

Linear Models for Nonlinear Problems?

= Consider the following one-dimensional inputs from two classes

» Can't separate using a linear hyperplane

CS771: Intro to ML

Linear Models for Nonlinear Problems?

= Consider mapping each x to two-dimensions as x = z = [z, z,] = [x, x?]

Linear hyperplane

" Classes are now linearly separable in the two-dimensional space

CS771: Intro to ML

Linear Models for Nonlinear Problems

» Can assume a feature mapping ¢ that maps/transforms the inputs to a "nice” space

($19$2) — (219229 3)

¢ R? — R3

(z2, /(2)z122, T2)

X A".Z
x
X
x
S S S —
x // J
x/ 3 \
- - ‘
/
J
o /
RN 4 X
Wy s S et
x
x X X

G The linear model in the new
X X feature space corresponds
” X to a nonlinear model in the
\ 3¢ = o original feature space
\
_)\\ x "
) x
) x
> J\ -
\ X o 2 |
- - J\
‘L .

= . and then happily apply a linear model in the new space!

CS771: Intro to ML

Not Every Mapping is Helpful

= Not every higher-dim mapping helps in learning nonlinear patterns

= Must be a nonlinear mapping

" For the nonlin classtn problem we saw earlier, consider some possible mappings

Nonlinear Map
(Helps)

Nonlinear Map

(Helps)
\\

[21,.’.‘2] — {;I._.T.‘z} . [:1'- 22] = {3“ |~E|}

Linear Map
(not helpful)

[Z],Zgl = {3:‘3:}

CS771: Intro to ML

How to get these “good” (nonlinear) mappings?

" | earn good mappings from data itself (e.g., deep learning or distance metric learning)

» Use pre-defined "good” mappings (e.g., defined by kernel functions - today's topic)

Even if | knew a good
mapping, it seems | need to
apply it for every input. Won't
this be computationally
expensive?

ot

S Also, the number of features
will increase? Will it not slow
down the learning algorithm?

¢ : R? — R’

(1, 2) — (21, 22, 23) = (2, /(2)122, 23)

g

Thankfully, using kernels, you
don't need to compute these
mappings explicitly

The kernel will define an
“implicit” feature mapping

Important: The idea can be applied to any ML
algo in which training and test stage only require
computing distances/similarities b/w inputs

In a high-dim space implicitly defined by an
underlying mapping ¢ associated this this
kernel function k(.,.)

= Kernel: A function k(.,.) that gives dot product similarity b/w two inputs, say x,, and x,,
)

Important: As we will see, computing k (
does not require computing the mapping ¢

k(Xpn, Xm) = ¢(xn)T¢(xm)

CS771: Intro to ML

Some Pre-defined Kernel Functions

Several other kernels proposed Remember that kernels ‘*‘ /
| : — AT for non-vector data, such as are a notion of similarity >
m ,
Linear kernel: k(x,z) = x'z S etween paifs of nouts | ¥

= Quadratic Kernel: k(x,z) = (x72)2 or k(x,2z) = (1 + xTz)?2 "nes can have apredeined form

or can be learned from data (a bit
advanced for this course)

= Polynomial Kernel (of degree d): k(x,z) = (x72)% or k(x,z) = (1 + x"z)?

= Radial Basis Function (RBF) or “Gaussian’ Kernel: k(x,z) = exp[—V ||x — z]|?]

" Gaussian kernel gives a similarity score between O and 1 Controls how the distance
between two inputs should

" ¥ > 0 is a hyperparameter (called the kernel bandwidth parameter)— be converted into a similarity

» The RBF kernel corresponds to an infinite dim. feature space F (i.e., you can't actually
write down or store the map ¢ (x) explicitly — but we don't need to do that anyway ©)

» Also called “stationary kernel”: only depends on the distance between x and z (translating
both by the same amount won't change the value of k(x, z))

= Which kernel to use or its hyperparams (e.g.,d,y) values can be set via cross-val.
CS771: Intro to ML

Kernels as (Implicit) Feature Maps

= Consider two inputs (in the same two-dim feature space): x = [xq,x,],Z2 =

[ZIJ ZZ]

= Suppose we have a function k(.,.) which takes two inputs x and z and computes

Called the
“kernel function”

k(x,z)

Didn't need to compute ¢ (x)
explicitly. Just using the definition
of the kernel k(x,z) =

(xTz)? implicitly gave us this
mapping for each input

Thus kernel function k(x, z) =
(x"z)?

implicitly defined a feature mapping
¢ such that for x = [xq,x3] ,

$(x) = (xf, V2x, %5, %5)

(x'2)?

Can think of this as a notion
of similarity b/w x and z

(X121 + x22)?

= x%Zf + x22Z22 + lexZZ]_Zz

T
(xlz, \/EXJ_XZ, xzz) (le, \/Ezlzz, Zzz) (feature transformation)

¢ (x)" p(2)

Dot product similarity in
the new feature space
defined by the mapping ¢

This is not a dot/inner product
similarity but similarity using a
more general function of x and z
(square of dot product)

Remember that a kernel
does two things: Maps
the data implicitly into a
new feature space

o/
and computes pairwise
similarity between any

two inputs under the new
feature representation

= Also didn't have to compute ¢ (x) T @ (2). Defn k(x,z) = (x7z)2 gives that

CS771: Intro to ML

RBF Kernel = Infinite Dimensional Mapping

= We saw that the RBF/Gaussian kernel is defined as k(x, z) = exp[—y |lx — z||*]

= Using this kernel corresponds to mapping data to infinite dimensional space

k (X, Z) = eXp [— (x — Z)z] (assuming y = 1 and x and z to be scalars)

= exp(—x?) exp(—z%)exp(2xz)
Kok k

exp(—x*) exp(—z%) Y04 k!

Thus an infinite-dim vector (ignoring the

— T
o ¢ (X) (lb (Z) constants coming from the 2% and k! terms

= Here ¢p(x) = [exp(—x%)x°, exp(—x?)x1, exp(—xz)xz, exp(—x2)x3, ..., exp(—x2)x*]

= But again, note that we never need to compute ¢ (x) to compute k(x, z)

= k(x, z) is easily computable from its definition itself (exp[—(x — z)?] in this case)
CS771: Intro to ML

Kernel Function: Some Other Aspects

= Not every function of the form k(x,z) = ¢(x)"¢p(2) is a kernel function

" k must satisty Mercer's Condition

" k& must define a dot product for some Hilbert Space

= Above is true it k is symmetric and positive semi-definite (p.s.d.) function (though there are

Loosely speaking a PSD function here
means that if we evaluate this function for
N inputs (N?pairs) then the N X N matrix

k(x, Z) — k(Z' x) will be PSD (also called a kernel matrix)

exceptions; there are also “indefinite” kernels)

For all "square integrable” functions f

(such functions satisfy [f(x)?dx < oo
ff f(x)k(x’ Z)f(Z) dxdz 2 O Can easily verify that the Mercer's

Condition holds for these

" | et kq, k, be two kernel functions then the following are as well

- k(x; Z) — kl (x; Z) + k2 (x; Z): Simp|e sum Can also combine these rules and the resulting
n k(x, Z) — “k1 (x’ Z)I scalar pl’OdUCJ[with @ > 0 function will also be a kernel function

" k(x,z) = ky(x,z)k,(x, z): direct product of two kernels
CS771: Intro to ML

Kernel Matrix

= Kernel based ML algos work with kernel matrices rather than feature vectors

" Given N inputs, the kernel function k can be used to construct a Kernel Matrix K

" The kernel matrix K is of size N X N with each entry defined as

Note again that we don't
need to compute ¢ and this

Kl] — k(xl, x]) — ¢(xl)T ¢(x]) dot product explicitly

= K;; : Similarity between the i*"and j" inputs in the kernel induced feature space ¢

Features j

1] i sl
Inputs | _>>> s

Kernel Function

Z]

Feature Matrix Kernel Matrix

K K is a symmetric and

positive semi-definite matrix

z'Kz>0vzeRN
Also, all eigenvalues of K are non-negative

CS771: Intro to ML

Using Kernels in ML algorithms

CS771: Intro to ML

Using Kernels

» Kernels can turn many linear models into nonlinear models
= Recall that k(x, z) represents a dot product in some high-dim feature space F

* [mportant: Any ML model/algo in which, during training and test, inputs only
appear as dot product (pairwise similarity) can be “kernelized

= Just replace each term of the form x] x; by p(x)Td(x;) = k(x;, %) = K;
» Most ML models/algos can be kernelized

" | et's ook at an example: Kernelized SVM

» Perhaps the most popular/natural example of kernelization

CS771: Intro to ML

Kernelizing a Euclidean Distance

= Not just dot products but Eucliean distance can be kernelized too
* Many algorithms, e.g., LwP, KNN, etc. use Euclidean distances, e.g.,

d(a,b) = |la=>b||> =|la|l>+||bl|?-2a"h =a'a+b'b—2a'b

* This can be kernelized as well by replacing the above norms and inner products by their
kernelized versions, assuming a kernel k with feature map ¢

d(¢p(a), (b)) = llp(a) — p(D)II?
=¢(a) ' ¢(a) + ¢(b) d(b) — 2¢(a)' (D)
= k(a,a) + k(b,b) — 2k(a, b)

CS771: Intro to ML

Nonlinear SVM using Kernels

CS771: Intro to ML

Kernelized SVM Training

Inputs only appear

= Recall the soft-margin linear SVM objective (with no bias term) Las dot products ©
1 _
argmax o'l — —a' Ga — Gy =y *i%
0<asC 2
" [o kernelize, we can simply replace G;; = y;y; xl-ij by ¥;y;Ki;

= . where K;; = k(xi,xj) = gb(xl-)Tgb(xj) for a suitable kernel function k

" The problem can now be solved just like the linear SVM case

" The new SVM learns a linear separator in kernel-induced feature space F

= This corresponds to a non-linear separator in the original feature space X
A5 A <

F IR CS771: Intro to ML

Kernelized SVM Prediction

= SVM weight vector for the kernelized case willbew = YN_. a, vy, d(x,,)

= Imp: We can't store w unless the feature mapping ¢(x;,) is finite dimensional

" |n practice, we store the a,,'s and the training data for test time (just like KNN)

" |n fact, need to store only training examples for which a,, is nonzero (i.e., the support vectors)

* Prediction for a new test input x, (assuming hyperplane’'s bias b = 0) will be

N T N
y. = sign(w'¢(x.)) = sign (2 o Ynh () ¢<x*>> s (Z Y (i, x*>>
n=1 n=1
* Note that the prediction cost also scales linearly with N (unlike a linear model where
we only need to compute w' x,, whose cost only depends on D, not N)

= Also note that, for unkernelized (i.e., linear) SYVM, w = ¥N_, a,,v,x,, can be computed

and stored as a D X 1 vector and we can compute w'x, in O(D) time
CS771: Intro to ML

Kernel extensions of
other ML models

CS771: Intro to ML

Kernel extensions of other ML models

= Most of the models what have studied can be kernelized
= Kernel based linear/ridge regression

Kernel extension makes

= Kernel based LwP these approaches more A

» Kernel based nearest neighbors Bult the extra price has to be powerful (nonlinear patterns —% v~ 4 /
o . paid in terms of storage can be learned) e »

= Kernel |OgISJ[IC regression cost and slower predictions

= Kernel Perceptron

" Some of these extensions are simple to obtain, some not so (but possible)

" Imp: In these models, just like kernel SVM, the model parameters (e.g., the
weight vector) can't be stored as a finite-dim vector (unless ¢ is finite dim)

* Thus the training inputs need to be stored at test time as well

" Also, just like kernel SVM, all of these will in general be slower at test time
CS771: Intro to ML

Speeding-up Kernel Methods

CS771: Intro to ML

Speeding-up Kernel Methods

m Kernels assume that

k(Xpn, Xpm) = ¢(xn)T¢(xm)

= Suppose for this kernel, we can get an L-dim feature vector ¥(x) such that

ke (Xn, Xm) = P (xn) P (x0)

= Using features ¥ (x), we can learn a linear model with weights w € R:

" This model will be a good approximation to the kernelized model

* Training will be faster because no need to store and work with kernel matrices
= Prediction at test time will also be faster - we just need to compute w(x,)
= Many ways to get such features ¥(x) for standard kernels

CS771: Intro to ML

Extracting Features using Kernels: Landmarks

" Suppose we choose a small set of L “landmark”™ inputs z4, Z,, ..., Z;in the training data
® | @

@ | . » 2 : Landmarks need not be
o ° & ® ® ® @ 2 ® actual inputs; can even
o - 21 @ @ be L learned locations
® ¢ | .mﬂ in the input space
[| _
. e O o3 ©®
® 9

Y(xy) = [k(zy, x0), k(23 %), k(23, x,)] € R
* For each input x,,, using a kernel k, define an L-dimensional feature vector as follows
Y(xy) = [k(z1, %), k(22, xp), ..., k(z1, x,)] € R
= Can now apply a linear model on Y representation (L-dimensional now) of the inputs
" This will be fast both at training as well as test time it L is small
» No need to kernelize the linear model while still reaping the benefits of kernels ©

CS771: Intro to ML

Extracting Feat. using Kernels: Random Features

= Many kernel functions® can be written as

k(xm Xm) — @(Xn)qu)(Xm) — Ewwp(w) [tw(xn)tw(xm)]
. where t,,(.) is a function with params w € RP with w drawn from some distr. p(w)

» Example: For the RBF kernel, t,,(.) is cosine func. and p(w) is zero mean Gaussian

k(Xp, Xm) = Ew~p(w) [cos(wan) cos(wam)]

" Given wq, W,, ..., W from p(w), using Monte-Carlo approx. of above expectation
L

k(Xp, Xm) ~ 13" cos w/ x,)cos(w, xm) = V(x,) " ¥(xpm)
i 14 14
(=1
. where Y(x,) = L lcos(w, x,, ,...,cos(w, x,)] is an L-dim vector
1 L

L
» Can apply a linear model on this L-dim rep. of the inputs (no need to kernelize)

*Random Features for Large-Scale Kernel Machines (Ben and Retch, NIPS 2007. Note: This paper actually won the test-of-time award at NIPS 2017) CS771: Intro to ML

Learning with Kernels: Some Aspects

= Storage/computational efficiency can be a bottleneck when using kernels

* During training, need to compute and store the N X N kernel matrix Kin memory

" Need to store training data (or at least support vectors in case of SVMs) at test time
= Test time can be slow: O(N) cost to compute a quantity like YN_, a, k(x,,, x,)

» Approaches like landmark and random features can be used to speed up

* Choice of the right kernel is also very important

= Some kernels (e.g., RBF) work well for many problems but hyperparameters of
the kernel function may need to be tuned via cross-validation | Aiso alotof recent | gy y
—v 4
" Quite a bit of research on learning the right kernel from data | =ee e
= Bayesian kernel methods (e.g., Gaussian Processes) can learn the kernel hyperparameters from
data(thus can be seen as learning the kernel)

work on connections
" [earning a combination of multiple kernels (Multiple Kernel Learning).learning
* Deep Learning can also be seen as learning the kernel from data (more on this later) ¢s771: Intro to ML

	Slide 1: Kernel Methods
	Slide 2: Linear Models for Nonlinear Problems?
	Slide 3: Linear Models for Nonlinear Problems?
	Slide 4: Linear Models for Nonlinear Problems
	Slide 5: Not Every Mapping is Helpful
	Slide 6: How to get these “good” (nonlinear) mappings?
	Slide 7: Some Pre-defined Kernel Functions
	Slide 8: Kernels as (Implicit) Feature Maps
	Slide 9: RBF Kernel = Infinite Dimensional Mapping
	Slide 10: Kernel Function: Some Other Aspects
	Slide 11: Kernel Matrix
	Slide 12
	Slide 13: Using Kernels
	Slide 14: Kernelizing a Euclidean Distance
	Slide 15: Nonlinear SVM using Kernels
	Slide 16: Kernelized SVM Training
	Slide 17: Kernelized SVM Prediction
	Slide 18: Kernel extensions of other ML models
	Slide 19: Kernel extensions of other ML models
	Slide 20: Speeding-up Kernel Methods
	Slide 21: Speeding-up Kernel Methods
	Slide 22: Extracting Features using Kernels: Landmarks
	Slide 23: Extracting Feat. using Kernels: Random Features
	Slide 24: Learning with Kernels: Some Aspects

