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Linear Models for Nonlinear Problems?
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▪ Consider the following one-dimensional inputs from two classes

▪ Can’t separate using a linear hyperplane

𝑥
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Linear Models for Nonlinear Problems?
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▪ Consider mapping each 𝑥 to two-dimensions as 𝑥 → 𝒛 = 𝑧1, 𝑧2 = [𝑥, 𝑥2]

▪ Classes are now linearly separable in the two-dimensional space

Linear hyperplane
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Linear Models for Nonlinear Problems
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▪ Can assume a feature mapping 𝜙 that maps/transforms the inputs to a “nice” space 

▪ .. and then happily apply a linear model in the new space!

The linear model in the new 

feature space corresponds 

to a nonlinear model in the 

original feature space
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Not Every Mapping is Helpful
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▪ Not every higher-dim mapping helps in learning nonlinear patterns

▪ Must be a nonlinear mapping

▪ For the nonlin classfn problem we saw earlier, consider some possible mappings
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How to get these “good” (nonlinear) mappings?
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▪ Learn good mappings from data itself  (e.g., deep learning or distance metric learning)

▪ Use pre-defined “good” mappings (e.g., defined by kernel functions - today’s topic)

▪ Kernel: A function 𝑘(.,.) that gives dot product similarity b/w two inputs, say 𝒙𝑛 and 𝒙𝑚

Even if  I knew a good 

mapping, it seems I need to 

apply it for every input. Won’t 

this be computationally 

expensive?

Also, the number of features 

will increase? Will it not slow 

down the learning algorithm?

Thankfully, using kernels, you 

don’t need to compute these 

mappings explicitly

The kernel will define an 

“implicit” feature mapping

𝑘(𝒙𝑛, 𝒙𝑚) =  𝜙(𝒙𝑛)⊤𝜙(𝒙𝑚)

In a high-dim space implicitly defined by an 

underlying mapping 𝜙 associated this this 

kernel function 𝑘(.,.)  

Important: As we will see, computing 𝑘(.,.) 

does not require computing the mapping 𝜙 

Important: The idea can be applied to any ML 

algo in which training and test stage only require 

computing distances/similarities b/w inputs
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Some Pre-defined Kernel Functions
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▪ Linear kernel: 𝑘 𝒙, 𝒛 = 𝒙⊤𝒛

▪ Quadratic Kernel: 𝑘 𝒙, 𝒛 =  (𝒙⊤𝒛)2 or 𝑘 𝒙, 𝒛 =  (1 + 𝒙⊤𝒛)2

▪ Polynomial Kernel (of degree 𝑑): 𝑘 𝒙, 𝒛 =  (𝒙⊤𝒛)𝑑 or 𝑘 𝒙, 𝒛 =  (1 + 𝒙⊤𝒛)𝑑

▪ Radial Basis Function (RBF) or “Gaussian” Kernel: 𝑘 𝒙, 𝒛 = exp[−𝛾 𝒙 − 𝒛 2]

▪ Gaussian kernel gives a similarity score between 0 and 1

▪ 𝛾 > 0 is a hyperparameter (called the kernel bandwidth parameter)

▪ The RBF kernel corresponds to an infinite dim. feature space ℱ (i.e., you can’t actually 
write down or store the map 𝜙 𝒙 explicitly – but we don’t need to do that anyway ☺)

▪ Also called “stationary kernel”: only depends on the distance between 𝑥 and 𝑧 (translating 
both by the same amount won’t change the value of 𝑘(𝑥, 𝑧))

▪Which kernel to use or its hyperparams (e.g.,𝑑, 𝛾) values can be set via cross-val.

Remember that kernels 

are a notion of similarity 

between pairs of inputs

Controls how the distance 

between two inputs should 

be converted into a similarity

Kernels can have a pre-defined form 

or can be learned from data (a bit 

advanced for this course)

Several other kernels proposed 

for non-vector data, such as 

trees, strings, etc
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Kernels as (Implicit) Feature Maps
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▪ Consider two inputs (in the same two-dim feature space): 𝒙 =  [𝑥1, 𝑥2], 𝒛 =  [𝑧1, 𝑧2] 

▪ Suppose we have a function 𝑘(. , . ) which takes two inputs 𝒙 and 𝒛 and computes

▪ Also didn’t have to compute 𝜙 𝒙 ⊤𝜙(𝒛). Defn 𝑘 𝒙, 𝒛 =  (𝒙⊤𝒛)2 gives that

𝑘 𝒙, 𝒛 =  (𝒙⊤𝒛)2

=  (𝑥1𝑧1 + 𝑥2𝑧2)2

Can think of this as a notion 

of similarity b/w 𝒙 and 𝒛

This is not a dot/inner product 

similarity but similarity using a 

more general function of 𝒙 and 𝒛 

(square of dot product)

= 𝑥1
2𝑧1

2 + 𝑥2
2𝑧2

2 + 2𝑥1𝑥2𝑧1𝑧2

= 𝑥1
2, 2𝑥1𝑥2, 𝑥2

2 ⊤
(𝑧1

2, 2𝑧1𝑧2, 𝑧2
2)

=  𝜙 𝒙 ⊤𝜙(𝒛)

Thus kernel function 𝑘 𝒙, 𝒛 =
 (𝒙⊤𝒛)2

implicitly defined a feature mapping 

𝜙 such that for 𝒙 =  [𝑥1, 𝑥2] , 

𝜙 𝒙 = 𝑥1
2, 2𝑥1𝑥2, 𝑥2

2

Dot product similarity in 

the new feature space 

defined by the mapping 𝜙

Didn’t need to compute 𝜙 𝑥  

explicitly. Just using the definition 

of the kernel 𝑘 𝑥, 𝑧 =
 (𝑥⊤𝑧)2 implicitly gave us this 

mapping for each input

Called the 

“kernel function”

Remember that a kernel 

does two things: Maps 

the data implicitly into a 

new feature space 

(feature transformation) 

and computes pairwise 

similarity between any 

two inputs under the new 

feature representation
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RBF Kernel = Infinite Dimensional Mapping
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▪ We saw that the RBF/Gaussian kernel is defined as 𝑘 𝒙, 𝒛 = exp[−𝛾 𝒙 − 𝒛 2]

▪ Using this kernel corresponds to mapping data to infinite dimensional space

▪ Here 𝜙 𝒙 = [exp −𝑥2 𝑥0, exp −𝑥2 𝑥1, exp −𝑥2 𝑥2, exp −𝑥2 𝑥3, … , exp −𝑥2 𝑥∞]

▪ But again, note that we never need to compute 𝜙 𝒙 to compute 𝑘 𝑥, 𝑧

▪ 𝑘 𝑥, 𝑧 is easily computable from its definition itself  (exp[− 𝑥 − 𝑧 2] in this case)

𝑘 𝑥, 𝑧 =  exp[− 𝑥 − 𝑧 2] (assuming 𝛾 = 1 and 𝑥 and 𝑧 to be scalars)

=  exp(−𝑥2) exp(−𝑧2)exp(2𝑥𝑧)

=  exp(−𝑥2) exp(−𝑧2) σ0=1
∞ 2𝑘𝑥𝑘𝑧𝑘

𝑘!

= 𝜙 𝑥 ⊤ 𝜙(𝑧) Thus an infinite-dim vector (ignoring the 

constants coming from the 2𝑘 and 𝑘! terms
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Kernel Function: Some Other Aspects
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▪ Not every function of the form 𝑘 𝒙, 𝒛 =  𝜙 𝒙 ⊤𝜙(𝒛) is a kernel function

▪ 𝑘 must satisfy Mercer’s Condition 
▪ 𝑘 must define a dot product for some Hilbert Space

▪ Above is true if  𝑘 is symmetric and positive semi-definite (p.s.d.) function (though there are

exceptions; there are also “indefinite” kernels)

▪ Let 𝑘1, 𝑘2 be two kernel functions then the following are as well
▪ 𝑘 𝒙, 𝒛 = 𝑘1 𝒙, 𝒛 + 𝑘2 𝒙, 𝒛 : simple sum

▪ 𝑘 𝒙, 𝒛 = 𝛼𝑘1 𝒙, 𝒛 : scalar product with 𝛼 > 0

▪ 𝑘 𝒙, 𝒛 = 𝑘1 𝒙, 𝒛 𝑘2 𝒙, 𝒛 : direct product of two kernels

𝑘 𝒙, 𝒛 = 𝑘(𝒛, 𝒙)

ඵ 𝑓 𝒙 𝑘 𝒙, 𝒛 𝑓 𝒛 𝑑𝒙𝑑𝒛 ≥ 0 

For all “square integrable” functions 𝑓 

(such functions satisfy ׬ 𝑓 𝒙 2𝑑𝒙 <  ∞ 

Loosely speaking a PSD function here 

means that if  we evaluate this function for 

𝑁 inputs (𝑁2pairs) then the 𝑁 × 𝑁 matrix 

will be PSD (also called a kernel matrix)

Can also combine these rules and the resulting 

function will also be a kernel function

Can easily verify that the Mercer’s 

Condition holds for these
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Kernel Matrix
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▪ Kernel based ML algos work with kernel matrices rather than feature vectors

▪ Given 𝑁 inputs, the kernel function 𝑘 can be used to construct a Kernel Matrix 𝑲

▪ The kernel matrix 𝑲 is of size 𝑁 × 𝑁 with each entry defined as

           

▪𝐾𝑖𝑗  : Similarity between the 𝑖𝑡ℎand 𝑗𝑡ℎ inputs in the kernel induced feature space 𝜙

𝐾𝑖𝑗 = 𝑘 𝒙𝑖 , 𝒙𝑗  = 𝜙 𝒙𝑖
⊤ 𝜙(𝒙𝑗)

Note again that we don’t 

need to compute 𝜙 and this 

dot product explicitly

Inputs

Feature Matrix Kernel Matrix

𝐾 is a symmetric and 

positive semi-definite matrix

𝑧⊤𝐾𝑧 ≥ 0 ∀𝑧 ∈ ℝ𝑁

Also, all eigenvalues of 𝐾 are non-negative
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12

Using Kernels in ML algorithms
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Using Kernels
13

▪ Kernels can turn many linear models into nonlinear models

▪ Recall that 𝑘(𝒙, 𝒛) represents a dot product in some high-dim feature space ℱ

▪ Important: Any ML model/algo in which, during training and test, inputs only 
appear as dot product (pairwise similarity) can be “kernelized 

▪ Just replace each term of the form 𝒙𝑖
⊤𝒙𝑗 by 𝜙 𝒙𝑖

⊤𝜙 𝒙𝑗 = 𝑘 𝒙𝑖 , 𝒙𝑗 =  𝐾𝑖𝑗

▪ Most ML models/algos can be kernelized

▪ Let’s look at an example: Kernelized SVM

▪ Perhaps the most popular/natural example of kernelization
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Kernelizing a Euclidean Distance
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▪Not just dot products but Eucliean distance can be kernelized too

▪Many algorithms, e.g., LwP, KNN, etc. use Euclidean distances, e.g., 

▪ This can be kernelized as well by replacing the above norms and inner products by their 
kernelized versions, assuming a kernel 𝑘 with feature map 𝜙

𝑑 𝑎, 𝑏 = 𝑎 − 𝑏 2

𝑑 𝜙(𝑎), 𝜙(𝑏) = 𝜙(𝑎) − 𝜙(𝑏) 2

= 𝑎 2 + 𝑏 2 − 2𝑎⊤𝑏 = 𝑎⊤𝑎 + 𝑏⊤𝑏 − 2𝑎⊤𝑏

= 𝜙(𝑎)⊤𝜙(𝑎) + 𝜙(𝑏)⊤𝜙(𝑏) − 2𝜙(𝑎)⊤𝜙(𝑏)

= 𝑘(𝑎, 𝑎) + 𝑘(𝑏, 𝑏) − 2𝑘(𝑎, 𝑏)
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Nonlinear SVM using Kernels

15
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Kernelized SVM Training
16

▪ Recall the soft-margin linear SVM objective (with no bias term)

           

▪ To kernelize, we can simply replace 𝐺𝑖𝑗 = 𝑦𝑖𝑦𝑗 𝒙𝑖
⊤𝒙𝑗 by 𝑦𝑖𝑦𝑗𝐾𝑖𝑗

▪ .. where 𝐾𝑖𝑗 = 𝑘 𝑥𝑖 , 𝑥𝑗 =  𝜙 𝒙𝑖
⊤𝜙 𝒙𝑗 for a suitable kernel function 𝑘

▪ The problem can now be solved just like the linear SVM case

▪ The new SVM learns a linear separator in kernel-induced feature space ℱ
▪ This corresponds to a non-linear separator in the original feature space 𝒳

argmax
𝟎≤𝜶≤𝑪

   𝛂⊤𝟏 −
1

2
𝛂⊤𝐆𝛂 𝐺𝑖𝑗 = 𝑦𝑖𝑦𝑗  𝒙𝑖

⊤𝒙𝑗

Inputs only appear 

as dot products ☺
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Kernelized SVM Prediction
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▪ SVM weight vector for the kernelized case will be 𝒘 =  σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛𝜙(𝒙𝑛)           

▪ Imp: We can’t store 𝒘 unless the feature mapping 𝜙(𝒙𝑛) is finite dimensional

▪ In practice, we store the 𝛼𝑛’s and the training data for test time (just like KNN)

▪ In fact, need to store only training examples for which 𝛼𝑛 is nonzero (i.e., the support vectors)

▪ Prediction for a new test input 𝒙∗ (assuming hyperplane’s bias 𝑏 = 0) will be

▪ Note that the prediction cost also scales linearly with 𝑁 (unlike a linear model where 
we only need to compute 𝒘⊤𝒙∗, whose cost only depends on 𝐷, not 𝑁)

▪ Also note that, for unkernelized (i.e., linear) SVM, 𝒘 =  σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛𝒙𝑛 can be computed 

and stored as a 𝐷 × 1 vector and we can compute 𝒘⊤𝒙∗ in 𝑂(𝐷) time

𝑦∗ =  sign(𝒘⊤𝜙(𝒙∗)) =  sign ෍
𝑛=1

𝑁

𝛼𝑛𝑦𝑛𝜙(𝒙𝑛)
⊤

𝜙(𝒙∗) =  sign ෍
𝑛=1

𝑁

𝛼𝑛𝑦𝑛𝑘(𝒙𝑛, 𝒙∗)
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Kernel extensions of 
other ML models

18
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Kernel extensions of other ML models
19

▪Most of the models what have studied can be kernelized
▪ Kernel based linear/ridge regression

▪ Kernel based LwP

▪ Kernel based nearest neighbors

▪ Kernel logistic regression

▪ Kernel Perceptron

▪ Some of these extensions are simple to obtain, some not so (but possible)

▪ Imp: In these models, just like kernel SVM, the model parameters (e.g., the 
weight vector) can’t be stored as a finite-dim vector (unless 𝜙 is finite dim)

▪ Thus the training inputs need to be stored at test time as well

▪ Also, just like kernel SVM, all of these will in general be slower at test time

Kernel extension makes 

these approaches more 

powerful (nonlinear patterns 

can be learned)

But the extra price has to be 

paid in terms of storage 

cost and slower predictions
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Speeding-up Kernel Methods

20



CS771: Intro to ML

Speeding-up Kernel Methods
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▪ Kernels assume that 

▪ Suppose for this kernel, we can get an 𝐿-dim feature vector 𝜓 𝒙 such that

▪ Using features 𝜓 𝒙 , we can learn a linear model with weights 𝒘 ∈ ℝ𝐿

▪ This model will be a good approximation to the kernelized model

▪ Training will be faster because no need to store and work with kernel matrices

▪ Prediction at test time will also be faster - we just need to compute 𝒘⊤𝜓(𝒙∗)

▪Many ways to get such features 𝜓 𝒙 for standard kernels 

𝑘(𝒙𝑛, 𝒙𝑚) =  𝜙(𝒙𝑛)⊤𝜙(𝒙𝑚)

𝑘(𝒙𝑛, 𝒙𝑚) ≈ 𝜓(𝒙𝑛)⊤𝜓(𝒙𝑚)
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Extracting Features using Kernels: Landmarks
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▪ Suppose we choose a small set of 𝐿 “landmark” inputs 𝒛1, 𝒛2, … , 𝒛𝐿 in the training data

▪ For each input 𝒙𝑛, using a kernel 𝑘, define an 𝐿-dimensional feature vector as follows

▪ Can now apply a linear model on 𝜓 representation (𝐿-dimensional now) of the inputs

▪ This will be fast both at training as well as test time if  𝐿 is small

▪ No need to kernelize the linear model while still reaping the benefits of kernels ☺

𝜓 𝒙𝑛 = 𝑘 𝒛1, 𝒙𝑛 , 𝑘 𝒛2, 𝒙𝑛 , … , 𝑘 𝒛𝐿 , 𝒙𝑛 ∈ ℝ𝐿

𝜓 𝒙𝑛 = 𝑘 𝒛1, 𝒙𝑛 , 𝑘 𝒛2, 𝒙𝑛 , 𝑘 𝒛3, 𝒙𝑛 ∈ ℝ3

Landmarks need not be 

actual inputs; can even 

be 𝐿 learned locations 

in the input space
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Extracting Feat. using Kernels: Random Features
23

▪ Many kernel functions* can be written as

.. where 𝑡𝒘(. ) is a function with params 𝒘 ∈ ℝ𝐷 with 𝒘 drawn from some distr. 𝑝(𝒘)

▪ Example: For the RBF kernel, 𝑡𝒘(. ) is cosine func. and 𝑝(𝒘) is zero mean Gaussian

▪ Given 𝒘1, 𝒘2, … , 𝒘𝐿 from 𝑝(𝒘), using Monte-Carlo approx. of above expectation

.. where                                                                   is an 𝐿-dim vector

▪ Can apply a linear model on this 𝐿-dim rep. of the inputs (no need to kernelize)

*Random Features for Large-Scale Kernel Machines (Ben and Retch, NIPS 2007. Note: This paper actually won the test-of-time award at NIPS 2017)
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Learning with Kernels: Some Aspects
24

▪ Storage/computational efficiency can be a bottleneck when using kernels

▪ During training, need to compute and store the 𝑁 × 𝑁 kernel matrix K in memory

▪ Need to store training data (or at least support vectors in case of SVMs) at test time

▪ Test time can be slow: 𝑂(𝑁) cost  to compute a quantity like σ𝑛=1
𝑁 𝛼𝑛𝑘(𝒙𝑛, 𝒙∗)

▪ Approaches like landmark and random features can be used to speed up

▪ Choice of the right kernel is also very important

▪ Some kernels (e.g., RBF) work well for many problems but hyperparameters of 
the kernel function may need to be tuned via cross-validation

▪Quite a bit of research on learning the right kernel from data
▪ Learning a combination of multiple kernels (Multiple Kernel Learning)

▪ Bayesian kernel methods (e.g., Gaussian Processes) can learn the kernel hyperparameters from 
data(thus can be seen as learning the kernel)

▪ Deep Learning can also be seen as learning the kernel from data (more on this later)

Also, a lot of recent 

work on connections 

between kernel 

methods and deep 

learning
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