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Unsupervised Learning
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▪ It’s about learning interesting/useful structures in the data (unsupervisedly!)

▪ There is no supervision (no labels/responses), only inputs 𝒙1, 𝒙2, … , 𝒙𝑁

▪ Some examples of unsupervised learning
▪ Clustering: Grouping similar inputs together (and dissimilar ones far apart)

▪ Dimensionality Reduction: Reducing the dimensionality of inputs

▪ Estimating the probability density of inputs (which distribution 𝑝(𝑥|𝜃) “generated” the inputs)

▪ Unsupervised feature/representation learning

▪ Most unsup. learning algos also learn a new feature representation of inputs, e.g.,

▪ Clustering gives a one-hot “quantized” representation 𝒛𝑛 for each input 𝒙𝑛 

▪ Dim-red gives 𝒛𝑛, a lower-dim representation of 𝒙𝑛

▪ Unsup. Rep. learning can learn lower/higher dimensional representation 𝒛𝑛 of 𝒙𝑛

Assuming each input belongs 

deterministically to a single cluster

Some clustering algos learn a soft/probabilistic 

clustering in which 𝒛𝑛 will be be probability 

vector that sums to 1(will see later)
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Clustering
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▪ Given: 𝑁 unlabeled inputs 𝒙1, 𝒙2, … , 𝒙𝑁 ; desired no. of partitions 𝐾           

▪ Goal: Group the examples into 𝐾 “homogeneous” partitions

▪ Loosely speaking, it is classification without ground truth labels of training data

▪ A good clustering is one that achieves
▪ High within-cluster similarity

▪ Low inter-cluster similarity

In some cases, we may not know the 

right number of clusters in the data and 

may want to learn that (technique exists 

for doing this but beyond the scope)

In addition to partitioning 

these 𝑁 inputs, we may also 

want to predict which partition 

a new test point belongs to
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Similarity can be Subjective
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▪ Clustering only looks at similarities b/w inputs, since no labels are given           

▪ Without labels, similarity can be hard to define

▪ Thus using the right distance/similarity is very important in clustering

▪ In some sense, related to asking: “Clustering based on what”?

Picture courtesy: http://www.guy-sports.com/humor/videos/powerpoint presentation dogs.htm
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Clustering: Some Examples
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▪ Document/Image/Webpage Clustering           

▪ Image Segmentation (clustering pixels)

▪ Clustering web-search results

▪ Clustering (people) nodes in (social) networks/graphs

▪ .. and many more..

Picture courtesy: http://people.cs.uchicago.edu/∼pff/segment/
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K-means Clustering
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▪ Based on the following two steps (applied in alternating fashion until not converged)

1. Assign each input to the current closest mean

2. Recompute (update) the means

▪ At the very beginning, the means needs to be 

initialized (at random locations or using other schemes that we will see later)
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K-means Clustering
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1. Randomly initialize 𝐾 locations (the 

means)

2. Using the current means, predict the 

cluster id for each input (closest mean)

3. Recompute the means using the 

predicted cluster id of each input

4. Go to step 2 if  not converged

Similar to LwP but in LwP the labels are 

known so the means can be computed in a 

single step without iterating multiple times

𝐾-means clustering with 𝐾 = 2

Good initialization matters (some 

methods exist to pick good 

initialization, e.g., 𝐾-means++)
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K-means (a.k.a. Lloyd’s) Algorithm: Formally
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▪ Input: 𝑁 inputs 𝒙1, 𝒙2, … , 𝒙𝑁; 𝒙𝑛 ∈ ℝ𝐷; desired no. of partitions 𝐾 

▪Desired Output: Cluster ids of these 𝑁 inputs and 𝐾 cluster means 𝝁1, 𝝁2, … , 𝝁𝐾

𝐾-means algo can also be seen as 

doing a compression by “quantization”: 

Representing each of the 𝑁 inputs by 

one of the 𝐾 <  𝑁 means

This basic 𝐾-means models each 

cluster by a single mean 𝜇𝑘 . 

Ignores size/shape of clusters

Can be fixed by modeling each 

cluster by a probability distribution, 

such as Gaussian (e.g., Gaussian 

Mixture Model; will see later)
𝑧𝑛 = 𝑘 means 𝑧𝑛𝑘 = 1 in 

one-hot representation of 𝑧𝑛
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What Loss Function is K-means Optimizing?
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▪Define the distortion or “loss” for the cluster assignment of a single input 𝒙𝑛

           

▪ Notation:
▪ 𝑿 is 𝑁 × 𝐷 matrix of inputs, 𝒁 is 𝑁 × 𝐾 matrix denoting cluster ids(each row is a one-hot 𝒛𝑛)

▪ 𝝁 is 𝐾 × 𝐷 (each row contains the mean 𝜇𝑘 of cluster 𝑘)

▪ Total distortion over all inputs defines the 𝐾-means “loss function”

▪ The 𝐾-means problem is to minimize this objective w.r.t. 𝝁 and 𝒁
▪ Alternating optimization on this loss would give the K-means (Lloyd’s) algorithm we saw earlier!

X Z
𝝁

N

D K

K
≈

Row 𝑛 is 𝒛𝑛 

(one-hot vector) 

Row 𝑘 is 𝝁𝑘 

𝒛𝑛 = [𝑧𝑛1, 𝑧𝑛2, … , 𝑧𝑛𝐾] 

denotes a length 𝐾 one-hot 

encoding of 𝒙𝑛 and 𝑧𝑛𝑘 = 1 

if  𝑥𝑛 is assigned to cluster 𝑘

ℓ 𝒙𝑛, 𝝁, 𝒛𝑛 = ෍
𝑘=1

𝐾

𝑧𝑛𝑘 𝒙𝑛 − 𝝁𝑘
2

No labels here. We are 

measuring how much error we 

will  incur if  we assign 𝑥𝑛 to its 

nearest cluster mean

ℓ 𝑿, 𝝁, 𝒁 = ෍
𝑛=1

𝑁

෍
𝑘=1

𝐾

𝑧𝑛𝑘 𝒙𝑛 − 𝝁𝑘
2

= 𝑿 − 𝒁𝝁 𝐹
2

𝐾-means problem viewed as a 

matrix factorization problem

. 𝐹
2  denotes the matrix 

Frobenius norm (squared 

norm for matrices)

𝑿 approximated by the 

product of 𝒁 and 𝝁
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K-means Loss: Several Forms, Same Meaning!
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▪ Can write the 𝐾-means loss function in several ways

▪Note: Not just 𝐾-means but many unsup. learning algos try to minimize a 
distortion or reconstruction error for 𝑿 by solving a problem of the form

Replacing the ℓ2 (Euclidean) squared by 

ℓ1 distances gives the 𝐾-medoids 

algorithm (more robust to outliers)

Mean of the cluster which 

input 𝑥𝑛 got assigned to

𝒁 denotes a new representation of 

the inputs and 𝝁 denotes the other 

parameters of the model
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Optimizing the K-means Loss Function
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▪ The 𝐾-means problem is           

▪ Can’t optimize it jointly for 𝒁 and 𝝁. Let’s try alternating optimization for 𝒁 and 𝝁

Given the current estimates of the 𝐾 means 𝜇1, 𝜇2, … , 𝜇𝐾 , 

find the optimal cluster ids 𝒛1, 𝒛2, … , 𝒛𝑁 for all the inputs

Given the current estimates of the optimal cluster ids 

𝒛1, 𝒛2, … , 𝒛𝑁,compute the 𝐾 means 𝜇1, 𝜇2, … , 𝜇𝐾
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Solving for Z
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▪ Solving for 𝒁 with 𝝁 fixed at ෝ𝝁

▪ Still not easy. 𝒁 is discrete and above is an NP-hard problem
▪ Combinatorial optimization: 𝐾𝑁 possibilities for 𝒁 (𝑁 × 𝐾 matrix with one-hot rows)

▪ Greedy approach: Optimize 𝒁 one row (𝑧𝑛) at a time keeping all others 𝒛𝑛’s (and the 
cluster means 𝜇1, 𝜇2, … , 𝜇𝐾) fixed

▪ Easy to see that this is minimized by assigning 𝒙𝑛 to the closest mean
▪ This is exactly what the 𝐾-means (Lloyd’s) algo does!



CS771: Intro to ML

Solving for 𝝁
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▪ Solving for 𝝁 with 𝒁 fixed at ෡𝒁

▪ Not difficult to solve (each 𝜇𝑘 is a real-valued vector, can optimize easily)

▪ Note that each 𝜇𝑘 can be optimized for independently

▪ (Verify) This is minimized by setting Ƹ𝜇𝑘 to be mean of points currently in cluster 𝑘
▪ This is exactly what the 𝐾-means (Lloyd’s) algo does!
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Convergence of K-means algorithm
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▪ Each step (updating 𝒁 or 𝝁) can never increase the 𝐾-means loss

▪ When we update 𝒁 from 𝒁(𝑡−1) to 𝒁(𝑡)

           

▪ When we update 𝝁 from 𝝁(𝑡−1) to 𝝁(𝑡)

▪ Thus the 𝐾-means algorithm monotonically decreases the objective

because

because
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K-means: Choosing K
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▪ One way to select 𝐾 for the 𝐾-means algorithm is to try different values of 𝐾, plot the 
𝐾-means objective versus 𝐾, and look at the “elbow-point”

▪ Can also information criterion such as AIC (Akaike Information Criterion)

and choose 𝐾 which gives the smallest AIC (small loss + large 𝐾 values penalized)

▪ More advanced approaches, such as nonparametric Bayesian methods (Dirichlet 
Process mixture models also used, not within K-means but with other clustering algos)

𝐾=6 is the elbow point

If  we use 𝐾 = 𝑁 then 

𝐾-means algo can 

achieve smallest 

possible loss (zero!). 

Think why.

However, if  we use 

𝐾 = 𝑁 it isn’t a useful 

clustering
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K-means++
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▪ 𝐾-means results can be sensitive to initialization

▪ 𝐾-means++ (Arthur and Vassilvitskii, 2007) an improvement over 𝐾-means

▪ Only difference is the way we initialize the cluster centers (rest of it is just 𝐾-means)

▪ Basic idea: Initialize cluster centers such that they are reasonably far from each other

▪ Note: In 𝐾-means++, the cluster centers are chosen to be 𝐾 of the data points themselves

Poor initialization: bad clusteringDesired clustering
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K-means++
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▪ K-means++ works as follows

▪ Choose the first cluster mean uniformly randomly to be one of the data points

▪ The subsequent 𝐾 − 1 cluster means are chosen as follows

1. For each unselected point 𝒙, compute its smallest distance 𝐷(𝒙) from already initialized means

2. Select the next cluster mean unif. rand. to be one of the unselected points based on probability prop. to 𝐷 𝒙 2

3. Repeat 1 and 2 until the 𝐾 − 1 cluster means are initialized

▪ Now run standard 𝐾-means with these initial cluster means

▪ 𝐾-means++ initialization scheme sort of ensures that the initial cluster means are located in 
different clusters

Thus farthest points are 

most likely to be selected 

as cluster means
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K-means: Hard vs Soft Clustering
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▪ K-means makes hard assignments of points to clusters
▪ Hard assignment: A point either completely belongs to a cluster or doesn’t belong at all

▪ When clusters overlap, soft assignment is preferable(i.e., probability of being assigned to 
each cluster: say 𝐾 = 3 and for some point 𝒙𝑛, 𝑝1 = 0.7, 𝑝2 = 0.2, 𝑝3 = 0.1)

▪ A heuristic to get soft assignments: Transform distances from clusters into prob.

▪ Each cluster mean updates changes:                         (all points contribute fractionally)

෍
𝑘=1

𝐾

𝛾𝑛𝑘 = 1

A more principled extension 

of 𝐾-means for doing soft-

clustering is via probabilistic 

mixture models such as the 

Gaussian Mixture Model
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K-means: Decision Boundaries and Cluster Sizes/Shapes
19

▪ 𝐾-mean assumes that the decision boundary between any two clusters is linear

▪ Reason: The 𝐾-means loss function implies assumes equal-sized, spherical clusters

▪ May do badly if  clusters are not roughly equi-sized and convex-shaped

Reason: Use of 

Euclidean distances
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Kernel K-means
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▪ Basic idea: Replace the Eucl. distances in 𝐾-means by the kernelized versions

▪ Here 𝑘(. , . ) denotes the kernel function and 𝜙 is its (implicit) feature map

▪ Note: 𝜙(μ𝑘) is the mean of 𝜙 mappings of the data points assigned to cluster 𝑘

Kernelized distance 

between input 𝒙𝑛 and 

mean of cluster 𝑘

Not the same as the 𝜙 mapping of 

the mean of the data points 

assigned to cluster 𝑘

𝜙 𝝁𝑘 =
1

𝒞𝑘
෍

𝑛:𝑧𝑛=𝑘

𝜙 𝒙𝑛

Helps learn non-spherical clusters 

and nonlinear cluster boundaries

Can also used landmarks or 

kernel random features idea 

to get new features and run 

standard k-means on those

Note: Apart from kernels, it is also possible to use 

other distance functions in 𝐾-means. Bregman 

Divergence* is such a family of distances 

(Euclidean and Mahalanobis are special cases)

*Clustering with Bregman Divergences (Banerjee et al, 2005)

𝜙 𝝁𝑘
2 = 𝜙 𝝁𝑘

⊤𝜙 𝝁𝑘

=
1

𝒞𝑘
2 ෍

𝑛:𝒛𝑛=𝑘

෍

𝑛:𝒛𝑚=𝑘

𝑘(𝒙𝑛, 𝒙𝑚)

𝜙 𝒙𝑛
⊤𝜙 𝝁𝑘 =

1

|𝒞𝑘|
෍

𝑚:𝒛𝑚=𝑘

𝑘(𝒙𝑛, 𝒙𝑚)
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Hierarchical Clustering
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▪ Can be done in two ways: Agglomerative or Divisive

▪ Agglomerative is more popular and simpler than divisive (the latter usually needs complicated 
heuristics to decide cluster splitting). 

▪ Neither uses any loss function

Agglomerative: Start 

with each point being in 

a singleton cluster

Divisive: Start with all points 

being in a single cluster

At each step, greedily merge 

two most “similar” sub-clusters

Stop when there is a single 

cluster containing all the points

At each step, break a cluster 

into (at least) two smaller 

homogeneous sub-clusters

Similarity between two clusters (or 

two set of points) is needed in HC 

algos (e.g., this can be average 

pairwise similarity between the 

inputs in the two clusters)

Keep recursing until the desired 

number of clusters found

Learns a dendrogram-like 

structure with inputs at the leaf 

nodes. Can then choose how 

many clusters we want
Tricky because no labels 

(unlike Decision Trees)
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Clustering vs Classification
22

▪ Any clustering model (prob/non-prob) typically learns two type of quantities

▪ Parameters Θ of the clustering model (e.g., cluster means in K-means)

▪ Cluster assignments 𝒁 = {𝒛1, 𝒛2, … , 𝒛𝑁} for the points

▪ If  cluster assignments 𝒁 were known, learning the parameters Θ is just like learning the 
parameters of a classifn model (typically generative classification) using labeled data

▪ Thus helps to think of clustering as (generative) classification with unknown labels

▪ Therefore many clustering problems are typically solved in the following fashion
1. Initialize Θ somehow

2. Predict 𝑍 given current estimate of Θ

3. Use the predicted 𝑍 to improve the estimate of Θ (like learning a generative classification model)

4. Go to step 2 if  not converged yet
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Clustering can help supervised learning, too
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▪Often “difficult” sup. learning problems can be seen as mixture of simpler models

▪ Example: Nonlinear regression or nonlinear classification as mixture of linear models

▪ Don’t know which point should be modeled by which linear model ⇒ Clustering

▪ Can therefore solve such problems as follows
▪ Initialize each linear model somehow (maybe randomly)

▪ Cluster the data by assigning each point to its “closest” linear model (one that gives lower error)

▪ (Re-)Learn a linear model for each cluster’s data. Go to step 2 if  not converged.

Such an approach is also an example of divide and conquer 

and is also known as “mixture of experts” (will see it more 

formally when we discuss latent variable models)
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Evaluating Clustering Algorithms
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▪ Clustering algos are in general harder to evaluate since we rarely know the 
ground truth clustering (since clustering is unsupervised)

▪ If  ground truth labels not available, use output of clustering for some other task
▪ For example, use cluster assignment 𝑧𝑛 (hard or soft) as a new feature representation

▪ Performance on some task using this new rep. is a measure of goodness of clustering

▪ If  ground truth labels are available, can compare them with clustering based labels 
▪ Not straightforward to compute accuracy since the label identities may not be the same, e.g., 

Ground truth = [1 1 1 0 0 0]     Clustering = [0 0 0 1 1 1]     

(Perfect clustering but zero “accuracy” if  we just do a direct match)

▪ There are various metrics that take into account the above fact

▪ Purity, Rand Index, F-score, Normalized Mutual Information, distortion or loss on test data etc
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Evaluating Clustering Algorithms
25

▪ Purity: Looks at how many points in each cluster belong to the majority class in 
that cluster

▪ Rand Index (RI): Can also look at what fractions of pairs of points with same 
(resp. different) label are assigned to same (resp. different) cluster

5 4 33 classes  (x, o ,   , assuming 

known ground truth labels)
Purity = (5+4+3)/17 ≈ 0.71

Sum and divide by total 

number of points

Close to 0 for bad clustering, 1 for perfect clustering

Also a bad metric if  number of clusters is very large – each cluster will be kind of pure anyway

True Positive: No. of pairs with 

same true label and same cluster
True Negative: No. of pairs with 

diff  true label and diff  clusters

False Positive: No. of pairs with 

diff  true label and same cluster

False Negative: No. of pairs with 

same true label and diff  cluster

𝐹𝛽 score is also popular

Precision Recall
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Overlapping Clustering
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▪Have seen hard clustering and soft clustering

▪ In hard clustering, 𝑧𝑛 is a one-hot vector

▪ In soft clustering, 𝑧𝑛 is a vector of probabilities

▪ Overlapping Clustering: A point can simultaneously belong to multiple clusters
▪ This is different from soft-clustering

▪ 𝑧𝑛 would be a binary vector, rather than a one hot or probability vector, e.g.,

▪ In general, more difficult than hard/soft clustering (for 𝑁 data points and 𝐾 clusters, the 
size of the space of possible solutions is not 𝐾𝑁 but 2𝑁𝐾 - exp in both 𝑁 and 𝐾)

▪ K-means has extensions* for doing overlapping clustering. There also exist latent 
variable models for doing overlapping clustering

𝑧𝑛 = [1 0 0 1 0]
K=5 clusters with point 𝑥𝑛 belonging (in whole, not in 

terms of probabilities) to clusters 1 and 4 

*An extended version of the k-means method for overlapping clustering (Cleuziou, 2008); Non-exhaustive, Overlapping k-means (Whang et al, 2015)

Kind of unsupervised version of multi-label 

classification (just like standard clustering is 

like unsupervised multi-class classification)

Example: Clustering people based on the 

interests they may have (a person may have 

multiple interests; thus may belong to more 

than one cluster simultaneously)
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