
Kernel Methods

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

Linear Models for Nonlinear Problems?
2

▪ Consider the following one-dimensional inputs from two classes

▪ Can’t separate using a linear hyperplane

𝑥

CS771: Intro to ML

Linear Models for Nonlinear Problems?
3

▪ Consider mapping each 𝑥 to two-dimensions as 𝑥 → 𝒛 = 𝑧1, 𝑧2 = [𝑥, 𝑥2]

▪ Classes are now linearly separable in the two-dimensional space

Linear hyperplane

CS771: Intro to ML

Linear Models for Nonlinear Problems
4

▪ Can assume a feature mapping 𝜙 that maps/transforms the inputs to a “nice” space

▪ .. and then happily apply a linear model in the new space!

The linear model in the new

feature space corresponds

to a nonlinear model in the

original feature space

CS771: Intro to ML

Not Every Mapping is Helpful
5

▪ Not every higher-dim mapping helps in learning nonlinear patterns

▪ Must be a nonlinear mapping

▪ For the nonlin classfn problem we saw earlier, consider some possible mappings

CS771: Intro to ML

How to get these “good” (nonlinear) mappings?
6

▪ Learn good mappings from data itself (e.g., deep learning or distance metric learning)

▪ Use pre-defined “good” mappings (e.g., defined by kernel functions - today’s topic)

▪ Kernel: A function 𝑘(.,.) that gives dot product similarity b/w two inputs, say 𝒙𝑛 and 𝒙𝑚

Even if I knew a good

mapping, it seems I need to

apply it for every input. Won’t

this be computationally

expensive?

Also, the number of features

will increase? Will it not slow

down the learning algorithm?

Thankfully, using kernels, you

don’t need to compute these

mappings explicitly

The kernel will define an

“implicit” feature mapping

𝑘(𝒙𝑛, 𝒙𝑚) = 𝜙(𝒙𝑛)⊤𝜙(𝒙𝑚)

In a high-dim space implicitly defined by an

underlying mapping 𝜙 associated this this

kernel function 𝑘(.,.)

Important: As we will see, computing 𝑘(.,.)

does not require computing the mapping 𝜙

Important: The idea can be applied to any ML

algo in which training and test stage only require

computing distances/similarities b/w inputs

CS771: Intro to ML

Some Pre-defined Kernel Functions
7

▪ Linear kernel: 𝑘 𝒙, 𝒛 = 𝒙⊤𝒛

▪ Quadratic Kernel: 𝑘 𝒙, 𝒛 = (𝒙⊤𝒛)2 or 𝑘 𝒙, 𝒛 = (1 + 𝒙⊤𝒛)2

▪ Polynomial Kernel (of degree 𝑑): 𝑘 𝒙, 𝒛 = (𝒙⊤𝒛)𝑑 or 𝑘 𝒙, 𝒛 = (1 + 𝒙⊤𝒛)𝑑

▪ Radial Basis Function (RBF) or “Gaussian” Kernel: 𝑘 𝒙, 𝒛 = exp[−𝛾 𝒙 − 𝒛 2]

▪ Gaussian kernel gives a similarity score between 0 and 1

▪ 𝛾 > 0 is a hyperparameter (called the kernel bandwidth parameter)

▪ The RBF kernel corresponds to an infinite dim. feature space ℱ (i.e., you can’t actually
write down or store the map 𝜙 𝒙 explicitly – but we don’t need to do that anyway ☺)

▪ Also called “stationary kernel”: only depends on the distance between 𝑥 and 𝑧 (translating
both by the same amount won’t change the value of 𝑘(𝑥, 𝑧))

▪Which kernel to use or its hyperparams (e.g.,𝑑, 𝛾) values can be set via cross-val.

Remember that kernels

are a notion of similarity

between pairs of inputs

Controls how the distance

between two inputs should

be converted into a similarity

Kernels can have a pre-defined form

or can be learned from data (a bit

advanced for this course)

Several other kernels proposed

for non-vector data, such as

trees, strings, etc

CS771: Intro to ML

Kernels as (Implicit) Feature Maps
8

▪ Consider two inputs (in the same two-dim feature space): 𝒙 = [𝑥1, 𝑥2], 𝒛 = [𝑧1, 𝑧2]

▪ Suppose we have a function 𝑘(. , .) which takes two inputs 𝒙 and 𝒛 and computes

▪ Also didn’t have to compute 𝜙 𝒙 ⊤𝜙(𝒛). Defn 𝑘 𝒙, 𝒛 = (𝒙⊤𝒛)2 gives that

𝑘 𝒙, 𝒛 = (𝒙⊤𝒛)2

= (𝑥1𝑧1 + 𝑥2𝑧2)2

Can think of this as a notion

of similarity b/w 𝒙 and 𝒛

This is not a dot/inner product

similarity but similarity using a

more general function of 𝒙 and 𝒛

(square of dot product)

= 𝑥1
2𝑧1

2 + 𝑥2
2𝑧2

2 + 2𝑥1𝑥2𝑧1𝑧2

= 𝑥1
2, 2𝑥1𝑥2, 𝑥2

2 ⊤
(𝑧1

2, 2𝑧1𝑧2, 𝑧2
2)

= 𝜙 𝒙 ⊤𝜙(𝒛)

Thus kernel function 𝑘 𝒙, 𝒛 =
 (𝒙⊤𝒛)2

implicitly defined a feature mapping

𝜙 such that for 𝒙 = [𝑥1, 𝑥2] ,

𝜙 𝒙 = 𝑥1
2, 2𝑥1𝑥2, 𝑥2

2

Dot product similarity in

the new feature space

defined by the mapping 𝜙

Didn’t need to compute 𝜙 𝑥

explicitly. Just using the definition

of the kernel 𝑘 𝑥, 𝑧 =
 (𝑥⊤𝑧)2 implicitly gave us this

mapping for each input

Called the

“kernel function”

Remember that a kernel

does two things: Maps

the data implicitly into a

new feature space

(feature transformation)

and computes pairwise

similarity between any

two inputs under the new

feature representation

CS771: Intro to ML

RBF Kernel = Infinite Dimensional Mapping
9

▪ We saw that the RBF/Gaussian kernel is defined as 𝑘 𝒙, 𝒛 = exp[−𝛾 𝒙 − 𝒛 2]

▪ Using this kernel corresponds to mapping data to infinite dimensional space

▪ Here 𝜙 𝒙 = [exp −𝑥2 𝑥0, exp −𝑥2 𝑥1, exp −𝑥2 𝑥2, exp −𝑥2 𝑥3, … , exp −𝑥2 𝑥∞]

▪ But again, note that we never need to compute 𝜙 𝒙 to compute 𝑘 𝑥, 𝑧

▪ 𝑘 𝑥, 𝑧 is easily computable from its definition itself (exp[− 𝑥 − 𝑧 2] in this case)

𝑘 𝑥, 𝑧 = exp[− 𝑥 − 𝑧 2] (assuming 𝛾 = 1 and 𝑥 and 𝑧 to be scalars)

= exp(−𝑥2) exp(−𝑧2)exp(2𝑥𝑧)

= exp(−𝑥2) exp(−𝑧2) σ0=1
∞ 2𝑘𝑥𝑘𝑧𝑘

𝑘!

= 𝜙 𝑥 ⊤ 𝜙(𝑧) Thus an infinite-dim vector (ignoring the

constants coming from the 2𝑘 and 𝑘! terms

CS771: Intro to ML

Kernel Function: Some Other Aspects
10

▪ Not every function of the form 𝑘 𝒙, 𝒛 = 𝜙 𝒙 ⊤𝜙(𝒛) is a kernel function

▪ 𝑘 must satisfy Mercer’s Condition
▪ 𝑘 must define a dot product for some Hilbert Space

▪ Above is true if 𝑘 is symmetric and positive semi-definite (p.s.d.) function (though there are

exceptions; there are also “indefinite” kernels)

▪ Let 𝑘1, 𝑘2 be two kernel functions then the following are as well
▪ 𝑘 𝒙, 𝒛 = 𝑘1 𝒙, 𝒛 + 𝑘2 𝒙, 𝒛 : simple sum

▪ 𝑘 𝒙, 𝒛 = 𝛼𝑘1 𝒙, 𝒛 : scalar product with 𝛼 > 0

▪ 𝑘 𝒙, 𝒛 = 𝑘1 𝒙, 𝒛 𝑘2 𝒙, 𝒛 : direct product of two kernels

𝑘 𝒙, 𝒛 = 𝑘(𝒛, 𝒙)

ඵ 𝑓 𝒙 𝑘 𝒙, 𝒛 𝑓 𝒛 𝑑𝒙𝑑𝒛 ≥ 0

For all “square integrable” functions 𝑓

(such functions satisfy ׬ 𝑓 𝒙 2𝑑𝒙 < ∞

Loosely speaking a PSD function here

means that if we evaluate this function for

𝑁 inputs (𝑁2pairs) then the 𝑁 × 𝑁 matrix

will be PSD (also called a kernel matrix)

Can also combine these rules and the resulting

function will also be a kernel function

Can easily verify that the Mercer’s

Condition holds for these

CS771: Intro to ML

Kernel Matrix
11

▪ Kernel based ML algos work with kernel matrices rather than feature vectors

▪ Given 𝑁 inputs, the kernel function 𝑘 can be used to construct a Kernel Matrix 𝑲

▪ The kernel matrix 𝑲 is of size 𝑁 × 𝑁 with each entry defined as

▪𝐾𝑖𝑗 : Similarity between the 𝑖𝑡ℎand 𝑗𝑡ℎ inputs in the kernel induced feature space 𝜙

𝐾𝑖𝑗 = 𝑘 𝒙𝑖 , 𝒙𝑗 = 𝜙 𝒙𝑖
⊤ 𝜙(𝒙𝑗)

Note again that we don’t

need to compute 𝜙 and this

dot product explicitly

Inputs

Feature Matrix Kernel Matrix

𝐾 is a symmetric and

positive semi-definite matrix

𝑧⊤𝐾𝑧 ≥ 0 ∀𝑧 ∈ ℝ𝑁

Also, all eigenvalues of 𝐾 are non-negative

CS771: Intro to ML

12

Using Kernels in ML algorithms

CS771: Intro to ML

Using Kernels
13

▪ Kernels can turn many linear models into nonlinear models

▪ Recall that 𝑘(𝒙, 𝒛) represents a dot product in some high-dim feature space ℱ

▪ Important: Any ML model/algo in which, during training and test, inputs only
appear as dot product (pairwise similarity) can be “kernelized

▪ Just replace each term of the form 𝒙𝑖
⊤𝒙𝑗 by 𝜙 𝒙𝑖

⊤𝜙 𝒙𝑗 = 𝑘 𝒙𝑖 , 𝒙𝑗 = 𝐾𝑖𝑗

▪ Most ML models/algos can be kernelized

▪ Let’s look at an example: Kernelized SVM

▪ Perhaps the most popular/natural example of kernelization

CS771: Intro to ML

Kernelizing a Euclidean Distance
14

▪Not just dot products but Eucliean distance can be kernelized too

▪Many algorithms, e.g., LwP, KNN, etc. use Euclidean distances, e.g.,

▪ This can be kernelized as well by replacing the above norms and inner products by their
kernelized versions, assuming a kernel 𝑘 with feature map 𝜙

𝑑 𝑎, 𝑏 = 𝑎 − 𝑏 2

𝑑 𝜙(𝑎), 𝜙(𝑏) = 𝜙(𝑎) − 𝜙(𝑏) 2

= 𝑎 2 + 𝑏 2 − 2𝑎⊤𝑏 = 𝑎⊤𝑎 + 𝑏⊤𝑏 − 2𝑎⊤𝑏

= 𝜙(𝑎)⊤𝜙(𝑎) + 𝜙(𝑏)⊤𝜙(𝑏) − 2𝜙(𝑎)⊤𝜙(𝑏)

= 𝑘(𝑎, 𝑎) + 𝑘(𝑏, 𝑏) − 2𝑘(𝑎, 𝑏)

CS771: Intro to ML

Nonlinear SVM using Kernels

15

CS771: Intro to ML

Kernelized SVM Training
16

▪ Recall the soft-margin linear SVM objective (with no bias term)

▪ To kernelize, we can simply replace 𝐺𝑖𝑗 = 𝑦𝑖𝑦𝑗 𝒙𝑖
⊤𝒙𝑗 by 𝑦𝑖𝑦𝑗𝐾𝑖𝑗

▪ .. where 𝐾𝑖𝑗 = 𝑘 𝑥𝑖 , 𝑥𝑗 = 𝜙 𝒙𝑖
⊤𝜙 𝒙𝑗 for a suitable kernel function 𝑘

▪ The problem can now be solved just like the linear SVM case

▪ The new SVM learns a linear separator in kernel-induced feature space ℱ
▪ This corresponds to a non-linear separator in the original feature space 𝒳

argmax
𝟎≤𝜶≤𝑪

 𝛂⊤𝟏 −
1

2
𝛂⊤𝐆𝛂 𝐺𝑖𝑗 = 𝑦𝑖𝑦𝑗 𝒙𝑖

⊤𝒙𝑗

Inputs only appear

as dot products ☺

CS771: Intro to ML

Kernelized SVM Prediction
17

▪ SVM weight vector for the kernelized case will be 𝒘 = σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛𝜙(𝒙𝑛)

▪ Imp: We can’t store 𝒘 unless the feature mapping 𝜙(𝒙𝑛) is finite dimensional

▪ In practice, we store the 𝛼𝑛’s and the training data for test time (just like KNN)

▪ In fact, need to store only training examples for which 𝛼𝑛 is nonzero (i.e., the support vectors)

▪ Prediction for a new test input 𝒙∗ (assuming hyperplane’s bias 𝑏 = 0) will be

▪ Note that the prediction cost also scales linearly with 𝑁 (unlike a linear model where
we only need to compute 𝒘⊤𝒙∗, whose cost only depends on 𝐷, not 𝑁)

▪ Also note that, for unkernelized (i.e., linear) SVM, 𝒘 = σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛𝒙𝑛 can be computed

and stored as a 𝐷 × 1 vector and we can compute 𝒘⊤𝒙∗ in 𝑂(𝐷) time

𝑦∗ = sign(𝒘⊤𝜙(𝒙∗)) = sign ෍
𝑛=1

𝑁

𝛼𝑛𝑦𝑛𝜙(𝒙𝑛)
⊤

𝜙(𝒙∗) = sign ෍
𝑛=1

𝑁

𝛼𝑛𝑦𝑛𝑘(𝒙𝑛, 𝒙∗)

CS771: Intro to ML

Kernel extensions of
other ML models

18

CS771: Intro to ML

Kernel extensions of other ML models
19

▪Most of the models what have studied can be kernelized
▪ Kernel based linear/ridge regression

▪ Kernel based LwP

▪ Kernel based nearest neighbors

▪ Kernel logistic regression

▪ Kernel Perceptron

▪ Some of these extensions are simple to obtain, some not so (but possible)

▪ Imp: In these models, just like kernel SVM, the model parameters (e.g., the
weight vector) can’t be stored as a finite-dim vector (unless 𝜙 is finite dim)

▪ Thus the training inputs need to be stored at test time as well

▪ Also, just like kernel SVM, all of these will in general be slower at test time

Kernel extension makes

these approaches more

powerful (nonlinear patterns

can be learned)

But the extra price has to be

paid in terms of storage

cost and slower predictions

CS771: Intro to ML

Speeding-up Kernel Methods

20

CS771: Intro to ML

Speeding-up Kernel Methods
21

▪ Kernels assume that

▪ Suppose for this kernel, we can get an 𝐿-dim feature vector 𝜓 𝒙 such that

▪ Using features 𝜓 𝒙 , we can learn a linear model with weights 𝒘 ∈ ℝ𝐿

▪ This model will be a good approximation to the kernelized model

▪ Training will be faster because no need to store and work with kernel matrices

▪ Prediction at test time will also be faster - we just need to compute 𝒘⊤𝜓(𝒙∗)

▪Many ways to get such features 𝜓 𝒙 for standard kernels

𝑘(𝒙𝑛, 𝒙𝑚) = 𝜙(𝒙𝑛)⊤𝜙(𝒙𝑚)

𝑘(𝒙𝑛, 𝒙𝑚) ≈ 𝜓(𝒙𝑛)⊤𝜓(𝒙𝑚)

CS771: Intro to ML

Extracting Features using Kernels: Landmarks
22

▪ Suppose we choose a small set of 𝐿 “landmark” inputs 𝒛1, 𝒛2, … , 𝒛𝐿 in the training data

▪ For each input 𝒙𝑛, using a kernel 𝑘, define an 𝐿-dimensional feature vector as follows

▪ Can now apply a linear model on 𝜓 representation (𝐿-dimensional now) of the inputs

▪ This will be fast both at training as well as test time if 𝐿 is small

▪ No need to kernelize the linear model while still reaping the benefits of kernels ☺

𝜓 𝒙𝑛 = 𝑘 𝒛1, 𝒙𝑛 , 𝑘 𝒛2, 𝒙𝑛 , … , 𝑘 𝒛𝐿 , 𝒙𝑛 ∈ ℝ𝐿

𝜓 𝒙𝑛 = 𝑘 𝒛1, 𝒙𝑛 , 𝑘 𝒛2, 𝒙𝑛 , 𝑘 𝒛3, 𝒙𝑛 ∈ ℝ3

Landmarks need not be

actual inputs; can even

be 𝐿 learned locations

in the input space

CS771: Intro to ML

Extracting Feat. using Kernels: Random Features
23

▪ Many kernel functions* can be written as

.. where 𝑡𝒘(.) is a function with params 𝒘 ∈ ℝ𝐷 with 𝒘 drawn from some distr. 𝑝(𝒘)

▪ Example: For the RBF kernel, 𝑡𝒘(.) is cosine func. and 𝑝(𝒘) is zero mean Gaussian

▪ Given 𝒘1, 𝒘2, … , 𝒘𝐿 from 𝑝(𝒘), using Monte-Carlo approx. of above expectation

.. where is an 𝐿-dim vector

▪ Can apply a linear model on this 𝐿-dim rep. of the inputs (no need to kernelize)

*Random Features for Large-Scale Kernel Machines (Ben and Retch, NIPS 2007. Note: This paper actually won the test-of-time award at NIPS 2017)

CS771: Intro to ML

Learning with Kernels: Some Aspects
24

▪ Storage/computational efficiency can be a bottleneck when using kernels

▪ During training, need to compute and store the 𝑁 × 𝑁 kernel matrix K in memory

▪ Need to store training data (or at least support vectors in case of SVMs) at test time

▪ Test time can be slow: 𝑂(𝑁) cost to compute a quantity like σ𝑛=1
𝑁 𝛼𝑛𝑘(𝒙𝑛, 𝒙∗)

▪ Approaches like landmark and random features can be used to speed up

▪ Choice of the right kernel is also very important

▪ Some kernels (e.g., RBF) work well for many problems but hyperparameters of
the kernel function may need to be tuned via cross-validation

▪Quite a bit of research on learning the right kernel from data
▪ Learning a combination of multiple kernels (Multiple Kernel Learning)

▪ Bayesian kernel methods (e.g., Gaussian Processes) can learn the kernel hyperparameters from
data(thus can be seen as learning the kernel)

▪ Deep Learning can also be seen as learning the kernel from data (more on this later)

Also, a lot of recent

work on connections

between kernel

methods and deep

learning

	Slide 1: Kernel Methods
	Slide 2: Linear Models for Nonlinear Problems?
	Slide 3: Linear Models for Nonlinear Problems?
	Slide 4: Linear Models for Nonlinear Problems
	Slide 5: Not Every Mapping is Helpful
	Slide 6: How to get these “good” (nonlinear) mappings?
	Slide 7: Some Pre-defined Kernel Functions
	Slide 8: Kernels as (Implicit) Feature Maps
	Slide 9: RBF Kernel = Infinite Dimensional Mapping
	Slide 10: Kernel Function: Some Other Aspects
	Slide 11: Kernel Matrix
	Slide 12
	Slide 13: Using Kernels
	Slide 14: Kernelizing a Euclidean Distance
	Slide 15: Nonlinear SVM using Kernels
	Slide 16: Kernelized SVM Training
	Slide 17: Kernelized SVM Prediction
	Slide 18: Kernel extensions of other ML models
	Slide 19: Kernel extensions of other ML models
	Slide 20: Speeding-up Kernel Methods
	Slide 21: Speeding-up Kernel Methods
	Slide 22: Extracting Features using Kernels: Landmarks
	Slide 23: Extracting Feat. using Kernels: Random Features
	Slide 24: Learning with Kernels: Some Aspects

