

Dimensionality Reduction

= Goal: Reduce the dimensionality of each input x,, € RP

z, ERK (KK D)isa Z, = f(xn)

compressed version of x,,

" Also want to be able to (approximately) reconstruct x,, from z,

Often X,, is a “cleaned” version of x,

(the loss in information is often the :fn — g (ZTL) — g (f (xn)) ~ xn

noise/redundant information in xy,)

= Sometimes f is called "encoder” and g is called "decoder”. Can be linear/nonlinear

" These functions are learned by minimizing the distortion/reconstruction error of inputs

N N
L=) =Rl =) =g)P

n=1

Image source: Manjon et al (2013): Diffusion Weighted Image Denoising using overcomplete Local PCA CS771: Intro to ML

Dimensionality Reduction

= Choosing f and g as linear transformations WT (K x D) and W, respectively
N Xn =Wz,

N Zn
L=) =G GIP =)l ~WW x|

n=1 Principal Component Analysis
(PCA). Proof shortly

= Minimizer of L, if the K columns of W are orthonormal, are top K eigenvectors of

Xcisthe N XD ix of i
D X D empirical ¢ Is the matrix or Inputs

1 ZN 1 | |
. _ T _ ~ vT after centering each input
CO\/ta'”aﬂfCG'? : S —_ N (xn — ﬂ) (xn _ l'l') — N XC XC (subtracting off the mean of
matrix of Inputs n=1 inputs from each input)

» The matrix W does a “linear projection” of each input x,, € RP into a K dim space
=z, = Wlx, € R¥ denotes this linear projection

" Note: It we use K = D eigenvectors for W, the reconstruction will be perfect (£ = 0)
CS771: Intro to ML

Dimensionality Reduction

= Consider a linear model of the formg

Not necessarily PCA where the
columns of W were orthonormal

- I Wy is the k-th
Xn = Xp = Wzn — k_lz’nkwk column of W

" Above means that each x,, is appox a linear comb of K vectors wy, ws, ..., Wk

X, W z K = 4 "basis’
4 * face images
* 3
Kx1 :
Dx1 D xK :

N~
A face image

Each "basis” image is like
x, € RP

a "template” that captures
the common properties of
face images in the dataset

0.0586*

’in4 Wy

= |n this example, z,, € R¥ (K = 4) is a low-dim feature rep. for each image x,, € RP
CS771: Intro to ML

Principal Component Analysis (PCA)

» PCA learns a different and more economical coordinate system to represent data

€2
B x = [xq,x,] in = ‘
| original coordinates Z = |z4,23] in new coordinates
With this representation, both system defined by system defined by axes wy and w;

coordinates x; and x, have a high axes e; and e,
variance across all the points so, for /g
any point x, we can't ignore any of
these two coordinates otherwise
we will lose considerable
information about the data

W] Not much variance in the z,

‘ (\(,e coordinates of all the points so we
can ignore z, and represent each
point using just the first coordinate
(i.e., z = [z1]) without losing
much information ahout the data

Dimensionality reduction! From
two dimensions (x € R?) to one
dimension (z € R)

- b ——
< Ry g SN RIS NN T CENN N i el

" Jop eigenvectors of the covariance matrix of inputs give us the large variance directions
CS771: Intro to ML

Finding Max. Variance Directions
= Consider projecting an input x,, € R? along a direction w; € RP

= Projection/embedding of x,, (red points below) will be w{ x,, (green pts below)

Mean of projections of all inputs:

W1 1 1
N To — w7l N — w7
Xn g ﬁ2n=1 WiXn = Wy (ﬁ din=1%Xn) = Wil
’\ / \. S isthe D X D cov matrix of the data:

< 9 1 N

Ws , , , S =— - —u)’
.\/‘\./ Variance of the projections: 7 2 0~ 10CEn =)
- 1 N T T 1 N T 2 T

N2 Wix = wim? =5 WGl =wisw,
g n= n=
= \Want w; such that variance w{ Sw; is maximized For already centered data, pt = 0 and
S==YN_ x,x] =~XX'
T T N n=1*n*n N
argmax w; Swy st. wiwy =1
W1
Need this constraint otherwise the
CS771: Intro to ML

objective’'s max will be infinity

Max. Variance Direction | geamsme

= Our objective function was argmax w{ Sw; st. wiw; =1
Wi

= Can construct a Lagrangian for this problem

argmax w, Swy + A, (1-w{ w;)
w

Note: Total variance of

the data is equal to the A
sum of eigenvalues of

S, i.e., 23=1/1d z."/

PCA would keep the top
K < D such directions
of largest variances

1
= Taking derivative wirt. wy and setting to zero gives Swy; = A,w, Note: In general, §

will have D eigvecs

* Therefore wy is an eigenvector of the cov matrix § with eigenvalue A4

= Claim: wyq is the eigenvector of § with largest eigenvalue 4,. Note that

WISW]_ — /11W-1I_W1 — Al

= Thus variance w{ Sw; will be max. if A, is the largest eigenvalue (and wy is the
corresponding top eigenvector; also known as the first Principal Component)

= Other large variance directions can also be found likewise (with each being orthogonal
to all others) using the eigendecomposition of cov matrix § (this is PCA) CS771: Intro to ML

The PCA Algorithm

" Center the data (subtract the mean u = %Zﬁzl X, from each data point)

* Compute the D X D covariance matrix S using the centered data matrix X as
1

S = — XTX (Assuming X is arranged as N X D)

N

" Do an eigendecomposition of the covariance matrix § (many methods exist)
» Take top K < D leading eigvectors {wq, W, ..., W} with eigvalues {14, 15, ..., Ax}

" The K-dimensional projection/embedding of each input is

Note: Can decide how many
eigvecs to use based on how

Z, = WI-{rxn Wi = [wy, Wy, ..., wi] is the much variance we want to

“projection matrix” of size D X K capture (recall that each Ay
gives the variance in the

k" direction (and their sum is
the total variance)

CS771: Intro to ML

The Reconstruction Error View of PCA

= Representing a data point X, = [X,1, Xn2, o) Xpp] | In the standard orthonormal
basis {eq, e, ...,ep}

D
: : . ey is a vector of all zeros except a single 1 at
Xnq IS the coordinate of X Xn = Xnd€d _~ the dt* position. Also, e, Tey = 0 ford # d

along the direction ey d=1
= | et's represent the same data point in a new orthonormal basis {wy, w, ..., wp}
Zna IS the projection/coordinate of D Z, = [Zp1, Znz, - Znp] T denotes the
X, along the direction w, since X, = z ZndWda co-ordinates of x,, in the new basis
—wTy — 4T :
Znd = WgXn = XnWq (VerlfY) d=1

" |gnoring directions along which projection z, 4 is small, we can approximate x,, as

K K K Note that ||, — Zgzl(wdwg)xnnz
~ A — E — E T _ E T is the reconstruction error on xy,.
Xn = Xpn = d—lznde — d—l(ond)Wd _ d_l(wdwd)xn Would like it to minimize wirt.

Wi, Wy, ..., Wk

" Now x,, is represented by K < D dim.rep. z,, = |Zn1,Zn2, ---» Zng] and

—_— T WK = [Wl,WZ,...,WK] is the
Also, x,, ~ Wz, Zn WK An “projection matrix” of size D X K

CS771: Intro to ML

PCA Minimizes Reconstruction Error

= \We plan to use only K directions [wq, W, ..., W] so would like them to be such
that the total reconstruction error is minimized

N N K § 2
LWy wa W) =) =Rl =) =) (wawh,

n=1 n=1 d=1
Constant; doesn't
depend on the wy's Variance along wy
—C— YK (verify)
= Fach optimal w, can be found by solving Subject to

: T wiw,; =1
argmin L(Wy,W,, ..., Wg) = argmax w,;Sw,
wW(q Wd

" [hus minimizing the reconstruction error is equivalent to maximizing variance

" The K directions can be found by solving the eigendecomposition of §
CS771: Intro to ML

Singular Value Decomposition (SVD)

= Any matrix X of size N X D can be represented as the following decomposition
D N

D D
min{N,D}
D X=UAV' = z AUV
U N k=1

Diagonal matrix. If N > D, last D — N rows are all
zeros: if D > N, last D — N columns are all zeros

*U = [uy, Uy, ..., uy] is N X N matrix of left singular vectors, each u,, € RY
= U is also orthonormal (uju, = 1Vn and uju,r = 0vn #n')

2V = [vy,V,,...,vy] is D X D matrix of right singular vectors, each v; € RP
= V is also orthonormal (vjv,; = 1Vd and vjvy = 0vd # d')

" Ais N X D with only min(N, D) diagonal entries - singular values

* Note: It X is symmetric then it is known as eigenvalue decomposition (U = V)
CS771: Intro to ML

Low-Rank Approximation via SVD

= |[f we just use the top K < min{N, D} singular values, we get a rank-K SVD

D K

Uy

D This is a rank-1 matrix

K

K
K. K- X~ X = ZA UAkV i
k=1

" Above SVD approx. can be shown to minimize the reconstruction error HX —)7”
= Fact: SVD gives the best rank-K approximation of a matrix

* PCA is done by doing SVD on the covariance matrix S (left and right singular vectors
are the same and become eigenvectors, singular values become eigenvalues)

CS771: Intro to ML

Dimensionality Reduction: Beyond PCA

CS771: Intro to ML

Dim-Red as Matrix Factorization

" |f we don't care about the orthonormality constraints on W, then dim-red can also be
achieved by solving a matrix factorization problem on the data matrix X

D K D

K W
N X ~ N Z

Matrix containing the
low-dim rep of X

{Z)W — argman,WHX —ZWH2 f K < min{D, N}, such a A

factorization gives a low-rank

approximation of the data matrix X ‘!"’I‘ /

= Can impose various constraints on Z and W (e.g., sparsity, non-negativity, €tC)cs771. intro 10 ML

= Can solve such problems using ALT-OPT

Matrix Factorization is a very useful method!

" |[n many problems, we are given co-occurrence data in form of an N X M matrix X
» Data consists of relationship b/w two sets of entities containing N and M entities

= Each entry X;; denotes how many times the pair (i, j) co-occurs, e.g.,
= Number of times a document i (total N docs) contains word j of a vocabulary (total M words)
» Rating user [gave to item (or movie) j on a shopping (or movie streaming) website

M K M
< Kt
N NI Z
X ~ - ———
In such problems, matrix factorization can be used to

learn a K-dim feature vector for both set of entities

Even if some entries of X are missing, we can still do
matrix factorization using the loss defined on the given
entries of X and use the learned Z and W to predict
any missing entry as X;; = zl-TWj (matrix completion)

: Intro to ML

Supervised Dimensionality Reduction

* Maximum variance directions may not be aligned with class separation directions
(focusing only on variance/reconstruction error of the inputs x,,, is not always ideal)

T Direction that preserves Projecting along this will give a one
Projecting along this will give a one class separation dimensional embedding of each point with
dimensional embedding of each point with * o © ® o * o ® ¢ o ° both classes overlapping with each other
both classes still having a good separation o O o o ©®
e ¢ o ® Max variance direction

(given by PCA)

» Be careful when using methods like PCA for superviséd learning problems

= A better option would be to find projection directions such that after projection
= Points within the same class are close (low intra-class variance)
= Points from different classes are well separated (the class means are far apart) CS771: Intro to ML

Dim. Reduction by Preserving Pairwise Distances

» PCA/SVD etc assume we are given points X4, X5, ..., Xy as vectors (e.g., in D dim)
= Often the data is given in form of distances d;; between X and X; (i,j =1,2,...,N)

= Would like to project data such that pairwise distances between points are preserved

N :
z; and z; denote low-dim

Z = arg mzin L(Z) = arg mzin Z (dj — ||zi — z;l])? embeddings/projections of

ij=1 X; and x;, respectively

= Basically, if d;; is large (resp. small), would like Hzi —]H to be large (resp. small)

= Multi-dimensional Scaling (MDS) is one such algorithm

= Note: If d;; is the Euclidean distance, MDS is equivalent to PCA

CS771: Intro to ML

MDS: An Example

" Result of applying MDS (with K = 2) on pairwise distances between some US cities

2000
LUUV

1500 +
1000 +
Seattle
° Boston
500 + ®
o~ Chicago e NYC
E c .
a)) Denver Washington
San Francisco
St — ;, e - ,.,, 0 + 4 4 4 - —
-2000 -1500 -1000 -500 0 500 1000 1500 2000 2500
@
| I ® Atlanta
os Angeles 500 .
New Orleans °
Miami
-1000 +
Dim1

" Here MDS produces 2D embedding of each city such that geographically close cities
are also close in 2D embedding space

CS771: Intro to ML

Nonlinear Dimensionality Reduction

CS771: Intro to ML

Beyond Linear Projections

= Consider the swiss-roll dataset (points lying close to a manifold)

PCA (Linear Projection)

)

5=

Relative positions of points
destroyed after the projection

" | inear projection methods (e.g., PCA) can't capture intrinsic nonlinearities

= Maximum variance directions may not be the most interesting ones

CS771: Intro to ML

Nonlinear Dimensionality Reduction

= \We want to a learn nonlinear low-dim projection

Relative positions of points
preserved after the projection

= Some ways of doing this

= Nonlinearize a linear dimensionality reduction method. E.g.:
» Cluster data and apply linear PCA within each cluster (mixture of PCA)
= Kernel PCA (nonlinear PCA)
= Using manifold based methods that intrinsically preserve nonlinear geometry, e.g.,
= | ocally Linear Embedding (LLE), Isomap
= Maximum Variance Unfolding Will look at KPCA, A
= [aplacian Eigenmap, and others such as SNE/tSNE, etc. LLE. SNE/tSNE "f, /

" . Or use unsupervised deep learning techniques (later) c57._e-9.'-- i

Kernel PCA

= Recall PCA: Given N observations x, € R® n=1,2,...,N,

N D eigenvectors of S

D X D cov matrix 1 T

assuming centered data S = N E XnX, SU,' —)gf-u; \U(f —]_j c ey D
n=1

» Assume a kernel k with associated M dimensional nonlinear map ¢

M X M cov matrix assuming

N
centered data in the kernel- 1 T .
C= N;¢(xn)¢(xn) CVJ,‘ = /\;V; Vi =].,...,,M

M eigenvectors of C

induced feature space

= Would like to do it without computing C and the mappings ¢(x,)’s since M can be
very large (even infinite, e.g., when using an RBF kernel)

" Boils down to doing eigendecomposition of the N X N kernel matrix K (PRML 12.3)
= Can verify that each v; above can be written as a lin-comb of the inputs: v; = XN_1 ajn®d(x,)
= Can show that finding a; = [a;q, @iz, ..., a;n] reduces to solving an eigendecomposition of K

= Note: Due to req. of centering, we work with a centered kernel matrix K=K - 1yK - Kiy + 1yKly
N X N matrix of all 1s CS771: Intro to ML

Several non-lin dim-red

I_O Ca | |y I—I n e a r E m b e d d | n g algos use this idea Essentially, neighbourhood

preservation, but only local

" Basic idea: It two points are local neighbors in the original space then they should be
local neighbors in the projected space too

= Given N observations x,, € RP n=1,2,..,N, LLE is formulated as

Solve this to learn weights W;; such that N N (i) denotes the local
each point x; can be written as a weighted W = arg min E ||Xi — E VVU X || neighbors (a predefined number,
linear combination of its local neighbors in W < N () say K, of them) of point x;

= J

the original feature space

= For each point x,, € RP | LLE learns z,, € RX, n = 1,2, ..., N such that the same

neighborhood structure exists in low-dim Space too %
Requires solving an 2 Py ‘&
eigenvalue problem Z — arg mm z : | |Z" z : VVU Zj | | g

JEN(i)

= Basically, it point x; can be reconstructed from its neighbors in the original space, the
same weights W;; should be able to reconstruct z; in the new space too

S. T. Roweis and L. K. Saul. Nonlinear dlmen5|onaI|ty reduction by locally linear embedding. Science 290 (2000) CS771: Intro to ML

SNE and t-SNE S

data in two or three dims

= Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D
* SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)
" Uses the idea of preserving probabilistically defined neighborhoods

= SNE, for each point x;, defines the probability of a point x; being its neighbor as

Neighbor probability Neighbor probabili.ty in the
in the original space projected/embedding space

o, — —Pllxi = x]?/20°) o — ez —z|/20%)
T ks exp(—||xi — xi|[?/20?) i exp(=lzi — z«]]?/207)
* SNE ensures that neighbourhood distributions in both spaces are as close as possible

bjii
djli

» This is ensured by minimizing their total mismatch (KL divergence) £ = Zﬁ\’:lZﬂy:lpm log

" t-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to SNE
" L earns z;'s by minimizing symmetric KL divergence

= Uses Student-t distribution instead of Gaussian for defining q;); CS771: Intro to ML

SNE and t-SNE

" Especially useful for visualizing data by projecting into 2D or 3D

<
CoO~NODOBEWN=O

® & % 9

Result of visualizing MNIST digits data in 2D (Figure from van der Maaten and Hinton, 2008)

CS771: Intro to ML

Word Embeddings: Dim-Reduction for Words

Or sentences, paragraphs, documents, etc
which are basically a set of words

" Feature representation/embeddings of words are very useful in many applications
* Naively we can a one-hot vector of size V' for each word (where V' is the vocab size)

1 only at the n-th location

Word n of the

0 0 0 0 0 0 0 1 ------------------ 0 0 0 0
vocabulary

» One-hot representation of a word has two main issues
= \ery high dimensionality (V') for each word
= One-hot vector does not capture word semantics (any pair of words will have zero similarity)

» Desirable: Learning low-dim word embeddings that capture the meaning/semantics

= \We want embedding of each word n to be low-dimensional vector e,, € RX
= [f two words n and n’ are semantically similar (dissimilar), we want e, and e,/ to be close (far)

= Many methods to learn word embeddings (e.g., Glove and Word2Vec)
CS771: Intro to ML

GloVe

" GloVe (Global Vectors for Word Representation) is a linear word embedding method
» Based on matrix factorization of a word-context co-occurrence matrix

" |n GloVe, the context consists of words that co-occur within a specified context window

around a target word in a large text corpus.

Contexts Row n (e,)denotes the
embedding of word n

Embedding size

Contexts

Entry X;,; denotes

L
number of times a word X C
n appears in a context i

"Ny

Words X ~ Words E

Column i(c;)denotes the
— 2 _ _ ,T.)2 i
X = ECII® = z(Xm €n C;) embedding of context i
n,i

Given X, minimize this
d|stort|oh Wg/[f afn;:l(¢ Skipping a few other details such

(&.g.. using of X) as pre-processing of the data

GloVe: Global Vectors for Word Representation (Pennington et al, 2014) (refer to the paper if intereSted) CS771: Intro to ML

Word2Vec

" A deep neural network based nonlinear word embedding method

» Usually learned using one of the following two objectives
= Skip-gram
= Continuous bag of words (CBOW)

= Skip-gram: Probability of a context i occurring around a word n

Conditional probability T Embeddings are learned by optimizing a

which can be estimated p(l |n) . exp (ci en) neural network based loss function which

from training data o T makes the difference b/w LHS and RHS small
Zi eXp(Ci en)

= CBOW: Probability of word n occurring given a context window, e.g., k previous and k next words

Conditional probability which can Sum/average of the embeddings
be estimated from training data - of the context window for word n
p(nln —kn+ k) — €Xp (Bn Cn) Embeddings are learned by optimizing a
Zn exp (e;!; cn) neural network based loss function
which makes the difference b/w LHS
and RHS small

Efficient Estimation of Word Representations in Vector Space (Mikolov et al, 2013) CS/771: Intro to ML

Dimensionality Reduction: Out-of-sample Embedding

* Some dim-red methods can only compute the embedding of the training data
= Given N training samples {x1, x5, ..., Xy} they will give their embedding {z4, z5, ..., Zy }

" However, given a new point x, (not in the training samples), they can't produce its
embedding z, easily
" Thus no easy way of getting “out-of-sample” embedding

= Some of the nonlinear dim-red methods like LLE, SNE, KPCA, etc have this limitation

= Reason: They don't learn an explicit encoder and directly optimize for {z,, }¥_; given {x,}_4
" To get "out-of-sample” embeddings, these methods require some modifications*

* But many other methods do explicitly learn a mapping z = f(x) in form of an
‘encoder” f that can give z, for any new x, as well (such methods are more useful)
» For PCA, the D X K projection matrix Wy is this encoder function and z, = WKTx*
= Neural network based autoencoders can also do this (will see them later)

*Qut-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering (Bengio et al, 2003) CS771: Intro to ML

	Slide 1: Unsupervised Learning: Dimensionality Reduction (PCA and other methods)
	Slide 2: Dimensionality Reduction
	Slide 3: Dimensionality Reduction
	Slide 4: Dimensionality Reduction
	Slide 5: Principal Component Analysis (PCA)
	Slide 6: Finding Max. Variance Directions
	Slide 7: Max. Variance Direction
	Slide 8: The PCA Algorithm
	Slide 9: The Reconstruction Error View of PCA
	Slide 10: PCA Minimizes Reconstruction Error
	Slide 11: Singular Value Decomposition (SVD)
	Slide 12: Low-Rank Approximation via SVD
	Slide 13: Dimensionality Reduction: Beyond PCA
	Slide 14: Dim-Red as Matrix Factorization
	Slide 15: Matrix Factorization is a very useful method!
	Slide 16: Supervised Dimensionality Reduction
	Slide 17: Dim. Reduction by Preserving Pairwise Distances
	Slide 18: MDS: An Example
	Slide 19: Nonlinear Dimensionality Reduction
	Slide 20: Beyond Linear Projections
	Slide 21: Nonlinear Dimensionality Reduction
	Slide 22: Kernel PCA
	Slide 23: Locally Linear Embedding
	Slide 24: SNE and t-SNE
	Slide 25: SNE and t-SNE
	Slide 26: Word Embeddings: Dim-Reduction for Words
	Slide 27: GloVe
	Slide 28: Word2Vec
	Slide 29: Dimensionality Reduction: Out-of-sample Embedding

