decision Trees and Forests/Ensembles

	Slide 1: Data and Features, Supervised Learning by Computing Distances
	Slide 2: Announcements
	Slide 3: Data and Features
	Slide 4: Example: Feature Extraction for Text Data
	Slide 5: Example: Feature Extraction for Image Data
	Slide 6: Feature Selection
	Slide 7: Some More Postprocessing: Feature Scaling
	Slide 8: Deep Learning: An End-to-End Approach to ML
	Slide 9: Some Notation/Nomenclature/Convention
	Slide 10: Types of Features and Types of Outputs
	Slide 11: Supervised Learning
	Slide 12: Some Types of Supervised Learning Problems
	Slide 13: Some Notation and Conventions
	Slide 14: Some Notation and Conventions
	Slide 15: Some Basic Operations on Vectors
	Slide 16: Computing Distances
	Slide 17: Our First Supervised Learner
	Slide 18: Prelude: A Very Primitive Classifier
	Slide 19: Improving Our Primitive Classifier
	Slide 20: Learning with Prototypes (LwP)
	Slide 21: Learning with Prototypes (LwP): An Illustration
	Slide 22: LwP: The Prediction Rule, Mathematically
	Slide 23: LwP: The Prediction Rule, Mathematically
	Slide 24: LwP: Some Failure Cases
	Slide 25: LwP: Some Key Aspects
	Slide 26: Next Class

