


Unsupervised Learning

" |t's about learning interesting/useful structures in the data (unsupervisedly!)
" There is no supervision (no labels/responses), only inputs x4, X5, ..., Xy

= Some examples of unsupervised learning
= (Clustering: Grouping similar inputs together (and dissimilar ones far apart)
= Dimensionality Reduction: Reducing the dimensionality of inputs
= Estimating the probability density of inputs (which distribution p(x|0) "generated” the inputs)
= Unsupervised feature/representation learning

= Most unsup. learning algos also learn a new feature representation of inputs, e.qg.,

= (Clustering gives a one-hot “quantized” representation z,, for each input x,

Some clustering algos learn a soft/probabilistic K = 6 clusters

clustering in which z,, will be be probability Zn 0/0/12|/0([0]|0 |=— x, belongs to cluster 3
vector that sums to 1 (will see later)

Assuming each input belongs
deterministically to a single cluster

A one-hot (quantized) rep.

" Dim-red gives z,, a lower-dim representation of x,,
= Unsup. Rep. learning can learn lower/higher dimensional representation z,, of x, CST71: Intro to ML



In some cases, we may not know the
right number of clusters in the data and

C | u Ste rl n g may want to learn that (technique exists

for doing this but beyond the scope)

" Given: N unlabeled inputs x4, X5, ..., X ; desired no. of partitions K

In addition to partitioning

" Goal: Group the examples into K "homogeneous” partitions ,
these N inputs, we may also

want to predict which partition
a new test point belongs to

(a) Input data (b) Desired clustering

Picture courtesy: “Data Clustering: 50 Years Beyond K-Means", A.K. Jain (2008)

" | oosely speaking, it is classification without ground truth labels of training data

= A good clustering is one that achieves
= High within-cluster similarity
" [ ow inter-cluster similarity
CS771: Intro to ML



Similarity can be Subjective

= Clustering only looks at similarities b/w inputs, since no labels are given

= Without labels, similarity can be hard to define

" Thus using the right distance/similarity is very important in clustering

" |[n some sense, related to asking: “Clustering based on what"?

Picture courtesy: http://www.guy-sports.com/humor/videos/powerpoint presentation dogs.htm

CS771: Intro to ML



Clustering: Some Examples

* Document/Image/Webpage Clustering

" Image Segmentation (clustering pixels)

= Clustering web-search results
= Clustering (people) nodes in (social) networks/graphs
" . and many more..

Picture courtesy: http://people.cs.uchicago.edu/~pff/segment/ CS771: Intro to ML



K-means Clustering

» Based on the following two steps (applied in alternating fashion until not converged)

1. Assign each input to the current closest mean

2. Recompute (update) the means

= At the very beginning, the means needs to be
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initialized (at random locations or using other schemes that we will see later)

CS771: Intro to ML



K—mea nS Cl USte r| ng Similar to LwP but in LwP the labels are A
known so the means can be computed in a LI /
Good initialization matters (some single step without iterating multiple times e»
methods exist to pick good
initialization, e.g., K-means++)
K-means clustering with K = 2

1. Randomly initialize K locations (the
means)

2. Using the current means, predict the
cluster id for each input (closest mean)

3. Recompute the means using the
predicted cluster id of each input

4. o to step 2 it not converged

CS771: Intro to ML



K-means (a.k.a. Lloyd’s) Algorithm: Formally

= [nput: N inputs x4, X5, ..., Xy X, € RP: desired no. of partitions K

* Desired Output: Cluster ids of these N inputs and K cluster means uq, W, .., g

K-means Algorithm

©Q Initialize K cluster means pu1,. ..

K-means algo can also be seen as
doing a compression by “quantization”:
Representing each of the N inputs by
one of the K < N means

Can be fixed by modeling each

Q@ Forn=1,..., N, assign each point x, to the closest cluster cluster by a probability distribution,
2z, = k means z,; = 1 in 2 — aremin ||x B ”2 su'ch as Gauss.ian. (e.g., Gaussian
one-hot representation of z,, n = arg ke{1,...,k} 1 Xn — Hk Mixture Model; will see later) |

© Suppose Cx = {x, : z» = k}. Re-compute the means This basic K-means models each

Q Go to step 2 if not yet converged

e =mean(Cy), k=1,....K

cluster by a single mean py,.
Ignores size/shape of clusters

5}/ J

g
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What Loss Function is K-means Optimizing?

" Define the distortion or “loss” for the cluster assignment of a single input x,

No labels here. We are _
K Zn - [anv Zan "'anK]

measuring how much error we .
will incur if we assign x,, to its f(x YA ) — 7 ”x — ” 2 denotgs a length K one-hot
9N Xn n il Zy nk n Ky encoding of x,, and z,, = 1
nearest cluster mean k=1 if x,, is assigned to cluster k
= Notation:
" X is N X D matrix of inputs, Z is N X K matrix denoting cluster ids(each row is a one-hot z,,)
" uis K X D (each row contains the mean u, of cluster k) X approximated by the

, : : , “ , " product of Z and u
= Jotal distortion over all inputs defines the K-means “loss function

N K D K
— 2
(X, u,Z) = E E Znk |20 — Byl < U
n=1 k=1 > . N X = 7
K-means problem viewed as a 5 !rcljgeiieunsoaisrr;h?sgjgzd Row k is uy
trix factorizati bl = —_
MAtTX Tactorlzation probiem ”X Z”“F norm for matrices) Row n is z,,
" The K-means problem is to minimize this objective w.rt. g and Z (one-hot vector)

= Alternating optimization on this loss would give the K-means (Lloyd's) algorithm we saw earlier!
CS771: Intro to ML




K-means Loss: Several Forms, Same Meaning!

Replacing the €, (Euclidean) squared by
£, distances gives the K-medoids
algorithm (more robust to outliers)

Mean of the cluster which A
input x,, got assigned to | N | /

K L
L(X,Z, 1) le::cn | LX,Z,p) =) > II:Bn — | P
k=1 n:z,

= Can write the K-means loss function in several ways

-

within clus;:rer variance
L(X,Z, p) ZZznkan welP (X, Zop) = ||X - Zpl%
n=1 k=1 —

as matrix factorization

= Note: Not just K-means but many unsup. learning algos try to minimize a
distortion or reconstruction error for X by solving a problem of the form

Z denotes a new representation of : A ‘
the inputs and p denotes the other {Z, [.L} = argmin [:(X, Z, u) ]
parameters of the model : Z,p : CS771: Intro to ML



Optimizing the K-means Loss Function

" [he K-means problem is

N K

2,“ =argmin L(X, Z, i) = arg min Znk |1 Xn — 2
{2} = argmin L(X, Z, p) gz!”;; llxn = el

» Can't optimize it jointly for Z and u. Let's try alternating optimization for Z and u

Alternating Optimization for K-means Problem

. ~ . . Given the current estimates of the K means uq, Uy, ..., U,
o Fix poas and find the optlmal Z as find the optimal cluster ids 24, 5, ..., Zy for all the inputs
Z = arg mzjn L(X,Z,[1) (still not easy - next slide)

Given the current estimates of the optimal cluster ids
Zq,25, ..., Zy,compute the K means uq, Uy, ..., Ug

@ Fix Z as Z and find the optimal p as

f1 = argmin £(X, Z, p)
1

© Go to step 1 if not yet converged

g
CS771: Intro to ML



Solving for Z

= Solving for Z with u fixed at i
N K

2 _ : Ay : A2
arg min L(X,Z,[1) = arg min Z Z Znk||Xn — [ik||
n=1 k=1
= Still not easy. Z is discrete and above is an NP-hard problem
= Combinatorial optimization: KN possibilities for Z (N X K matrix with one-hot rows)

" Greedy approach: Optimize Z one row (z,) at a time keeping all others z,,'s (and the
cluster means uq, Uy, ..., g ) fixed
K
A . oA 12 — . oA
z, —argn;Ln;znkan Lkl argngln\\xn .
» Fasy to see that this is minimized by assigning x,, to the closest mean
" This is exactly what the K-means (Lloyd’s) algo does!

2
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Solving for u

= Solving for p with Z fixed at Z

K
(L = ar m|n£, x,2? — arg min Xn — :
f=argmin L(X,Z, p) =argmin y > |[xn — sl

k=1 n:z,=k
» Not difficult to solve (each uy is a real-valued vector, can optimize easily)
fix = arg min Z 1xn — juxl
n:z,=

* Note that each u, can be optimized for independently

= (Verify) This is minimized by setting fi, to be mean of points currently in cluster k

= This is exactly what the K-means (Lloyd’s) algo does!
CS771: Intro to ML



Convergence of K-means algorithm

" Fach step (updating Z or u) can never increase the K-means loss
= \When we update Z from Z(t~D to Z(®)

ﬁ(x? Z(ﬂj Hr[t_l]) i: ﬁ(X Z[t_l}?pb{t_lj) because Z(t) _ argminz £(X, z’ﬂ(t—l))
= \When we update u from pt=b to u®
£, 20, 10y < £(x. 20, u D) becawse  p) = argminy, £(X, Z9), )

" Thus the K-means algorithm monotonically decreases the objective

1000 | D

J

S00
a
\

2
o¢—o—e——6—=0

K-means objective

0 -
| 2 3 4
lteration number

(blue: after Z updated, red: after p updated) CS771: Intro to ML



K-means: Choosing K

" One way to select K for the K-means algorithm is to try different values of K, plot the
K-means objective versus K, and look at the “elbow-point”

If we use K = N then
K-means algo can

achieve smallest A
possible loss (zerol). . :
soa /

Think why. e’»

However, if we use ; =
K = N itisn't a useful Number of clusters
clustering

» Can also information criterion such as AIC (Akaike Information Criterion)
AIC = 2L(j1,X,2Z) + KD
and choose K which gives the smallest AIC (small loss + large K values penalized)

* More advanced approaches, such as nonparametric Bayesian methods (Dirichlet

Process mixture models also used, not within K-means but with other clustering al 052
CS/771: Intro to ML

K=6 is the elbow point

K-means objective



K-means++

» K-means results can be sensitive to initialization

Desired clustering Poor initialization: bad clustering
81 .‘. A 5 . 81
o it o

6 R 3 ool 6 t ol g R

4 ¢ .-’%‘: 4 % ."’.‘t?;’ 1"'..

2 o o8 o , o .

0 -,v 0

R ¢ .
2 o v 000 2
4 -4 1

" K-means++ (Arthur and Vassilvitskii, 2007/) an improvement over K-means

= Only difference is the way we initialize the cluster centers (rest of it is just K-means)
» Basic idea: Initialize cluster centers such that they are reasonably far from each other

= Note: In K-means++, the cluster centers are chosen to be K of the data points themselves

CS771: Intro to ML



K-means++
= K-means+-+ works as follows

= Choose the first cluster mean uniformly randomly to be one of the data points

" The subsequent K — 1 cluster means are chosen as follows

1. For each unselected point x, compute its smallest distance D (x) from already initialized means

2. Select the next cluster mean unif. rand. to be one of the unselected points based on probability prop. to D (x)?

3. Repeat 1 and 2 until the K — 1 cluster means are initialized Thus farthest points are
most likely to be selected
= Now run standard K-means with these initial cluster means as cluster means

» K-means++ initialization scheme sort of ensures that the initial cluster means are located in

different clusters
CS771: Intro to ML



K-means: Hard vs Soft Clustering

" Asmeans makes hard assignments of points to clusters

= Hard assignment: A point either completely belongs to a cluster or doesn't belong at all

- N S A more principled '
prinCipled extension
'./- \;. Q [ N of K-means for doing soft- A
\/O , clustering is via probabilistic Y /

mixture models such as the »
Gaussian Mixture Model
Hard-assignment okay Hard-assignment tricky

= When clusters overlap, soft assignment is preferable(i.e., probability of being assigned to
each cluster: say K = 3 and for some point x,,, p; = 0.7,p, = 0.2,p3 = 0.1)

= A heuristic to get soft assignments: Transform distances from clusters into prob,

2
K expl—||X, —
z Vi = 1 Yk = 2 P(=llxn — 1l I") 5 (prob. that x, belongs to cluster k)

k=1 Zf:l exp(—|[xn — pel|?)

ZHN: nkXn : : :
" fach cluster mean updates changes: Mk = Zif';k (all points contribute fractionally)

CS771: Intro to ML



K-means: Decision Boundaries and Cluster Sizes/Shapes

" K-mean assumes that the decision boundary between any two clusters is linear
" Reason: The K-means loss function implies assumes equal-sized, spherical clusters

Reason: Use of
@ Fuclidean distances

Distance from a cluster = ||z, — pu||*

@ Like using Gaussians with equal covariances

» May do badly if clusters are not roughly equi-sized and convex-shaped

\ & T
¥ iy
&y i 7 e
52 ey
¥ y \,_gv. '
\ . o *’,ii,:
LS ‘ x
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Ke r n e | /<_ m e a n S Helps learn non-spherical clusters

and nonlinear cluster boundaries

» Basic idea: Replace the kucl. distances in K-means by the kernelized versions

S 160xn) — )IP = 11602+ [[6(ri)I 2 — 26(xa) T Sk

mean of cluster k

» Here k(.,.) denotes the kernel function and ¢ is its (implicit) feature map

= Note: () is the mean of ¢ mappings of the data points assigned to cluster k

Can also used landmarks or A

. 1 -
Not the same as the ¢ mapping of ¢( _ . 5 0
— _ Hk) = — ¢(xn) kernel random features idea T | /
the mean of the data points |€k| to get new features and run e»
assigned to cluster k =k standard k-means on those

2 —_— T KMeans . Kemel KMeans
oGl )" P (p) . Ve " Note: Apart from kernels, it is also possible to use
1 « “'o I “\ other distance functions in K-means. Bregman
= IC,. |2 z z k(xn, xm)_"_" { & 'i . t e "‘ Divergence* is such a family of distances
k n:zp=k n:z;, =k il j Tl ; (Euclidean and Mahalanobis are special cases)
o) O = o ) kGwxa) il
k m:zm=k 8 6 -4 -2 o 2 4 6 8 $ 5~ Jf_' TR

Clustering with Bregman Divergences (Banerjee et al, 2005) CS771: Intro to ML



Hierarchical Clustering

* Can be done in two ways: Agglomerative or Divisive

Agglomerative: Start

with each point being in =0

t=1 t=2 t=3 t=4

Similarity between two clusters (or
two set of points) is needed in HC A
algos (e.g., this can be average [ S | /

pairwise similarity between the e »

Agglomerative

a singleton cluster

At each step, greedily merge
two most “similar” sub-clusters

Stop when there is a single
cluster containing all the points

Learns a dendrogram-like
structure with inputs at the leaf -

inputs in the two clusters)
> Keep recursing until the desired
number of clusters found
At each step, break a cluster

into (at least) two smaller
homogeneous sub-clusters

Divisive: Start with all points
being in a single cluster

nodes. Can then choose how
many clusters we want

t=0

Divisive

Tricky because no labels
(unlike Decision Trees)

" Agglomerative is more popular and simpler than divisive (the latter usually needs complicated

heuristics to decide cluster splitting).

= Neither uses any loss function

CS771: Intro to ML



Clustering vs Classification

= Any clustering model (prob/non-prob) typically learns two type of quantities

= Parameters O of the clustering model (e.g., cluster means in K-means)
= Cluster assignments Z = {z4, z,, ..., Zy} for the points

" |f cluster assignments Z were known, learning the parameters 0 is just like learning the
parameters of a classitn model (typically generative classification) using labeled data

" Thus helps to think of clustering as (generative) classification with unknown labels

" Therefore many clustering problems are typically solved in the following fashion
1. Initialize ® somehow
2. Predict Z given current estimate of 0
3. Use the predicted Z to improve the estimate of © (like learning a generative classification model)
4. Go to step 2 if not converged yet

CS771: Intro to ML



Clustering can help supervised learning, too

= Often "difficult” sup. learning problems can be seen as mixture of simpler models

= Fxample: Nonlinear regression or nonlinear classification as mixture of linear models

Mixture of two linear regression models

Mixture of two linear classification models

= Don't know which point should be modeled by which linear model = Clustering

Such an approach is also an example of divide and conquer
and is also known as "mixture of experts” (will see it more

= Can therefore solve such problems as follows
= |nitialize each linear model somehow (maybe randomly) | formalywhen we discuss latent variable models)
= (Cluster the data by assigning each point to its “closest” linear model (one that gives lower error)

" (Re-)Learn a linear model for each cluster's data. Go to step 2 if not converged.
CS771: Intro to ML



Evaluating Clustering Algorithms

= Clustering algos are in general harder to evaluate since we rarely know the
ground truth clustering (since clustering is unsupervised)

= |t ground truth labels not available, use output of clustering for some other task
= For example, use cluster assignment z,, (hard or soft) as a new feature representation
= Performance on some task using this new rep. is a measure of goodness of clustering

= |[f ground truth labels are available, can compare them with clustering based labels
= Not straightforward to compute accuracy since the label identities may not be the same, e.g.,

Ground truth =111 000] Clustering=[0001 1 1]
(Perfect clustering but zero "accuracy” if we just do a direct match)

* There are various metrics that take into account the above fact
= Purity, Rand Index, F-score, Normalized Mutual Information, distortion or loss on test data etc

CS771: Intro to ML



Evaluating Clustering Algorithms

= Purity: Looks at how many points in each cluster belong to the majority class in

that cluster
cluster 3 Sum and divide by total

number of points
3 classes (x, 0,4, assuming
Purity = (5+4+3)/17 = 0.71
known ground truth labels) Y= )/
Close to O for bad clustering, 1 for perfect clustering

Also a bad metric if number of clusters is very large — each cluster will be kind of pure anyway

* Rand Index (RIl): Can also look at what fractions of pairs of points with same
(resp. different) label are assigned to same (resp. different) cluster

True Positive: No. of pairs with True Negative: No. of pairs with
; - | same true label and same cluster diff true label and diff clusters
g Score is also popular
TP o_ TP _ (BA+1)PR RI = P+
~ TP+ FP ~ TP+EN P~ "BPIR TP +FP + FN + TN
Precision Recal False Positive: No. of pairs with False Negative: No. of pairs with

diff true label and same cluster same true label and diff cluster 1: Intro to ML



Ove rl . p p | N g Cl U Ste r| N g Kind of unsupervised version of multi-label

classification (just like standard clustering is
like unsupervised multi-class classification)

" Have seen hard clustering and soft clustering e R —
xampie: LIustering people based on tne

" |n hard clustering, z, is a one-hot vector interests they may have (a person may have
. . . multiple interests; thus may belong to more
" |n soft clustering, z,, is a vector of probabilities than one cluster simultaneously)

= Overlapping Clustering: A point can simultaneously belong to multiple clusters
= This is different from soft-clustering
= 7z, would be a binary vector, rather than a one hot or probability vector, e.g.,

_ K=5 clusters with point x,, belonging (in whole, not in
Zn o [1 O O 1 O] terms of probabilities) to clusters 1 and 4

" |n general, more difficult than hard/soft clustering (for N data points and K clusters, the
size of the space of possible solutions is not KN but 2VX - exp in both N and K)

» K-means has extensions™ for doing overlapping clustering. There also exist latent
variable models for doing overlapping clustering

*An extended version of the k-means method for overlapping clustering (Cleuziou, 2008); Non-exhaustive, Overlapping k-means (Whang et al, 28%3) : Intro to ML
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