
Latent Variable Models (LVMs)

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

Example: Generative Models with Latent Variables
2

▪ Two generative models of inputs 𝒙𝑛 without (left) and with (right) latent variables

▪ Suppose we wish to estimate (e.g., using MLE/MAP) params 𝜃 of distribution of 𝒙𝑛

▪ For case 1, the distribution is 𝑝(𝒙𝑛|𝑦𝑛, 𝜃) and MLE/MAP of 𝜃 easy since 𝑦𝑛 is known

▪ For case 2, distribution is more complex because true 𝒛𝑛 is not known

𝒙𝑛𝑦𝑛

𝜃

𝑁

𝒙𝑛𝒛𝑛

𝜃

𝑁

𝑝 𝒙𝑛 𝜃 = ෍
𝑘=1

𝐾

𝑝 𝒙𝑛, 𝒛𝑛 = 𝑘 𝜃

Assume 𝑦𝑛 is a discrete class label

(multi-class classification with 𝐾

classes). We know 𝑦𝑛 (thus not

latent) for the training examples

Assume 𝒛𝑛 is the cluster id of

𝒙𝑛 (total 𝐾 clusters). We

don’t know the true value of

𝒛𝑛 (thus latent)

= ෍
𝑘=1

𝐾

𝑝(𝒛𝑛 = 𝑘)𝑝(𝒙𝑛|𝒛𝑛 = 𝑘, 𝜃)
MLE/MAP a bit difficult for

this more complex

“mixture” of distributions

If we knew the value of 𝑧𝑛, we won’t

need to do MLE/MAP of the mixture

distribution but only of 𝑝(𝒙𝑛|𝒛𝑛 = 𝑘, 𝜃)

which is much easier

When 𝑧𝑛 is not known, we can

estimate 𝜃 using an alternating

estimating procedure: Estimate 𝒛𝑛

given 𝜃 and estimate 𝜃 given 𝒛𝑛

This procedure of estimating 𝜃

also gives 𝒛𝑛 as a by-product

Reason: The functional form

of mixture can be messy

CS771: Intro to ML

Components of an LVM

▪ Recall that the goal is to estimate 𝜃 (and 𝒛𝑛 is also unknown)

▪ In LVM, we treat 𝒛𝑛 as a random variable and assume a prior distribution 𝑝(𝒛𝑛|𝜙)

▪ We will also assume a suitable conditional distribution 𝑝(𝒙𝑛|𝒛𝑛, 𝜃) for 𝒙𝑛

▪ The form of 𝑝(𝒛𝑛|𝜙) will depend on the nature of 𝒛𝑛, e.g.,

▪ If 𝒛𝑛 is discrete with 𝐾 possible values, 𝑝 𝒛𝑛 𝜙 = multinoulli(𝒛𝑛|𝝅)

▪ If 𝒛𝑛 ∈ ℝ𝐾, 𝑝 𝒛𝑛 𝜙 = 𝒩(𝒛𝑛|𝝁, 𝚺), a 𝐾-dim Gaussian

𝒙𝑛𝒛𝑛

𝜃

𝜙
𝑁

3

This prior tells us what the

value of 𝒛𝑛 is before we

have seen the input 𝒙𝑛

Ultimately, we will compute

the distribution of 𝒛𝑛

conditioned on the input 𝒙𝑛

𝑝(𝒛𝑛|𝜙) 𝑝(𝒙𝑛|𝒛𝑛, 𝜃)Will also need

to estimate 𝜙

in addition to 𝜃

In an LVM, 𝑧𝑛’s are called

latent variables and (𝜃, 𝜙)

are called parameters.

For example, a 𝐷-dimensional

Gaussian if 𝒙𝑛 ∈ ℝ𝐷

CS771: Intro to ML

Why Direct MLE/MAP is Hard for LVMs?

▪ Direct MLE/MAP of parameters 𝜃, 𝜙 = Θ without estimating 𝒛𝑛 is hard

▪ Reason: Given 𝑁 observations 𝑥𝑛, 𝑛 = 1,2, … , 𝑁, the MLE problem for Θ will be

▪ For a mixture of 𝐾 Gaussians, 𝑝(𝒙𝑛|Θ) will be

▪ The MLE problem for GMM would be

argmax
Θ

෍
𝑛=1

𝑁

log 𝑝(𝒙𝑛|Θ) = argmax
Θ

෍
𝑛=1

𝑁

log ෍

𝒛𝑛

𝑝(𝒙𝑛, 𝒛𝑛|Θ)

Summing over all possible values 𝒛𝑛 can take (would

be an integral instead of sum if 𝒛𝑛 is continuous

Also note that 𝑝 𝒙𝑛, 𝒛𝑛 Θ = 𝑝 𝒛𝑛 𝜙 𝑝(𝒙𝑛|𝒛𝑛, 𝜃)

𝑝 𝒙𝑛 Θ = ෍
𝑘=1

𝐾

𝑝 𝒙𝑛, 𝒛𝑛 = 𝑘 Θ = ෍
𝑘=1

𝐾

𝑝 𝒛𝑛 = 𝑘 𝜙 𝑝(𝒙𝑛|𝒛𝑛 = 𝑘, 𝜃) = ෍
𝑘=1

𝐾

𝜋𝑘𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘

Gaussian Mixture

Model (GMM).

argmax
Θ

෍
𝑛=1

𝑁

log ෍
𝑘=1

𝐾

𝜋𝑘𝒩 𝒙𝑛|𝜇𝑘, Σ𝑘

The log of sum doesn’t give us a

simple expression; MLE can still be

done using gradient based methods

but updates will be complicated.

4

ALT-OPT or EM makes it simpler by

using hard/soft guesses of 𝑧𝑛’s

CS771: Intro to ML

How to Guess 𝑧𝑛 in an LVM?
5

▪ Note that 𝒛𝑛 is a random variable with prior distribution 𝑝 𝒛𝑛 𝜙

▪ Can compute its conditional posterior (CP) distribution as

▪ If we just want the single best (hard) guess of 𝒛𝑛 then that can be computed as

▪ Otherwise, we can compute and use CP 𝑝 𝒛𝑛 𝒙𝑛, Θ to get a soft/probabilistic guess

▪ Using the CP 𝑝 𝒛𝑛 𝒙𝑛, Θ we can compute quantities such as expectation of 𝒛𝑛

▪ If 𝑝 𝒛𝑛 𝜙 and 𝑝(𝒙𝑛|𝒛𝑛, 𝜃) are conjugate to each other then CP 𝑝 𝒛𝑛 𝒙𝑛, Θ is easy to compute

▪ Computing hard guess is usually easier but ignores the uncertainty in 𝒛𝑛

𝑝 𝒛𝑛 𝒙𝑛, Θ =
𝑝 𝒛𝑛 Θ 𝑝(𝒙𝑛|𝒛𝑛, Θ)

𝑝(𝒙𝑛|Θ)
=

𝑝 𝒛𝑛 𝜙 𝑝(𝒙𝑛|𝒛𝑛, 𝜃)

𝑝(𝒙𝑛|Θ)

Ƹ𝑧𝑛 = argmax𝒛𝑛
𝑝 𝒛𝑛 𝒙𝑛, Θ = argmax𝒛𝑛

𝑝 𝒛𝑛 𝜙 𝑝(𝒙𝑛|𝒛𝑛, 𝜃)

𝜃, 𝜙 = Θ

Used in ALT-OPT

for LVMs

Used in Expectation-Maximization (EM) algo for LVMs

Called conditional posterior

because it is conditioned on

data as well as Θ (assuming

we have already estimated Θ)

CS771: Intro to ML

LVMs: Incomplete vs Complete Data Log Likelihood
6

▪ We can define two types of likelihoods for LVMs

▪ Incomplete data log likelihood (ILL) log 𝑝(𝑿|Θ)

▪ Complete data log likelihood (CLL) log 𝑝(𝑿, 𝒁|Θ)

▪ Named so because we can think of latent 𝒁 “completing” the observed data 𝑿

▪ Since 𝒁 is never observed (is latent), to estimate Θ we must maximize the ILL

▪ But since ILL maximization is hard (log of sum/integral over the unknown 𝒁), we
instead maximize the CLL 𝑝(𝑿, 𝒁|Θ) using hard/soft guesses of 𝒁

𝒙𝑛𝒛𝑛

𝜃

𝜙
𝑁

argmax
Θ

 log 𝑝 𝑿 Θ = argmax
Θ

 log σ𝒁 𝑝(𝑿, 𝒁|Θ)

CS771: Intro to ML

MLE for LVM
7

▪ If using a hard guess

▪ If using a soft (probabilistic) guess

▪ In LVMs, hard and soft guesses of 𝒁 would depend on Θ (since 𝒁 and Θ are coupled)

▪ Thus we need a procedure which alternates between estimating 𝒁 and estimating Θ

Θ𝑀𝐿𝐸 = argmax
Θ

 log 𝑝 𝑿, ෡𝒁 Θ

Θ𝑀𝐿𝐸 = argmax
Θ

 𝔼[log 𝑝 𝑿, 𝒁 Θ]

Note that we aren’t solving the original MLE

problem argmax
Θ

 log 𝑝 𝑿 Θ anymore.

However, what we are solving now is still

justifiable theoretically (will see later)

Also, we can use this idea to find MAP

solution of Θ if we want. Assume a

prior 𝑝(Θ) and simply add a log 𝑝(Θ)
term to these objectives

CS771: Intro to ML

An LVM: Gaussian Mixture Model
8

Inputs are assumed generated

from a mixture of Gaussians. But

we don’t know which input was

generated by which Gaussian

We wish to estimate

this mixture distribution

given 𝑁 inputs

If we knew which input

came from which Gaussian

(akin to knowing their true

labels), the problem is easy

– simply estimate each

Gaussian using the inputs

that came from that

Gaussian (just like

generative classification)

CS771: Intro to ML

Detour: MLE for Generative Classification
9

▪ Assume a 𝐾 class generative classification model with Gaussian class-conditionals

▪ Assume class 𝑘 = 1,2, … , 𝐾 is modeled by a Gaussian with mean 𝜇𝑘 and cov matrix Σ𝑘

▪ Can assume label 𝑧𝑛 to be one-hot and then 𝑧𝑛𝑘 = 1 if 𝑧𝑛 = 𝑘, and 𝑧𝑛𝑘 = 0, o/w
▪ Note: For each label, using notation 𝑧𝑛 instead of 𝑦𝑛

▪ Assuming class marginal 𝑝(𝑧𝑛 = 𝑘) = 𝜋𝑘, the model’s params Θ = {𝜋𝑘 , 𝜇𝑘 , Σ𝑘} 𝑘=1
𝐾

▪ The MLE objective log 𝑝 𝑿, 𝒁 Θ is (will provide a note for the proof)

Θ𝑀𝐿𝐸 = argmax{𝜋𝑘,𝜇𝑘,Σ𝑘} 𝑘=1
𝐾 ෍

𝑛=1

𝑁

෍
𝑘=1

𝐾

𝑧𝑛𝑘[log 𝜋𝑘 + log 𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘]

ො𝜋𝑘 =
1

𝑁
෍

𝑛=1

𝑁

𝑧𝑛𝑘 Ƹ𝜇𝑘 =
1

𝑁𝑘
෍

𝑛=1

𝑁

𝑧𝑛𝑘𝒙𝑛 ෠Σ𝑘 =
1

𝑁𝑘
෍

𝑛=1

𝑁

𝑧𝑛𝑘(𝒙𝑛− Ƹ𝜇𝑘)(𝒙𝑛− Ƹ𝜇𝑘)⊤

Same as
𝑁𝑘

𝑁
Same as

1

𝑁𝑘
σ𝑛:𝑧𝑛=𝑘

𝑁 𝒙𝑛 Same as
1

𝑁𝑘
σ𝑛:𝑧𝑛=𝑘

𝑁 (𝒙𝑛− Ƹ𝜇𝑘)(𝒙𝑛− Ƹ𝜇𝑘)⊤

CS771: Intro to ML

MLE for GMM: Using Guesses of 𝑧𝑛
10

▪ Using a hard guess ො𝒛𝑛 = argmax𝒛𝑛
𝑝 𝒛𝑛 𝒙𝑛, Θ , the MLE problem for GMM

▪ Using a soft guess 𝔼 𝒛𝑛 , the MLE problem for GMM

▪ In both cases, the MLE solution for Θ = {𝜋𝑘 , 𝜇𝑘 , Σ𝑘} 𝑘=1
𝐾 will be identical to that of

generative classification with Gaussian class cond with 𝑧𝑛𝑘 replaced by Ƹ𝑧𝑛𝑘 or 𝔼 𝑧𝑛𝑘

▪ Case 1 solved using ALT-OPT alternating b/w estimating Θ𝑀𝐿𝐸 and ෡𝒁

▪ Case 2 solved using Expectation Maximization (EM) alternating b/w estimating Θ𝑀𝐿𝐸 and 𝔼 [𝒁]

Θ𝑀𝐿𝐸 = argmax
Θ

 log 𝑝 𝑿, ෡𝒁 Θ = argmaxΘ ෍
𝑛=1

𝑁

෍
𝑘=1

𝐾

Ƹ𝑧𝑛𝑘[log 𝜋𝑘 + log 𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘]

Θ𝑀𝐿𝐸 = argmax
Θ

 𝔼 log 𝑝 𝑿, 𝒁 Θ = argmaxΘ ෍
𝑛=1

𝑁

෍
𝑘=1

𝐾

𝔼 𝑧𝑛𝑘 [log 𝜋𝑘 + log 𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘]

Log likelihood of Θ w.r.t. data 𝑿 and

hard guesses ෡𝒁 of cluster ids

Expected log likelihood

of Θ w.r.t. data 𝑿 and 𝒁

𝑧𝑛𝑘 appears at only one place in the log

likelihood expression so easily replaced by

expectation of 𝑧𝑛𝑘 w.r.t the CP 𝑝 𝒛𝑛 𝒙𝑛, Θ

Assuming 𝑥𝑛 given

𝑧𝑛 and Θ are i.i.d.

Will have the exact same form for the

expression of MLE objective as generative

classification with Gaussian class-

conditionals (except 𝑧𝑛 is unknown)

CS771: Intro to ML

ALT-OPT for GMM
11

▪ We will assume we have a “hard” (most probable) guess of 𝑧𝑛, say Ƹ𝑧𝑛

▪ ALT-OPT which maximizes log 𝑝 𝑿, ෡𝒁 Θ would look like this

▪ Initialize Θ = {𝜋𝑘 , 𝜇𝑘 , Σ𝑘}𝑘=1
𝐾 as ෡Θ

▪ Repeat the following until convergence

▪ For each 𝑛, compute most probable value (our best guess) of 𝑧𝑛 as

▪ Solve MLE problem for Θ using most probable 𝑧𝑛’s

Posterior probability of

point 𝑥𝑛 belonging to

cluster 𝑘, given current Θ

Proportional to prior prob times likelihood, i.e.,

𝑝 𝑧𝑛 = 𝑘 ෡Θ 𝑝 𝑥𝑛 𝑧𝑛 = 𝑘, ෡Θ = ො𝜋𝑘𝒩 𝑥𝑛| Ƹ𝜇𝑘, ෠Σ𝑘

෡Θ = argmaxΘ σ𝑛=1
𝑁 σ𝑘=1

𝐾 Ƹ𝑧𝑛𝑘[log 𝜋𝑘 + log𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘]

Ƹ𝑧𝑛 = argmax𝑘=1,2,…,𝐾 𝑝 𝑧𝑛 = 𝑘 ෡Θ, 𝒙𝑛

ො𝜋𝑘 =
1

𝑁
෍

𝑛=1

𝑁

Ƹ𝑧𝑛𝑘 Ƹ𝜇𝑘 =
1

𝑁𝑘
෍

𝑛=1

𝑁

Ƹ𝑧𝑛𝑘𝒙𝑛

෠Σ𝑘 =
1

𝑁𝑘
෍

𝑛=1

𝑁

Ƹ𝑧𝑛𝑘(𝒙𝑛− Ƹ𝜇𝑘)(𝒙𝑛− Ƹ𝜇𝑘)⊤

𝑁𝑘 : Effective number

of points in cluster k

CS771: Intro to ML

Expectation-Maximization (EM) for GMM
12

▪ EM finds Θ𝑀𝐿𝐸 by maximizing 𝔼 log 𝑝 𝑿, 𝒁 Θ

▪ Note: Expectation will be w.r.t. the CP of 𝒁, i.e., 𝑝(𝒁|𝑿, Θ)

▪ The EM algorithm for GMM operates as follows

▪ Initialize Θ = {𝜋𝑘 , 𝜇𝑘 , Σ𝑘}𝑘=1
𝐾 as ෡Θ

▪ Repeat until convergence

▪ Compute CP 𝑝(𝒁|𝑿, ෡Θ) using current estimate of Θ. Since obs are i.i.d, compute for each 𝑛 (and for 𝑘 = 1,2, . . 𝐾)

▪ Update Θ by maximizing 𝔼 log 𝑝 𝑿, 𝒁 Θ

෡Θ = argmaxΘ 𝔼𝑝(𝒁|𝑿,෡Θ) log 𝑝 𝑿, 𝒁 Θ = argmaxΘ ෍
𝑛=1

𝑁

෍
𝑘=1

𝐾

𝔼[𝑧𝑛𝑘][log 𝜋𝑘 + log 𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘]

𝑝 𝒛𝑛 = 𝑘 𝒙𝑛, ෡Θ ∝ 𝑝 𝒛𝑛 = 𝑘 ෡Θ 𝑝 𝒙𝑛 𝒛𝑛 = 𝑘, ෡Θ = ො𝜋𝑘𝒩 𝑥𝑛| ො𝜇𝑘 , ෠Σ𝑘

Why w.r.t. this distribution?

Will see justification in a bit

ො𝜋𝑘 =
1

𝑁
෍

𝑛=1

𝑁

𝔼[𝑧𝑛𝑘] Ƹ𝜇𝑘 =
1

𝑁𝑘
෍

𝑛=1

𝑁

𝔼[𝑧𝑛𝑘]𝒙𝑛

෠Σ𝑘 =
1

𝑁𝑘
෍

𝑛=1

𝑁

𝔼[𝑧𝑛𝑘](𝒙𝑛− Ƹ𝜇𝑘)(𝒙𝑛− Ƹ𝜇𝑘)⊤

Solution has a similar form as

ALT-OPT (or gen. class.),

except we now have the

expectation of 𝑧𝑛𝑘 being used

Same as 𝑝(𝑧𝑛𝑘 = 1| 𝒙𝑛, ෡Θ), just a

different notation

𝔼 𝑧𝑛𝑘 = 𝛾𝑛𝑘 = 0 × 𝑝(𝑧𝑛𝑘 = 0|𝑥𝑛, ෡Θ) + 1 × 𝑝(𝑧𝑛𝑘 = 1|𝑥𝑛, ෡Θ)

∝ ො𝜋𝑘𝒩 𝑥𝑛| Ƹ𝜇𝑘 , ෠Σ𝑘

= 𝑝(𝑧𝑛𝑘 = 1|𝑥𝑛, ෡Θ)

ෝ𝜋𝑘𝒩 𝑥𝑛|ෝ𝜇𝑘,෡Σ𝑘

σℓ=1
𝐾 ෝ𝜋ℓ𝒩 𝑥𝑛|ෝ𝜇ℓ,෡Σℓ

Posterior probability of 𝑥𝑛

belonging to 𝑘𝑡ℎ cluster

Note that EM for GMM also gives a soft

clustering 𝑧𝑛 = [𝛾𝑛1, 𝛾𝑛2, … , 𝛾𝑛𝐾] for

each input 𝑥𝑛

CS771: Intro to ML

EM for GMM (Contd)
13

M-step:

Soft K-means, which are more of a heuristic

to get soft-clustering, also gave us

probabilities but didn’t account for cluster

shapes or fraction of points in each cluster

Accounts for cluster shapes (since

each cluster is a Gaussian

Accounts for fraction of

points in each cluster

Effective number of points

in the 𝑘𝑡ℎ cluster

CS771: Intro to ML

What is EM Doing?
14

▪ The MLE problem was Θ𝑀𝐿𝐸 = argmax
Θ

 log 𝑝 𝑿 Θ = argmax
Θ

 log σ𝒛 𝑝 𝑿, 𝒁 Θ

▪ What EM (and ALT-OPT) maximized is expected CLL: Θ𝑀𝐿𝐸 = argmax
Θ

 𝔼 log 𝑝 𝑿, 𝒁 Θ

▪ We did not solve the original problem (max of ILL). Is it okay?

▪ Assume 𝑝𝑧 = 𝑝(𝒁|𝑿, Θ) and 𝑞(𝒁) to be some prob distribution over 𝒁, then

▪ In the above ℒ 𝑞, Θ = σ𝑍 𝑞 𝑍 log
𝑝(𝑋,𝑍|Θ)

𝑞(𝑍)
 and 𝐾𝐿(𝑞| 𝑝𝑧 = − σ𝑍 𝑞 𝒁 log

𝑝(𝒁|𝑿,Θ)

𝑞(𝒁)

▪ Since KL is always non-negative log 𝑝 𝑿 Θ ≥ ℒ 𝑞, Θ , so ℒ 𝑞, Θ is a lower-bound on ILL

▪ Thus if we maximize ℒ 𝑞, Θ , it will also improve log 𝑝 𝑿 Θ

Assuming 𝑍 to be discrete, else

replace it by an integral

log 𝑝 𝑿 Θ = ℒ 𝑞, Θ + 𝐾𝐿(𝑞||𝑝𝑧)
May verify this identityFunction of a

distribution 𝑞 and

parameter Θ

Maximization of ILL

As an approximation

CS771: Intro to ML

What is EM Doing?
15

▪ As we saw, ℒ 𝑞, Θ depends on 𝑞 and Θ

▪ Let’s maximize ℒ 𝑞, Θ w.r.t. 𝑞 with Θ fixed at Θold

▪ Now let’s maximize ℒ 𝑞, Θ w.r.t. Θ with 𝑞 fixed at ො𝑞 = 𝑝𝑧 = 𝑝(𝒁|𝑿, Θold)

ො𝑞 = argmax𝑞ℒ 𝑞, Θold = argmin𝑞𝐾𝐿(𝑞| 𝑝𝑧 = 𝑝𝑧 = 𝑝(𝒁|𝑿, Θold)

Since log 𝑝 𝑿 Θ = ℒ 𝑞, Θ + 𝐾𝐿(𝑞||𝑝𝑧)
is constant when Θ is held fixed at Θold

Θnew = argmaxΘℒ ො𝑞, Θ = argmaxΘ ෍

𝑍

𝑝(𝒁|𝑿, Θold) log
𝑝(𝑿, 𝒁|Θ)

𝑝(𝒁|𝑿, Θold)

= argmaxΘ ෍

𝑍

𝑝 𝒁 𝑿, Θold log 𝑝(𝑿, 𝒁|Θ)

= argmaxΘ 𝔼
𝑝 𝒁 𝑿, Θold [log 𝑝(𝑿, 𝒁|Θ)]Maximization of expected CLL w.r.t. the

posterior distribution of 𝑍 given older

parameters Θold

The posterior distribution of 𝑍 given

older parameters Θold (will need this

posterior to get the expectation of CLL)

= argmaxΘ 𝒬(Θ, Θold)

CS771: Intro to ML

Recap: ALT-OPT vs EM
16

This step could potentially throw

away a lot of information about

the latent variable 𝒁

ALT-OPT can be seen as as

approximation of EM – the

posterior 𝑝(𝒁|𝑿, Θ) is replaced by

a point mass at its mode

CS771: Intro to ML

EM: An Illustration
17

▪ As we saw, EM maximizes the lower bound ℒ 𝑞, Θ in two steps

▪ Step 1 finds the optimal 𝑞 (call it ො𝑞) by setting it the posterior of 𝒁 given current Θ

▪ Step 2 maximizes ℒ ො𝑞, Θ w.r.t. Θ which gives a new Θ.

Θ(0) Θ(1)Θ(2)Θ(3)

Green curve: ℒ ො𝑞, Θ after

setting 𝑞 to ො𝑞
log 𝑝 𝑿 Θ

Local optima

found for Θ𝑀𝐿𝐸

Makes ℒ 𝑞, Θ equal to log 𝑝 𝑿 Θ ; thus

the curves touch at current Θ

Note that Θ only changes in Step 2

so the objective log 𝑝 𝑿 Θ
 can only change in Step 2

Θ(𝑀𝐿𝐸)

Good initialization matters;

otherwise would converge

to a poor local optima

Also kind of similar to Newton’s

method (and has second order like

convergence behavior in some cases)

Unlike Newton’s method, we don’t

construct and optimize a quadratic

approximation, but a lower bound

Even though original MLE problem

argmaxΘlog 𝑝 𝑿 Θ could be solved

using gradient methods, EM often

works faster and has cleaner updates

Alternating between

them until convergence

to some local optima

CS771: Intro to ML

The EM Algorithm in its general form..
18

▪ Maximization of ℒ 𝑞, Θ w.r.t. 𝑞 and Θ gives the EM algorithm (Dempster, Laird, Rubin, 1977)

▪ Note: If we can take the MAP estimate Ƹ𝑧𝑛 of 𝑧𝑛 (not full posterior) in Step 2 and maximize

the CLL in Step 3 using that, i.e., do argmaxΘ σ𝑛=1
𝑁 log 𝑝 𝒙𝑛 , Ƹ𝑧𝑛

(𝑡) Θ this will be ALT-OPT

CS771: Intro to ML

The Expected CLL
19

▪ Expected CLL in EM is given by (assume observations are i.i.d.)

▪ If 𝑝 𝒛𝑛 Θ and 𝑝 𝒙𝑛 𝒛𝑛, Θ are exponential family distributions, then 𝒬(Θ, Θold) has a very
simple form

▪ In resulting expressions, replace terms containing 𝑧𝑛’s by their respective expectations, e.g.,
▪ 𝒛𝑛 replaced by 𝔼

𝑝 𝒛𝑛 𝒙𝑛, ෡Θ [𝒛𝑛]

▪ 𝒛𝑛𝒛𝑛
⊤ replaced by 𝔼

𝑝 𝒛𝑛 𝒙𝑛, ෡Θ [𝒛𝑛𝒛𝑛
⊤]

▪ However, in some LVMs, these expectations are intractable to compute and need to be
approximated (beyond the score of CS771)

Was indeed the case of GMM: 𝑝 𝒛𝑛 Θ

was multinoulli, 𝑝 𝒙𝑛 𝒛𝑛, Θ was Gaussian

CS771: Intro to ML

Detour: Exponential Family
20

▪ Exponential Family is a family of prob. distributions that have the form

▪ Many well-known distribution (Bernoulli, Binomial, multinoulli, Poisson, beta, gamma,
Gaussian, etc.) are examples of exponential family distributions

▪ 𝜃 is called the natural parameter of the family

▪ ℎ 𝑥 , 𝑇 𝑥 , and 𝐴(𝜃) are known functions (specific to the distribution)

▪ 𝑇(𝑥) is called the sufficient statistics: estimates of 𝜃 contain 𝑥 in form of suff-stats

▪ Every exp. family distribution also has a conjugate distribution (often also in exp. family)

▪ Also, MLE/MAP is usually quite simple since log 𝑝 𝑥 𝜃 will have a simple expression

▪ Also useful in fully Bayesian inference since they have conjugate priors

𝑝 𝑥 𝜃 = ℎ 𝑥 exp[𝜃⊤𝑇 𝑥 − 𝐴(𝜃)] Even though their standard form may

not look like this, they can be rewritten

in this form after some algebra

Natural params are a function of the distribution

parameters in the standard form

https://en.wikipedia.org/wiki/Exponential_family

https://en.wikipedia.org/wiki/Exponential_family

CS771: Intro to ML

LVM for Semi-supervised Learning
21

▪ Unlabeled data can help in supervised learning as well

A generative classifier

learned using the

labelled examples

Decision boundary

(green curve)

Added some

unlabeled inputs

(green points)

New (improved)decision

boundary

We don’t know their true

labels but can treat the true

labels as latent variables and

estimate them along with

the rest of the parameters

of the generative

classification model

A small training set

may not be able to

help learn the true

decision boundary

CS771: Intro to ML

LVM for Semi-supervised Learning (SSL)
22

▪ Suppose we have 𝑁 labeled 𝒙𝑛, 𝑦𝑛 𝑛=1
𝑁 and 𝑀 unlabeled examples 𝒙𝑛 𝑛=𝑁+1

𝑁+𝑀

▪ We wish to learn a classifier using both labelled and unlabeled examples

▪ We can treat the labels of 𝑥𝑛 𝑛=𝑁+1
𝑁+𝑀 as latent variables and use ALT-OPT or EM

▪ 𝑧𝑛 = 𝑦𝑛 for labeled examples 𝑛 = 1,2, … , 𝑁

▪ 𝑧𝑛 estimated (hard/soft guess) for unlabeled examples 𝑛 = 𝑁 + 1, … , 𝑁 + 𝑀

▪ Assuming generative classification with Gaussian class-conditional (Θ = {𝜋𝑘 , 𝜇𝑘, Σ𝑘}𝑘=1
𝐾)

෡Θ = argmaxΘ ෍
𝑛=1

𝑁

𝑧𝑛𝑘[log 𝜋𝑘 + log 𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘]

+ ෍
𝑛=𝑁+1

𝑁+𝑀

෍
𝑘=1

𝐾

𝔼[𝑧𝑛𝑘][log 𝜋𝑘 + log 𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘]

Assuming we are using EM (soft guess), otherwise ALT-

OPT (hard guess) can be used too, as we did in GMM

This SSL model is a hybrid of

supervised generative

classification (with Gaussian

class-conditionals) and GMM

CS771: Intro to ML

Another LVM: Probabilistic PCA (PPCA)

▪ Assume 𝒙𝑛 ∈ ℝ𝐷 as a linear mapping of a latent var 𝒛𝑛 ∈ ℝ𝐾 + Gaussian noise

▪ Equivalent to saying 𝑝 𝒙𝑛 𝒛𝑛, 𝝁, 𝑾, 𝜎2 = 𝒩 𝒙𝑛|𝝁 + 𝑾𝒛𝑛, 𝜎2𝐼𝐷

▪ Assume a zero-mean 𝐾-dim Gaussian prior on 𝒛𝑛, so 𝑝 𝒛𝑛 = 𝒩 𝒛𝑛|𝟎, 𝐼𝐾

▪ We would like to do MLE for Θ = (𝝁, 𝑾, 𝝈𝟐)

▪ ILL for this model 𝑝 𝒙𝑛 𝝁, 𝑾, 𝜎2 is also a Gaussian (thanks to Gaussian properties)

▪ Maximizing ILL w.r.t. Θ = (𝝁, 𝑾, 𝝈𝟐) is possible but requires solving eig decomp. problem

▪ We can use ALT-OPT/EM to estimate Θ = (𝝁, 𝑾, 𝝈𝟐) more efficiently without eig decomp.

23

𝒙𝑛 = 𝝁 + 𝑾𝒛𝑛 + 𝝐𝑛

Drawn from a zero-mean 𝐷-dim

Gaussian 𝒩 𝟎, 𝜎2𝐼𝐷

𝐷 × 𝐾 matrix 𝐷 × 1 offset/bias

𝑝 𝒙𝑛 𝝁, 𝑾, 𝜎2 = න 𝑝 𝒙𝑛 𝒛𝑛, 𝝁, 𝑾, 𝜎2 𝑝 𝒛𝑛 𝑑𝒛𝑛 = 𝑁 𝒙𝑛 𝝁, 𝑾𝑾⊤ + 𝜎2𝐼𝐷
PRML 12.2.1

A “reverse” generative way of thinking about

PCA (low-dim 𝑧𝑛 generating high-dim 𝑥𝑛

This linear mapping can be replaced by

more powerful nonlinear mapping of the

form 𝒙𝑛 = 𝑓(𝒛𝑛) + 𝝐𝑛 where 𝑓 can be

modeled using a deep neural net (e.g.,

models like variational autoencoders)

CS771: Intro to ML

Learning PPCA using EM
24

▪ Instead of maximizing the ILL 𝑝 𝒙𝑛 𝝁, 𝑾, 𝜎2 = 𝑁 𝒙𝑛 𝝁, 𝑾𝑾⊤ + 𝜎2𝐼𝐷 , let’s
use ALT-OPT/EM

▪ EM will instead maximize expected CLL, with CLL (assume 𝜇 = 0) given by

▪ Using 𝑝 𝒙𝑛 𝒛𝑛, 𝑾, 𝜎2 = 𝒩 𝒙𝑛|𝑾𝒛𝑛, 𝜎2𝐼𝐷 and 𝑝 𝒛𝑛 = 𝒩 𝒛𝑛|𝟎, 𝐼𝐾

▪ Expected CLL will require 𝔼 𝒛𝑛 and 𝔼 𝒛𝑛𝒛𝑛
⊤ w.r.t. conditional posterior of 𝒛𝑛

log 𝑝 𝑋, 𝑍 𝑊, 𝜎2 = log ෑ
𝑛=1

𝑁

𝑝(𝒙𝑛, 𝒛𝑛|𝑾, 𝜎2) = log ෑ
𝑛=1

𝑁

𝑝 𝒙𝑛 𝒛𝑛, 𝑾, 𝜎2 𝑝(𝒛𝑛)

CLL = − ෍
𝑛=1

𝑁 𝐷

2
log 𝜎2 +

1

2𝜎2
𝒙𝑛

2 −
1

𝜎2
𝒛𝑛

⊤𝑾⊤𝒙𝑛 +
1

2𝜎2
trace(𝒛𝑛𝒛𝑛

⊤𝑾⊤𝑾) +
1

2
trace(𝒛𝑛𝒛𝑛

⊤)

Using the fact that 𝑝(𝒙𝑛|𝒛𝑛) and

𝑝(𝒛𝑛) are Gaussians and the CP is

just the reverse conditional 𝑝(𝒛𝑛|𝒙𝑛)

and must also be Gaussian

CS771: Intro to ML

Learning PPCA using EM
25

▪ The EM algo for PPCA alternates between two steps

▪ Compute CP of 𝒛𝑛 given parameters Θ = (𝐖, 𝜎2) and required expectatuions

▪ Maximize the expected CLL 𝔼 log 𝑝(𝑿, 𝒁|𝐖, 𝜎2) w.r.t. 𝑾 and 𝜎2

▪ Will get ALT-OPT if we use mode of the CP as ො𝒛𝑛 in the CLL

𝔼[CLL] = − ෍
𝑛=1

𝑁 𝐷

2
log 𝜎2 +

1

2𝜎2 𝒙𝑛
2 −

1

𝜎2 𝔼[𝒛𝑛
⊤]𝑾⊤𝒙𝑛 +

1

2𝜎2 trace(𝔼[𝒛𝑛𝒛𝑛
⊤]𝑾⊤𝑾) +

1

2
trace(𝔼[𝒛𝑛𝒛𝑛

⊤])

Unlike standard PCA

(non-probabilistic), no

eigendecomposition

needed to estimate 𝑾

Note: This approach

does not assume/ensure

that 𝑾 is orthonormal

Note: setting 𝜎2 = 0 makes

it equivalent to standard PCA

without orthonormality

constraint, but EM is more

efficient since no

eigendecomposition is

needed

CS771: Intro to ML

Generative Models can generate synthetic data!
26

▪ Once parameters Θ = (𝝁, 𝑾, 𝝈𝟐) are learned, we can even generate new data, e.g.,

▪ Generate a random 𝒛𝑛 from 𝒩 𝟎, 𝐼𝐾

▪ Generate 𝒙𝑛 condition on 𝒛𝑛 from 𝒩 𝝁 + 𝑾𝒛𝑛, 𝜎2𝐼𝐷

Generated using a more

sophisticated generative

model, not PPCA (but

similar in formulation)

Methods such as

variational autoencoders,

GAN, diffusion models, etc

are based on similar ideas

In addition to, of course,

reducing the data

dimensionality

CS771: Intro to ML

EM: Some Comments
27

▪ Good initialization is important

▪ The E and M steps may not always be possible to perform exactly. Some reasons

▪ CP of latent variables 𝑝(𝒁|𝑿, Θ) may not be easy to find and may require approx.

▪ Even if 𝑝(𝒁|𝑿, Θ) is easy, expected CLL, i.e., 𝔼 log 𝑝 𝑿, 𝒁 Θ may still not be tractable

..and may need to be approximated, e.g., using Monte-Carlo expectation

▪ Maximization of the expected CLL may not be possible in closed form

▪ EM works even if the M step is only solved approximately (Generalized EM)

▪ Other advanced probabilistic inference algorithms are based on ideas similar to EM

▪ E.g., Variational Bayesian inference a.k.a. Variational Inference (VI)

▪ EM is also related to non-convex optimization algorithms Majorization-Maximization (MM)

▪ MM maximizes a difficult-to-optimize objective function by iteratively constructing surrogate functions that are
easier to maximize (in EM, the surrogate function was the CLL)

Monte-Carlo EM

Gradient methods may still

be needed for this step

	Slide 1: Latent Variable Models (LVMs)
	Slide 2: Example: Generative Models with Latent Variables
	Slide 3: Components of an LVM
	Slide 4: Why Direct MLE/MAP is Hard for LVMs?
	Slide 5: How to Guess z sub n in an LVM?
	Slide 6: LVMs: Incomplete vs Complete Data Log Likelihood
	Slide 7: MLE for LVM
	Slide 8: An LVM: Gaussian Mixture Model
	Slide 9: Detour: MLE for Generative Classification
	Slide 10: MLE for GMM: Using Guesses of z sub n
	Slide 11: ALT-OPT for GMM
	Slide 12: Expectation-Maximization (EM) for GMM
	Slide 13: EM for GMM (Contd)
	Slide 14: What is EM Doing?
	Slide 15: What is EM Doing?
	Slide 16: Recap: ALT-OPT vs EM
	Slide 17: EM: An Illustration
	Slide 18: The EM Algorithm in its general form..
	Slide 19: The Expected CLL
	Slide 20: Detour: Exponential Family
	Slide 21: LVM for Semi-supervised Learning
	Slide 22: LVM for Semi-supervised Learning (SSL)
	Slide 23: Another LVM: Probabilistic PCA (PPCA)
	Slide 24: Learning PPCA using EM
	Slide 25: Learning PPCA using EM
	Slide 26: Generative Models can generate synthetic data!
	Slide 27: EM: Some Comments

