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Soft-Margin SVM
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▪ Goal: Still want to maximize the margin such that

▪ Soft-margin constraints 𝑦𝑛(𝒘⊤𝒙𝑛 + 𝑏) ≥ 1 − 𝜉𝑛 are satisfied for all training ex. 

▪ Do not have too many margin violations (sum of slacks σ𝑛=1
𝑁 𝜉𝑛 should be small)

           
▪ The objective func. for soft-margin SVM

▪ Hyperparameter 𝐶 controls the trade off between large margin 

and small training error (need to tune)

▪ Too large 𝐶: small training error but also small margin (bad)

▪ Too small 𝐶: large margin but large training error (bad)
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Solving Soft-Margin SVM
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▪ Recall the soft-margin SVM optimization problem

           

▪ Here 𝝃 = 𝜉1, 𝜉2, … , 𝜉𝑁 is the vector of slack variables

▪ Introduce Lagrange multipliers 𝛼𝑛, 𝛽𝑛 for each constraint and solve Lagrangian

▪ The terms in red color above were not present in the hard-margin SVM

▪ Two set of dual variables 𝜶 = [𝛼1, 𝛼2, … , 𝛼𝑁] and 𝜷 = [𝛽1, 𝛽2, … , 𝛽𝑁]

▪ Will eliminate the primal var 𝒘, b, 𝝃 to get dual problem containing the dual variables
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Solving Soft-Margin SVM
4

▪ The Lagrangian problem to solve           

▪ Take (partial) derivatives of ℒ w.r.t. 𝒘, 𝑏, and 𝜉𝑛 and setting to zero gives

▪ Using 𝐶 − 𝛼𝑛 − 𝛽𝑛 = 0 and 𝛽𝑛 ≥ 0, we have 𝛼𝑛 ≤ 𝐶 (for hard-margin, 𝛼𝑛 ≥ 0)

▪ Substituting these in the Lagrangian ℒ gives the Dual problem

Weighted sum of training inputs

Maximizing a concave function 

(or minimizing a convex function) 

s.t. 𝜶 ≤ 𝑪 and σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛 = 0 . 

Many methods to solve it.

In the solution, 𝜶 will still be sparse just like the 

hard-margin SVM case. Nonzero 𝛼𝑛 correspond 

to the support vectors 

The dual variables 𝛽 don’t 

appear in the dual problem!Given 𝜶, 𝒘 and 𝑏 can be 

found just like the hard-margin 

SVM case

(Note: For various SVM solvers, can see “Support Vector Machine Solvers” by Bottou and Lin)

Note: if  we ignore the bias term 𝑏 then we don’t 

need to handle the constraint σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛 = 0 

(problem becomes a bit more easy to solve)

Otherwise, the 𝛼𝑛’s are coupled and some opt. techniques 

such as co-ordinate aspect can’t easily applied
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Support Vectors in Soft-Margin SVM
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▪ The hard-margin SVM solution had only one type of support vectors

▪ All lied on the supporting hyperplanes 𝒘⊤𝒙𝑛 + 𝑏 = 1 and 𝒘⊤𝒙𝑛 + 𝑏 = −1 

▪  The soft-margin SVM solution has three types of support vectors (with nonzero 𝛼𝑛)

1. Lying on the supporting hyperplanes

2. Lying within the margin region but still on 

the correct side of the hyperplane

3. Lying on the wrong side of the hyperplane 

(misclassified training examples)

(Proof left as an exercise)
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SVMs via Dual Formulation: Some Comments
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▪ Recall the final dual objectives for hard-margin and soft-margin SVM

           

▪ The dual formulation is nice due to two primary reasons
▪ Allows conveniently handling the margin based constraint (via Lagrangians)

▪ Allows learning nonlinear separators by replacing inner products in 𝐺𝑛𝑚 = 𝑦𝑛𝑦𝑚𝒙𝑛
⊤𝒙𝑚 by 

general kernel-based similarities (more on this when we talk about kernels)

▪ However, dual formulation can be expensive if  𝑁 is large (esp. compared to 𝐷)
▪ Need to solve for 𝑁 variables 𝜶 = [𝛼1, 𝛼2, … , 𝛼𝑁]

▪ Need to pre-compute and store 𝑁 × 𝑁 gram matrix G

▪ Lot of work on speeding up SVM in these settings (e.g., can use co-ord. descent for 𝜶)

Note: Both these ignore the bias term 

𝑏 otherwise will need another 

constraint σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛 = 0
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A Co-ordinate Ascent Algorithm for SVM
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▪ Recall the dual objective of soft-margin SVM (assuming no bias 𝑏)

▪ Focusing on just one of the components of 𝛂 (say 𝛼𝑛), the objective becomes

▪ The above is a simple quadratic maximization of a concave function: Global maxima

▪ If  constraint violated, project 𝛼𝑛 in [0, 𝐶]: If  𝛼𝑛 < 0, set it to 0, if  𝛼𝑛 > 𝐶, set it to 𝐶

▪ Can cycle through each coordinate 𝛼𝑛 in a random or cyclic fashion

argmax
𝟎≤𝛂≤𝐶

 
𝑛=1

𝑁

𝛼𝑛  −
1

2


𝑚,𝑛=1

𝑁

𝛼𝑚𝛼𝑛𝑦𝑚𝑦𝑛𝒙𝑚
⊤ 𝒙𝑛

argmax
𝟎≤𝛼𝑛≤𝐶

 𝛼𝑛 −
1

2
𝛼𝑛

2 𝒙𝑛
2  −

1

2
𝛼𝑛𝑦𝑛 σ𝑚≠𝑛 𝛼𝑚𝑦𝑚𝒙𝑚

⊤  𝒙𝑛

Can compute these in 

the beginning itself

Note that 𝒘 =  σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛𝒙𝑛 

Can efficiently compute it if  we also store 𝒘. 

It is equal to 𝒘⊤𝒙𝑛 − 𝛼𝑛𝑦𝑛 𝒙𝑛
2 



CS771: Intro to ML

Solving for SVM in the Primal
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▪ Maximizing margin subject to constraints led to the soft-margin formulation of SVM

▪ Note that slack 𝜉𝑛 is the same as max{0,1 − 𝑦𝑛 𝒘⊤𝒙𝑛 + 𝑏 }, i.e., hinge loss for (𝒙𝑛, 𝑦𝑛)

▪ Thus the above is equivalent to minimizing the ℓ2 regularized hinge loss 

▪ Sum of slacks is like sum of hinge losses, 𝐶 and 𝜆 play similar roles

▪ Can learn (𝒘, 𝑏) directly by minimizing ℒ(𝒘, 𝑏) using (stochastic)(sub)grad. descent

▪ Hinge-loss version preferred for linear SVMs, or with other regularizers on 𝒘 (e.g., ℓ1)
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SVM: At Test Time
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▪ Prediction for a test point

▪ For linear SVMs, we usually prefer approach 1 since it is faster (just one dot product)

▪ The second approach’s cost scales in the number of support vectors found by SVM 
(i.e., training examples with nonzero 𝛼𝑛). Also need to store them at test time

▪ The second approach is useful (and has to be used) for nonlinear SVMs where 
𝒘 cannot usually be expressed as a finite dimensional vector (more when we talk 
about kernel methods)          

𝑦∗ = sign(𝒘⊤𝒙∗ + 𝑏)

=  sign 
𝑛=1

𝑁

𝛼𝑛𝑦𝑛𝒙𝑛
⊤𝒙∗ + 𝑏 (Approach 2)

(Approach 1)
Dot product similarity of 

the test input 𝒙∗ with the 

training input 𝒙𝑛
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Multi-class SVM
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▪ Multiclass SVMs (assuming 𝐾 > 2 classes) use 𝐾 wt vectors 𝑾 = [𝒘1, 𝒘2, … , 𝒘𝐾]

▪ Like binary SVM, can formulate a maximum-margin problem (without or with slacks)

▪ The version with slack corresponds to minimizing a multi-class hinge loss

ෝ𝑦∗ = argmax𝑘∈{1,2,…,𝐾} 𝒘𝑘
⊤𝒙∗ Prediction at test time:

ℒ 𝑾 =  
𝑛=1

𝑁

max 0, 1 + max
𝑘≠𝑦𝑛

 𝒘𝑘
⊤𝒙𝑛  − 𝒘𝑦𝑛

⊤ 𝒙𝑛 +
𝜆

2


𝑘=1

𝐾

𝒘𝑘
2

Loss=0 if  score on correct class is at least 1 more than score on next best scoring class

Crammer-Singer 

Multi-class SVM

Score on correct class Score on an incorrect class 𝑘 ≠ 𝑦𝑛
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Multi-class Classification using Binary Classification
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▪ Can use binary classifiers to solve multiclass problems

▪ One-vs-All (also called One-vs-Rest): Construct 𝐾 binary classification problems

           

▪ All-Pairs: Learn 𝐾-choose-2 binary classifiers, one for each pair of classes (𝑗, 𝑘)

Solid lines: one-vs-all 

boundaries

Dotted lines: 

Effective multi-class 

boundaries

Positive score if  class 𝑘 wins over 

class 𝑗 in pairwise comparison

Weight vector of the pairwise 

classifier for class 𝑗 and 𝑘Whichever class 𝑘 wins the most 

over other classes (or has the 

largest total scores against all 

other classes) is the prediction
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One-class Classification
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▪ Can we learn from examples of just one class, say positive examples? 

▪ May be desirable if  there are many types of negative examples

▪ One-class classification is an approach to learn using only one class of examples

Pic credit: Refael Chickvashvili 

“Outlier/Novelty Detection” 

problems can also be 

formulated like this
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One-class Classification via SVM-type Methods
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▪ There are two popular SVM-type approaches to solve one-class problems

Origin

Learn a ball of smallest possible radius 

𝑅 centered at location 𝒄 that encloses 

all positive examples (may allow some 

positives to “slack off” and fall outside)

“Support Vector Data Description” (SVDD)

             [Tax and Duin, 2004] 

“One-Class SVM” (OC-SVM)

   [Schölkopf et al., 2001] 

Pretend that origin represents all 

the negative examples (note: 

we aren’t given any of those)

Allow some slack for 

the positive examples

Decision boundary

Supporting hyperplane 

(as in binary SVM)
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One-class Classification via SVM-type Methods
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“Support Vector Data Description” (SVDD)

             [Tax and Duin, 2004] 

Want to keep the ball’s 

radius as small as possible

Want to keep training error 

(sum of slacks) to be small

Want all training examples 

to fall within the ball (up to 

some slack 𝜉𝑛)

Hyperparameter 

𝜈 to trade-off b/w 

the two terms
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One-class Classification via SVM-type Methods
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Origin

“One-Class SVM” (OC-SVM)

   [Schölkopf et al., 2001] 
Maximize the margin 

(similar to binary SVM)

Want to keep training error 

(sum of slacks) to be small

An offset term 

(want it large)

Want a sufficiently 

large score (say 𝜌) 
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Support Vector Regression (SVR)
16

▪ SVR is an SVM variants for regression problems

▪ SVR uses 𝜖-insensitive loss for regression

▪ Like the classification case, SVR also leads to a constrained optimization problem

|𝑦𝑛 − 𝑓 𝒙𝑛 | − 𝜖
Loss

𝜖-insensitive loss

(a.k.a. Vapnik loss)

𝜖−𝜖

Zero loss for small errors 

(say up to 𝜖); absolute 

loss for larger errors

𝑦𝑛 −  𝑓(𝒙𝑛)
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Next class
17

▪Nonlinear learning via Kernel Methods
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