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▪ Goal: Reduce the dimensionality of each input 𝒙𝑛 ∈ ℝ𝐷 

▪ Also want to be able to (approximately) reconstruct 𝒙𝑛 from 𝒛𝑛

▪ Sometimes 𝑓 is called “encoder” and 𝑔 is called “decoder”. Can be linear/nonlinear

▪ These functions are learned by minimizing the distortion/reconstruction error of inputs

𝒛𝑛 = 𝑓(𝒙𝑛)

෥𝒙𝑛 = 𝑔 𝒛𝑛 = 𝑔(𝑓 𝒙𝑛 ) ≈ 𝒙𝑛

ℒ = ෍
𝑛=1

𝑁

𝒙𝑛 − ෥𝒙𝑛
2 = ෍

𝑛=1

𝑁

𝒙𝑛 − 𝑔(𝑓(𝒙𝑛)) 2

Often ෥𝒙𝑛 is a “cleaned” version of 𝒙𝑛 

(the loss in information is often the 

noise/redundant information in 𝒙𝑛) 

𝒛𝑛 ∈ ℝ𝐾 (𝐾 ≪ 𝐷) is a 

compressed version of 𝒙𝑛 

𝒙𝑛 ෥𝒙𝑛

Image source: Manjon et al (2013): Diffusion Weighted Image Denoising using overcomplete Local PCA
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▪ Choosing 𝑓 and 𝑔 as linear transformations 𝑾𝑻 (𝐾 × 𝐷) and 𝑾, respectively

▪ Minimizer of ℒ , if  the 𝐾 columns of 𝑾 are orthonormal, are top 𝐾 eigenvectors of 

▪ The matrix 𝑾 does a “linear projection” of each input 𝒙𝑛 ∈ ℝ𝐷 into a 𝐾 dim space

▪ 𝒛𝑛 = 𝑾𝑇𝒙𝑛 ∈ ℝ𝐾 denotes this linear projection

▪ Note: If  we use 𝐾 = 𝐷 eigenvectors for 𝑾, the reconstruction will be perfect (ℒ = 0)

ℒ = ෍
𝑛=1

𝑁

𝒙𝑛 − 𝑔(𝑓(𝒙𝑛)) 2 = ෍
𝑛=1

𝑁

𝒙𝑛 − 𝑾𝑾𝑇𝒙𝑛
2

𝑺 =
1

𝑁
෍

𝑛=1

𝑁

𝒙𝑛 − 𝝁 𝒙𝑛 − 𝝁 ⊤ =
1

𝑁
𝑿𝑐

⊤𝑿𝑐

𝐷 × 𝐷 empirical 

covariance 

matrix of inputs

𝑿𝑐 is the 𝑁 × 𝐷 matrix of inputs 

after centering each input 

(subtracting off  the mean of 

inputs from each input)

Principal Component Analysis 

(PCA). Proof shortly

𝒛𝑛 ෥𝒙𝑛 = 𝑾𝒛𝑛
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▪ Consider a linear model of the form 

▪ Above means that each 𝒙𝑛 is appox a linear comb of 𝐾 vectors 𝒘1, 𝒘2, … , 𝒘𝐾

▪ In this example, 𝒛𝑛 ∈ ℝ𝐾  (𝐾 = 4) is a low-dim feature rep. for each image 𝒙𝑛 ∈ ℝ𝐷

𝒙𝑛 ≈ ෥𝒙𝑛 = 𝑾𝒛𝑛 = ෍
𝑘=1

𝐾

𝑧𝑛𝑘𝒘𝑘
𝒘𝑘 is the 𝑘-th 

column of 𝑾

Not necessarily PCA where the 

columns of 𝑾 were orthonormal

A face image 

𝒙𝑛 ∈ ℝ𝐷 
𝑧𝑛1 𝑧𝑛2 𝑧𝑛3 𝑧𝑛4𝒘1 𝒘2 𝒘3

𝒘4

+

𝐾 = 4 “basis” 

face images

Each “basis” image is like 

a “template” that captures 

the common properties of 

face images in the dataset
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▪ PCA learns a different and more economical coordinate system to represent data

▪ Top eigenvectors of the covariance matrix of inputs give us the large variance directions

𝑤2

𝑒2

𝑒1

𝑤1

𝒙 = [𝑥1, 𝑥2] in 

original coordinates 

system defined by 

axes 𝑒1 and 𝑒2

𝒛 = [𝑧1, 𝑧2] in new coordinates 

system defined by axes 𝑤1 and 𝑤2

Not much variance in the 𝑧2 

coordinates of all the points so we 

can ignore 𝑧2 and represent each 

point using just the first coordinate 

(i.e., 𝒛 = [𝑧1]) without losing 

much information about the data

With this representation, both 

coordinates 𝑥1 and 𝑥2 have a high 

variance across all the points so, for 

any point 𝒙, we can’t ignore any of 

these two coordinates otherwise 

we will lose considerable 

information about the data

Dimensionality reduction! From 

two dimensions (𝒙 ∈ ℝ2) to one 

dimension (𝒛 ∈ ℝ)



CS771: Intro to ML

Finding Max. Variance Directions
6

▪ Consider projecting an input 𝒙𝑛 ∈ ℝ𝐷 along a direction 𝒘1 ∈ ℝ𝐷

▪ Projection/embedding of 𝒙𝑛 (red points below) will be 𝒘1
⊤𝒙𝑛 (green pts below)

▪Want 𝒘1 such that variance 𝒘1
⊤𝑺𝒘1 is maximized 

𝒘1

𝒙𝑛

Mean of projections of all inputs:

1

𝑁
σ𝑛=1

𝑁 𝒘1
⊤𝒙𝑛 = 𝒘1

⊤(
1

𝑁
σ𝑛=1

𝑁 𝒙𝑛) = 𝒘1
⊤𝝁

Variance of the projections:
1

𝑁
෍

𝑛=1

𝑁

(𝒘1
⊤𝒙𝑛 − 𝒘1

⊤𝝁)2 =
1

𝑁
෍

𝑛=1

𝑁

{𝒘1
⊤(𝒙𝑛−𝝁)}2 = 𝒘1

⊤𝑺𝒘1

𝑺 is the 𝐷 × 𝐷 cov matrix of the data: 

𝑺 =
1

𝑁
෍

𝑛=1

𝑁

(𝒙𝑛 − 𝝁)(𝒙𝑛 − 𝝁)⊤ 

For already centered data, 𝝁 = 𝟎 and 

𝑺 =
1

𝑁
σ𝑛=1

𝑁 𝒙𝑛 𝒙𝑛
⊤ = 

1

𝑁
𝑿𝑿⊤

argmax
𝒘1

 𝒘1
⊤𝑺𝒘1        s.t.   𝒘1

⊤𝒘1 = 1
Need this constraint otherwise the 

objective’s max will be infinity
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▪ Our objective function was argmax
𝒘1

 𝒘1
⊤𝑺𝒘1  s.t.   𝒘1

⊤𝒘1 = 1

▪ Can construct a Lagrangian for this problem

▪ Taking derivative w.r.t. 𝒘1 and setting to zero gives 𝑺𝒘1 = 𝜆1𝒘1

▪ Therefore 𝒘1 is an eigenvector of the cov matrix 𝑺 with eigenvalue 𝜆1 

▪ Claim: 𝒘1 is the eigenvector of 𝑺 with largest eigenvalue 𝜆1. Note that

▪ Thus variance 𝒘1
⊤𝑺𝒘1 will be max. if  𝜆1 is the largest eigenvalue (and 𝒘1 is the 

corresponding top eigenvector; also known as the first Principal Component)

▪ Other large variance directions can also be found likewise (with each being orthogonal 
to all others) using the eigendecomposition of cov matrix 𝑺 (this is PCA)

argmax
𝒘1

 𝒘1
⊤𝑺𝒘1 + 𝜆1(1-𝒘1

⊤𝒘1)

𝒘1
⊤𝑺𝒘1 = 𝜆1𝒘1

⊤𝒘1 = 𝜆1 

Variance along the 

direction 𝒘1 

Note: In general, 𝑺 

will have 𝐷 eigvecs

Note: Total variance of 

the data is equal to the 

sum of eigenvalues of 

𝑺, i.e., σ𝑑=1
𝐷 𝜆𝑑

PCA would keep the top 

𝐾 < 𝐷 such directions 

of largest variances
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▪ Center the data (subtract the mean 𝝁 =
1

𝑁
σ𝑛=1

𝑁 𝒙𝑛 from each data point)

▪ Compute the 𝐷 × 𝐷 covariance matrix 𝐒 using the centered data matrix 𝐗 as

▪ Do an eigendecomposition of the covariance matrix 𝐒 (many methods exist)

▪ Take top 𝐾 < 𝐷 leading eigvectors {𝒘1, 𝒘2, … , 𝒘𝐾} with eigvalues {𝜆1, 𝜆2, … , 𝜆𝐾}

▪ The 𝐾-dimensional projection/embedding of each input is

𝐒 =
1

𝑁
𝐗⊤𝐗 (Assuming 𝐗 is arranged as 𝑁 × 𝐷) 

𝒛𝑛 ≈  𝐖𝐾
⊤𝒙𝑛 𝐖K = 𝒘1, 𝒘2, … , 𝒘𝐾  is the 

“projection matrix” of size 𝐷 × 𝐾

Note: Can decide how many 

eigvecs to use based on how 

much variance we want to 

capture (recall that each 𝜆𝑘 

gives the variance in the 

𝑘𝑡ℎ direction (and their sum is 

the total variance)
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▪ Representing a data point 𝒙𝑛 =  [𝑥𝑛1, 𝑥𝑛2, … , 𝑥𝑛𝐷] ⊤ in the standard orthonormal 
basis 𝒆1, 𝒆2, … , 𝒆𝐷

▪ Let’s represent the same data point in a new orthonormal basis 𝒘1, 𝒘2, … , 𝒘𝐷

▪ Ignoring directions along which projection 𝑧𝑛𝑑 is small, we can approximate 𝒙𝑛 as

▪ Now 𝒙𝑛 is represented by 𝐾 < 𝐷 dim. rep. 𝒛𝑛 = [𝑧𝑛1, 𝑧𝑛2, … , 𝑧𝑛𝐾] and

𝒙𝑛 =  ෍
𝑑=1

𝐷

𝑥𝑛𝑑𝒆𝑑
𝒆𝑑 is a vector of all zeros except a single 1 at 

the 𝑑𝑡ℎ position. Also, 𝒆𝑑
⊤𝒆𝑑′ = 0 for 𝑑 ≠  𝑑’

𝒙𝑛 =  ෍
𝑑=1

𝐷

𝑧𝑛𝑑𝒘𝑑

𝒛𝑛 = [𝑧𝑛1, 𝑧𝑛2, … , 𝑧𝑛𝐷] ⊤denotes the 

co-ordinates of 𝒙𝑛 in the new basis  

𝑧𝑛𝑑 is the projection/coordinate of 

𝒙𝑛 along the direction 𝒘𝑑 since 

𝑧𝑛𝑑 = 𝒘𝑑
⊤𝒙𝑛 = 𝒙𝑛

⊤𝒘𝑑(verify)

𝒙𝑛 ≈ ෝ𝒙𝑛 = ෍
𝑑=1

𝐾

𝑧𝑛𝑑𝒘𝑑 = ෍
𝑑=1

𝐾

(𝒙𝑛
⊤𝒘𝑑)𝒘𝑑 = ෍

𝑑=1

𝐾

(𝒘𝑑𝒘𝑑
⊤)𝒙𝑛

𝒛𝑛 =  𝑾𝐾
⊤𝒙𝑛

𝑾𝐾 = 𝒘1, 𝒘2, … , 𝒘𝐾  is the 

“projection matrix” of size 𝐷 × 𝐾

Note that 𝒙𝑛 − σ𝑑=1
𝐾 (𝒘𝑑𝒘𝑑

⊤)𝒙𝑛
2
 

is the reconstruction error on 𝒙𝑛.  

Would like it to minimize w.r.t. 

𝒘1, 𝒘2, … , 𝒘𝐾 

Also, 𝒙𝑛 ≈ 𝐖𝐾𝒛𝑛 

𝑥𝑛𝑑 is the coordinate of 𝒙𝑛 

along the direction 𝒆𝑑
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▪We plan to use only 𝐾 directions 𝒘1, 𝒘2, … , 𝒘𝐾  so would like them to be such 
that the total reconstruction error is minimized

▪ Each optimal 𝒘𝑑 can be found by solving 

▪ Thus minimizing the reconstruction error is equivalent to maximizing variance

▪ The 𝐾 directions can be found by solving the eigendecomposition of 𝐒

ℒ 𝒘1, 𝒘2, … , 𝒘𝐾 =  ෍
𝑛=1

𝑁

𝒙𝑛 − ෝ𝒙𝑛
2 = ෍

𝑛=1

𝑁

𝒙𝑛 − ෍
𝑑=1

𝐾

(𝒘𝑑𝒘𝑑
⊤)𝒙𝑛

2

 

= 𝐶 − σ𝑑=1
𝐾 𝒘𝑑

⊤𝐒𝒘𝑑 (verify)

Constant; doesn’t 

depend on the 𝒘𝑑’s Variance along 𝒘𝑑

argmin
𝒘𝑑

 ℒ 𝒘1, 𝒘2, … , 𝒘𝐾 = argmax
𝒘𝑑

 𝒘𝑑
⊤𝐒𝒘𝑑

Subject to 

𝒘𝑑
⊤𝒘𝑑 = 1
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▪ Any matrix 𝐗 of size 𝑁 × 𝐷 can be represented as the following decomposition

▪ 𝐔 = 𝒖1, 𝒖2, … , 𝒖𝑁  is 𝑁 × 𝑁 matrix of left singular vectors, each 𝒖𝑛 ∈ ℝ𝑁

▪ 𝐔 is also orthonormal (𝒖𝑛
⊤𝒖𝑛 = 1 ∀𝑛 and 𝒖𝑛

⊤𝒖𝑛′ = 0 ∀𝑛 ≠ 𝑛′)

▪ 𝐕 = 𝒗1, 𝒗2, … , 𝒗𝑁 is 𝐷 × 𝐷 matrix of right singular vectors, each 𝒗𝑑 ∈ ℝ𝐷

▪ 𝐕 is also orthonormal(𝒗𝑑
⊤𝒗𝑑 = 1 ∀𝑑 and 𝒗𝑑

⊤𝒗𝑑′ = 0 ∀𝑑 ≠ 𝑑′)

▪ Λ is 𝑁 × 𝐷 with only min(𝑁, 𝐷) diagonal entries - singular values

▪ Note: If  𝐗 is symmetric then it is known as eigenvalue decomposition (𝐔 = 𝐕)

𝐗 = 𝐔𝚲𝐕⊤ =  ෍
𝑘=1

min{𝑁,𝐷}

𝜆𝑘𝒖𝑘𝒗𝑘
⊤

Diagonal matrix. If  𝑁 > 𝐷, last 𝐷 − 𝑁 rows are all 

zeros; if  𝐷 > 𝑁, last 𝐷 − 𝑁 columns are all zeros
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▪ If  we just use the top 𝐾 < min{𝑁, 𝐷} singular values, we get a rank-𝐾 SVD

▪ Above SVD approx. can be shown to minimize the reconstruction error 𝑿 − ෡𝑿
▪ Fact: SVD gives the best rank-𝐾 approximation of a matrix

▪ PCA is done by doing SVD on the covariance matrix 𝐒 (left and right singular vectors 
are the same and become eigenvectors, singular values become eigenvalues)

This is a rank-1 matrix
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Dim-Red as Matrix Factorization
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▪ If  we don’t care about the orthonormality constraints on 𝑾, then dim-red can also be 
achieved by solving a matrix factorization problem on the data matrix 𝐗

▪ Can solve such problems using ALT-OPT

▪ Can impose various constraints on 𝐙 and 𝐖(e.g., sparsity, non-negativity, etc)

𝑿 𝒁
𝑾

N

D D

K

K

N≈
Matrix containing the 

low-dim rep of 𝐗

෡𝒁, ෢𝑾 =  argmin𝒁,𝑾 𝑿 − 𝒁𝑾 2 If  𝐾 <  min{𝐷, 𝑁}, such a 

factorization gives a low-rank 

approximation of the data matrix 𝑿
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▪ In many problems, we are given co-occurrence data in form of an 𝑁 × 𝑀 matrix 𝑋

▪ Data consists of relationship b/w two sets of entities containing 𝑁 and 𝑀 entities 

▪ Each entry 𝑋𝑖𝑗 denotes how many times the pair (𝑖, 𝑗) co-occurs, e.g., 

▪ Number of times a document 𝑖 (total 𝑁 docs) contains word 𝑗 of a vocabulary (total 𝑀 words)

▪ Rating user 𝑖 gave to item (or movie) 𝑗 on a shopping (or movie streaming) website

𝑁 ≈

×

𝑋 𝑍

𝑊

𝑀

𝑁

𝐾 𝑀

𝐾

In such problems, matrix factorization can be used to 

learn a 𝐾-dim feature vector for both set of entities

Even if  some entries of 𝑋 are missing, we can still do 

matrix factorization using the loss defined on the given 

entries of 𝑋 and use the learned 𝑍 and 𝑊 to predict 

any missing entry as 𝑋𝑖𝑗 ≈ 𝒛𝑖
⊤𝒘𝑗 (matrix completion)
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▪ Maximum variance directions may not be aligned with class separation directions 
(focusing only on variance/reconstruction error of the inputs 𝑥𝑛, is not always ideal)

▪ Be careful when using methods like PCA for supervised learning problems

▪ A better option would be to find projection directions such that after projection
▪ Points within the same class are close (low intra-class variance)

▪ Points from different classes are well separated (the class means are far apart)

Max variance direction 

(given by PCA)

Direction that preserves 

class separation
Projecting along this will give a one 

dimensional embedding of each point with 

both classes overlapping with each other

Projecting along this will give a one 

dimensional embedding of each point with 

both classes still having a good separation
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Dim. Reduction by Preserving Pairwise Distances
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▪ PCA/SVD etc assume we are given points 𝒙1, 𝒙2, … , 𝑥𝑁 as vectors (e.g., in 𝐷 dim)

▪ Often the data is given in form of distances 𝑑𝑖𝑗 between 𝒙𝑖 and 𝒙𝑗 (𝑖, 𝑗 = 1,2, … , 𝑁)

▪ Would like to project data such that pairwise distances between points are preserved

▪ Basically, if  𝑑𝑖𝑗 is large (resp. small), would like 𝒛𝑖 − 𝒛𝑗 to be large (resp. small)

▪ Multi-dimensional Scaling (MDS) is one such algorithm

▪ Note: If  𝑑𝑖𝑗 is the Euclidean distance, MDS is equivalent to PCA

𝒛𝑖 and 𝒛𝑗 denote low-dim 

embeddings/projections of 

𝒙𝑖 and 𝒙𝑗 , respectively
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MDS: An Example
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▪ Result of applying MDS (with 𝐾 = 2) on pairwise distances between some US cities

▪ Here MDS produces 2D embedding of each city such that geographically close cities 
are also close in 2D embedding space
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Nonlinear Dimensionality Reduction

19
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Beyond Linear Projections
20

▪ Consider the swiss-roll dataset (points lying close to a manifold)

▪ Linear projection methods (e.g., PCA) can’t capture intrinsic nonlinearities
▪ Maximum variance directions may not be the most interesting ones

Relative positions of points 

destroyed after the projection
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Nonlinear Dimensionality Reduction
21

▪ We want to a learn nonlinear low-dim projection

▪ Some ways of doing this
▪ Nonlinearize a linear dimensionality reduction method. E.g.:

▪ Cluster data and apply linear PCA within each cluster (mixture of PCA)

▪ Kernel PCA (nonlinear PCA)

▪ Using manifold based methods that intrinsically preserve nonlinear geometry, e.g.,

▪ Locally Linear Embedding (LLE), Isomap

▪ Maximum Variance Unfolding

▪ Laplacian Eigenmap, and others such as SNE/tSNE, etc.

▪ .. or use unsupervised deep learning techniques (later)

Relative positions of points 

preserved after the projection

Will look at KPCA, 

LLE, SNE/tSNE
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Kernel PCA
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▪ Recall PCA: Given 𝑁 observations 𝒙𝑛 ∈ ℝ𝐷, 𝑛 = 1,2, … , 𝑁, 

▪ Assume a kernel 𝑘 with associated 𝑀 dimensional nonlinear map 𝜙

▪ Would like to do it without computing 𝐂 and the mappings 𝜙 𝒙𝑛
′𝑠 since 𝑀 can be 

very large (even infinite, e.g., when using an RBF kernel)

▪ Boils down to doing eigendecomposition of the 𝑁 × 𝑁 kernel matrix 𝐊 (PRML 12.3)

▪ Can verify that each 𝒗𝑖 above can be written as a lin-comb of the inputs: 𝒗𝑖 = σ𝑛=1
𝑁 𝑎𝑖𝑛𝜙(𝒙𝑛)

▪ Can show that finding 𝒂𝑖 = [𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑁] reduces to solving an eigendecomposition of 𝐊
▪ Note: Due to req. of centering, we work with a centered kernel matrix

𝐷 ×  𝐷 cov matrix 

assuming centered data

𝐷 eigenvectors of 𝐒

𝑀 × 𝑀 cov matrix assuming 

centered data in the kernel-

induced feature space

𝑀 eigenvectors of 𝐂

𝑁 × 𝑁 matrix of all 1s
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Locally Linear Embedding
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▪ Basic idea: If  two points are local neighbors in the original space then they should be 
local neighbors in the projected space too

▪ Given 𝑁 observations 𝒙𝑛 ∈ ℝ𝐷, 𝑛 = 1,2, … , 𝑁, LLE is formulated as

▪ For each point 𝒙𝑛 ∈ ℝ𝐷 , LLE learns 𝒛𝑛 ∈ ℝ𝐾, 𝑛 = 1,2, … , 𝑁 such that the same 
neighborhood structure exists in low-dim space too

▪ Basically, if  point 𝒙𝑖 can be reconstructed from its neighbors in the original space, the 
same weights 𝑊𝑖𝑗 should be able to reconstruct 𝒛𝑖 in the new space too

Solve this to learn weights 𝑊𝑖𝑗  such that 

each point 𝑥𝑖 can be written as a weighted 

linear combination of its local neighbors in 

the original feature space

𝒩(𝑖) denotes the local 

neighbors (a predefined number, 

say K, of them) of point 𝒙𝑖

Requires solving an 

eigenvalue problem

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science 290 (2000)

Essentially, neighbourhood 

preservation, but only local 

Several non-lin dim-red 

algos use this idea
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▪ Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D

▪ SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)

▪ Uses the idea of preserving probabilistically defined neighborhoods

▪ SNE, for each point 𝒙𝑖, defines the probability of a point 𝒙𝑗 being its neighbor as

▪ SNE ensures that neighbourhood distributions in both spaces are as close as possible

▪ This is ensured by minimizing their total mismatch (KL divergence) ℒ = σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝑝𝑗|𝑖  log
𝑝𝑗|𝑖

𝑞𝑗|𝑖

▪ t-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to SNE
▪ Learns 𝒛𝑖’s by minimizing symmetric KL divergence

▪ Uses Student-t distribution instead of Gaussian for defining 𝑞𝑗|𝑖

Thus very useful if  we want 

to visualize some high-dim 

data in two or three dims

Neighbor probability 

in the original space

Neighbor probability in the 

projected/embedding space
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▪ Especially useful for visualizing data by projecting into 2D or 3D

Result of visualizing MNIST digits data in 2D (Figure from van der Maaten and Hinton, 2008)



CS771: Intro to ML

Word Embeddings: Dim-Reduction for Words
26

▪ Feature representation/embeddings of words are very useful in many applications

▪ Naively we can a one-hot vector of size 𝑉 for each word (where 𝑉 is the vocab size)

▪ One-hot representation of a word has two main issues
▪ Very high dimensionality (𝑉) for each word

▪ One-hot vector does not capture word semantics (any pair of words will have zero similarity)

▪ Desirable: Learning low-dim word embeddings that capture the meaning/semantics

▪ We want embedding of each word 𝑛 to be low-dimensional vector 𝒆𝑛 ∈ ℝ𝐾

▪ If  two words 𝑛 and 𝑛’ are semantically similar (dissimilar), we want 𝒆𝑛 and 𝒆𝑛′ to be close (far)

▪ Many methods to learn word embeddings (e.g., Glove and Word2Vec)

0 0 0 0 0 0 0 0 0 00 1
Word 𝑛 of the 
vocabulary

1 only at the 𝑛-th location

Or sentences, paragraphs, documents, etc 

which are basically a set of words
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▪ GloVe (Global Vectors for Word Representation) is a linear word embedding method

▪ Based on matrix factorization of a word-context co-occurrence matrix

▪ In GloVe, the context consists of words that co-occur within a specified context window 
around a target word in a large text corpus.

Words

Contexts

Words

Contexts

≈
×

Entry 𝑋𝑛𝑗 denotes 

number of times a word 

𝑛 appears in a context 𝑖

𝑋

Row 𝑛 (𝑒𝑛)denotes the 

embedding of word 𝑛

Column 𝑖(𝒄𝑖)denotes the 

embedding of context 𝑖

Embedding size

𝐸
𝐶

𝑋 − 𝐸𝐶 2 = ෍

𝑛,𝑖

𝑋𝑛𝑖 − 𝑒𝑛
⊤𝑐𝑖

2

Given 𝑋, minimize this 

distortion w.r.t. 𝐸 and 𝐶 

(e.g., using SVD of 𝑋)
Skipping a few other details such 

as pre-processing of the data 

(refer to the paper if  interested)GloVe: Global Vectors for Word Representation (Pennington et al, 2014)
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▪ A deep neural network based nonlinear word embedding method

▪ Usually learned using one of the following two objectives
▪ Skip-gram

▪ Continuous bag of words (CBOW)

▪ Skip-gram: Probability of a context 𝑖 occurring around a word 𝑛

▪ CBOW: Probability of word 𝑛 occurring given a context window, e.g., 𝑘 previous and 𝑘 next words

𝑝 𝑖 𝑛 =
exp(𝒄𝑖

⊤𝒆𝑛)

σ𝑖 exp(𝒄𝑖
⊤𝒆𝑛)

𝑝 𝑛 𝑛 − 𝑘: 𝑛 + 𝑘 =
exp(𝒆𝑛

⊤𝒄𝑛)

σ𝑛 exp(𝒆𝑛
⊤𝒄𝑛)

Conditional probability 

which can be estimated 

from training data

Embeddings are learned by optimizing a 

neural network based loss function which 

makes the difference b/w LHS and RHS small

Embeddings are learned by optimizing a 

neural network based loss function 

which makes the difference b/w LHS 

and RHS small

Sum/average of the embeddings 

of the context window for word 𝑛
Conditional probability which can 

be estimated from training data

Efficient Estimation of Word Representations in Vector Space (Mikolov et al, 2013)
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▪ Some dim-red methods can only compute the embedding of the training data

▪ Given 𝑁 training samples {𝑥1, 𝑥2, … , 𝑥𝑁} they will give their embedding {𝑧1, 𝑧2, … , 𝑧𝑁}

▪ However, given a new point 𝑥∗ (not in the training samples), they can’t produce its 
embedding 𝑧∗ easily
▪ Thus no easy way of getting “out-of-sample” embedding

▪ Some of the nonlinear dim-red methods like LLE, SNE, KPCA, etc have this limitation

▪ Reason: They don’t learn an explicit encoder and directly optimize for 𝑧𝑛 𝑛=1
𝑁 given 𝑥𝑛 𝑛=1

𝑁

▪ To get “out-of-sample” embeddings, these methods require some modifications*

▪ But many other methods do explicitly learn a mapping 𝑧 = 𝑓(𝑥) in form of an 
“encoder” 𝑓 that can give 𝑧∗ for any new 𝑥∗ as well (such methods are more useful)

▪ For PCA, the 𝐷 × 𝐾 projection matrix 𝑊𝐾 is this encoder function and 𝑧∗ = 𝑊𝐾
⊤𝑥∗

▪ Neural network based autoencoders can also do this (will see them later)
*Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering (Bengio et al, 2003)
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