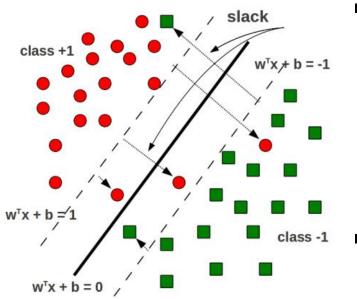
Support Vector Machines (contd)

CS771: Introduction to Machine Learning Pivush Rai

Soft-Margin SVM

- Goal: Still want to maximize the margin such that
 - Soft-margin constraints $y_n(w^T x_n + b) \ge 1 \xi_n$ are satisfied for all training ex.
 - Do not have too many margin violations (sum of slacks $\sum_{n=1}^{N} \xi_n$ should be small)



The objective func. for soft-margin SVM

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi}} f(\boldsymbol{w},b,\boldsymbol{\xi}) = \frac{||\boldsymbol{w}||^2}{2} + C \sum_{n=1}^{N} \xi_n$$

subject to $y_n(\boldsymbol{w}^T \boldsymbol{x}_n + b) \ge 1 - \xi_n, \quad \xi_n \ge 0 \qquad n = 1, \dots, N$

- Hyperparameter C controls the trade off between large margin and small training error (need to tune)
 - Too large C: small training error but also small margin (bad)
 - Too small C: large margin but large training error (bad)

CS771: Intro to ML

Solving Soft-Margin SVM

Recall the soft-margin SVM optimization problem

$$\min_{\boldsymbol{w}, b, \boldsymbol{\xi}} f(\boldsymbol{w}, b, \boldsymbol{\xi}) = \frac{||\boldsymbol{w}||^2}{2} + C \sum_{n=1}^{N} \xi_n$$

subject to $1 \le y_n(\boldsymbol{w}^T \boldsymbol{x}_n + b) + \xi_n, \quad -\xi_n \le 0 \qquad n = 1, \dots, N$

- Here $\boldsymbol{\xi} = [\xi_1, \xi_2, \dots, \xi_N]$ is the vector of slack variables
- Introduce Lagrange multipliers α_n , β_n for each constraint and solve Lagrangian

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi}} \max_{\alpha \ge 0,\boldsymbol{\beta} \ge 0} \mathcal{L}(\boldsymbol{w},b,\boldsymbol{\xi},\alpha,\beta) = \frac{||\boldsymbol{w}||^2}{2} + C\sum_{n=1}^N \xi_n + \sum_{n=1}^N \alpha_n \{1 - y_n(\boldsymbol{w}^T \boldsymbol{x}_n + b) - \xi_n\} - \sum_{n=1}^N \beta_n \xi_n$$

- The terms in red color above were not present in the hard-margin SVM
- Two set of dual variables $\boldsymbol{\alpha} = [\alpha_1, \alpha_2, ..., \alpha_N]$ and $\boldsymbol{\beta} = [\beta_1, \beta_2, ..., \beta_N]$
- Will eliminate the primal var w, b, ξ to get dual problem containing the dual variables

CS771: Intro to ML

Solving Soft-Margin SVM
The Lagrangian problem to solve

$$\lim_{w,b,\xi} \max_{\alpha \ge 0,\beta \ge 0} \mathcal{L}(w, b, \xi, \alpha, \beta) = \frac{||w||^2}{2} + +C \sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n \{1 - y_n (w^T x_n + b) - \xi_n\} - \sum_{n=1}^{N} \beta_n \xi_n$$

- Take (partial) derivatives of $\mathcal L$ w.r.t. w, b, and ξ_n and setting to zero gives

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{w}} = 0 \Rightarrow \boxed{\boldsymbol{w} = \sum_{n=1}^{N} \alpha_n y_n \boldsymbol{x}_n}, \frac{\partial \mathcal{L}}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0, \frac{\partial \mathcal{L}}{\partial \xi_n} = 0 \Rightarrow \boldsymbol{C} - \alpha_n - \beta_n = 0$$

The dual variables $oldsymbol{eta}$ don't

- Using $C \alpha_n \beta_n = 0$ and $\beta_n \ge 0$, we have $\alpha_n \le C$ (for hard-margin, $\alpha_n \ge 0$)
- ${\ensuremath{\,^\circ}}$ Substituting these in the Lagrangian ${\ensuremath{\mathcal L}}$ gives the Dual problem

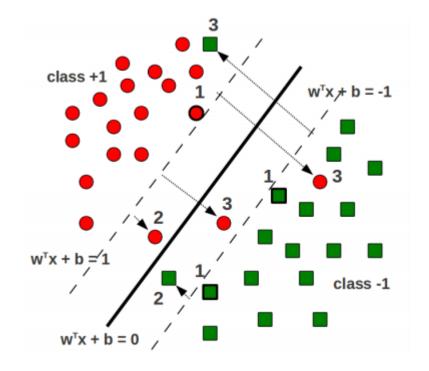
Given
$$\boldsymbol{\alpha}$$
, \boldsymbol{w} and \boldsymbol{b} can be
found just like the hard-margin
SVM case

Maximizing a concave function
(or minimizing a convex function)
s.t. $\boldsymbol{\alpha} \leq \boldsymbol{C}$ and $\sum_{n=1}^{N} \alpha_n y_n = 0$.
Many methods to solve it.

Maximizing a convex function)
(or minimizing a convex f

Support Vectors in Soft-Margin SVM

- The hard-margin SVM solution had only one type of support vectors
 - All lied on the supporting hyperplanes $w^T x_n + b = 1$ and $w^T x_n + b = -1$
- The soft-margin SVM solution has <u>three</u> types of support vectors (with nonzero α_n)



1. Lying on the supporting hyperplanes

- 2. Lying within the margin region but still on the correct side of the hyperplane
- 3. Lying on the wrong side of the hyperplane (misclassified training examples)

(Proof left as an exercise)

SVMs via Dual Formulation: Some Comments

Recall the final dual objectives for hard-margin and soft-margin SVM

Hard-Margin SVM:
$$\max_{\alpha \geq 0} \mathcal{L}_D(\alpha) = \alpha^{\top} \mathbf{1} - \frac{1}{2} \alpha^{\top} \mathbf{G} \alpha$$

Soft-Margin SVM: $\max_{\alpha \leq C} \mathcal{L}_D(\alpha) = \alpha^{\top} \mathbf{1} - \frac{1}{2} \alpha^{\top} \mathbf{G} \alpha$

Note: Both these ignore the bias term *b* otherwise will need another constraint $\sum_{n=1}^{N} \alpha_n y_n = 0$

The dual formulation is nice due to two primary reasons

- Allows conveniently handling the margin based constraint (via Lagrangians)
- Allows learning nonlinear separators by replacing inner products in $G_{nm} = y_n y_m x_n^T x_m$ by general kernel-based similarities (more on this when we talk about kernels)
- However, dual formulation can be expensive if N is large (esp. compared to D)
 - Need to solve for N variables $\boldsymbol{\alpha} = [\alpha_1, \alpha_2, ..., \alpha_N]$
 - Need to pre-compute and store $N \times N$ gram matrix **G**
- Lot of work on speeding up SVM in these settings (e.g., can use co-ord. descent for lpha)

A Co-ordinate Ascent Algorithm for SVM

• Recall the dual objective of soft-margin SVM (assuming no bias b)

λŢ

$$\operatorname{argmax}_{0 \leq \alpha \leq C} \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n x_m^{\mathsf{T}} x_n$$

$$\operatorname{Note that} w = \sum_{n=1}^{N} \alpha_n y_n x_n$$

$$\operatorname{Focusing on just one of the components of } \alpha \text{ (say } \alpha_n), \text{ the objective becomes}$$

$$\operatorname{Can \ compute \ these \ in \ the \ beginning \ itself}}_{\operatorname{Can \ compute \ these \ in \ the \ beginning \ itself}} \alpha_n - \frac{1}{2} \alpha_n^2 \|x_n\|^2 - \frac{1}{2} \alpha_n y_n \sum_{m \neq n} \alpha_m y_m x_m^{\mathsf{T}} x_n$$

- The above is a simple quadratic maximization of a concave function: Global maxima
- If constraint violated, project α_n in [0, C]: If $\alpha_n < 0$, set it to 0, if $\alpha_n > C$, set it to C
- Can cycle through each coordinate α_n in a random or cyclic fashion

Solving for SVM in the Primal

• Maximizing margin subject to constraints led to the soft-margin formulation of SVM

$$\begin{aligned} \arg\min_{\boldsymbol{w},b,\boldsymbol{\xi}} \frac{||\boldsymbol{w}||^2}{2} + C \sum_{n=1}^{N} \xi_n \\ \text{subject to} \quad y_n(\boldsymbol{w}^T \boldsymbol{x}_n + b) \geq 1 - \xi_n, \quad \xi_n \geq 0 \qquad n = 1, \dots, N \end{aligned}$$

- Note that slack ξ_n is the same as $\max\{0, 1 y_n(w^T x_n + b)\}$, i.e., hinge loss for (x_n, y_n)
- $\$ Thus the above is equivalent to minimizing the ℓ_2 regularized hinge loss

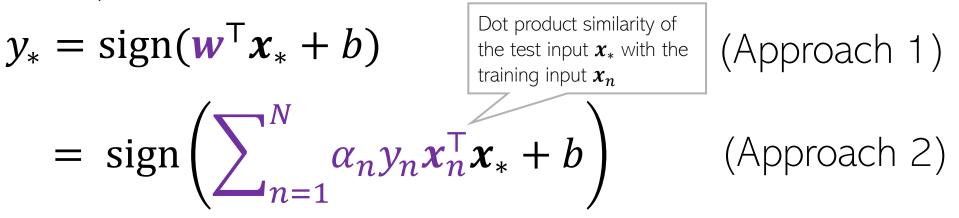
$$\mathcal{L}(\boldsymbol{w}, b) = \sum_{n=1}^{N} \max\{0, 1 - y_n(\boldsymbol{w}^{\top}\boldsymbol{x}_n + b)\} + \frac{\lambda}{2}\boldsymbol{w}^{\top}\boldsymbol{w}$$

- Sum of slacks is like sum of hinge losses, C and λ play similar roles
- Can learn (w, b) directly by minimizing $\mathcal{L}(w, b)$ using (stochastic) (sub)grad. descent
 - Hinge-loss version preferred for linear SVMs, or with other regularizers on w (e.g., ℓ_1)

CS771: Intro to ML

SVM: At Test Time

Prediction for a test point



• For linear SVMs, we usually prefer approach 1 since it is faster (just one dot product)

- The second approach's cost scales in the number of support vectors found by SVM (i.e., training examples with nonzero α_n). Also need to store them at test time
- The second approach is useful (and has to be used) for nonlinear SVMs where *w* cannot usually be expressed as a finite dimensional vector (more when we talk about kernel methods)

Multi-class SVM

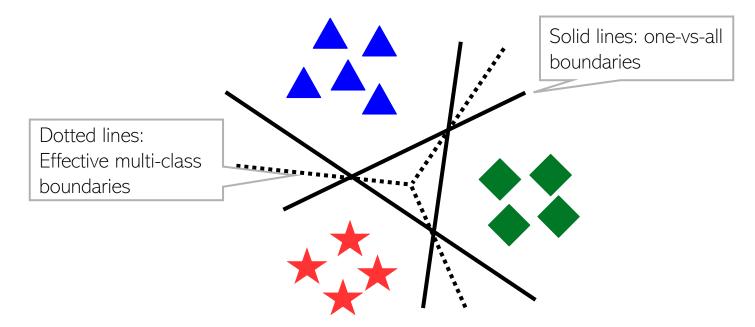
• Multiclass SVMs (assuming K > 2 classes) use K wt vectors $W = [w_1, w_2, ..., w_K]$

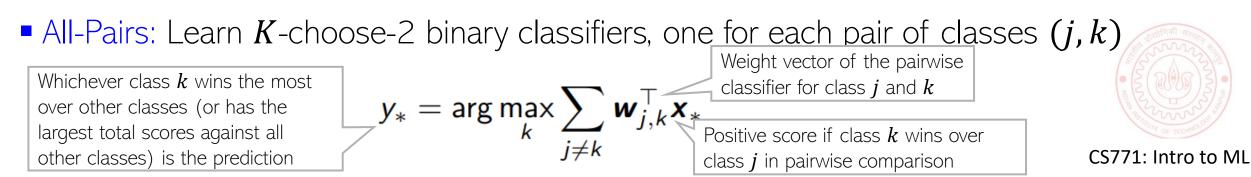
Prediction at test time:
$$\widehat{y}_* = \operatorname{argmax}_{k \in \{1,2,\dots,K\}} w_k^T x_*$$

Like binary SVM, can formulate a maximum-margin problem (without or with slacks)

Multi-class Classification using Binary Classification

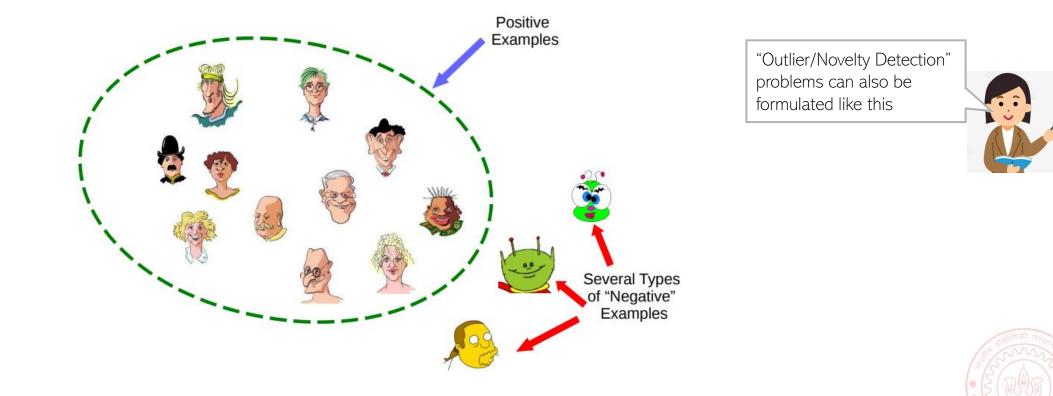
- Can use binary classifiers to solve multiclass problems
- One-vs-All (also called One-vs-Rest): Construct K binary classification problems





One-class Classification

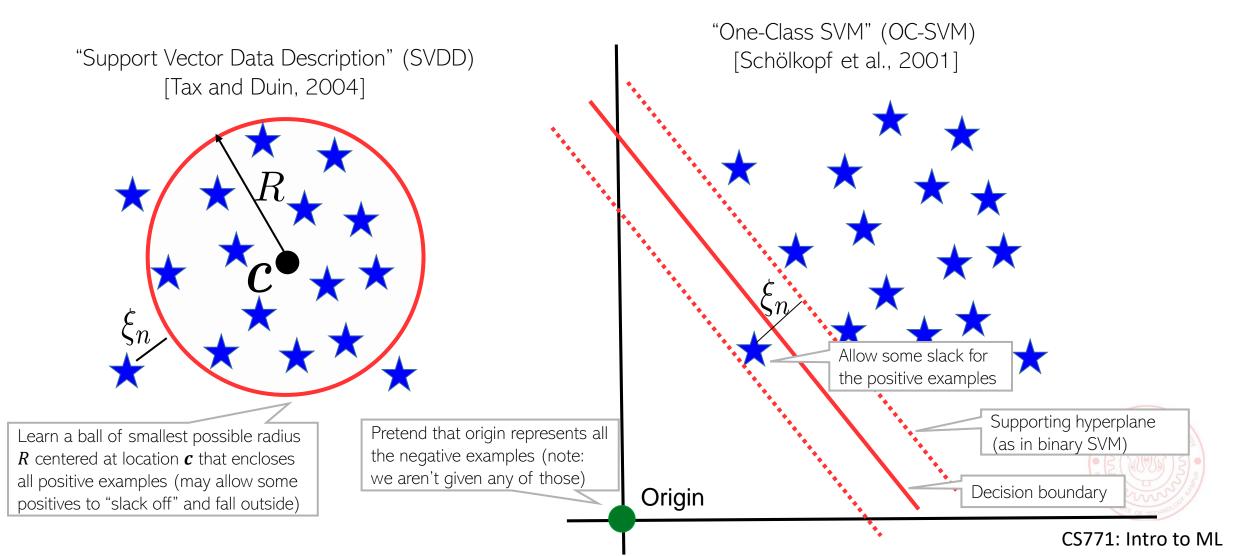
- Can we learn from examples of just one class, say positive examples?
- May be desirable if there are many types of negative examples



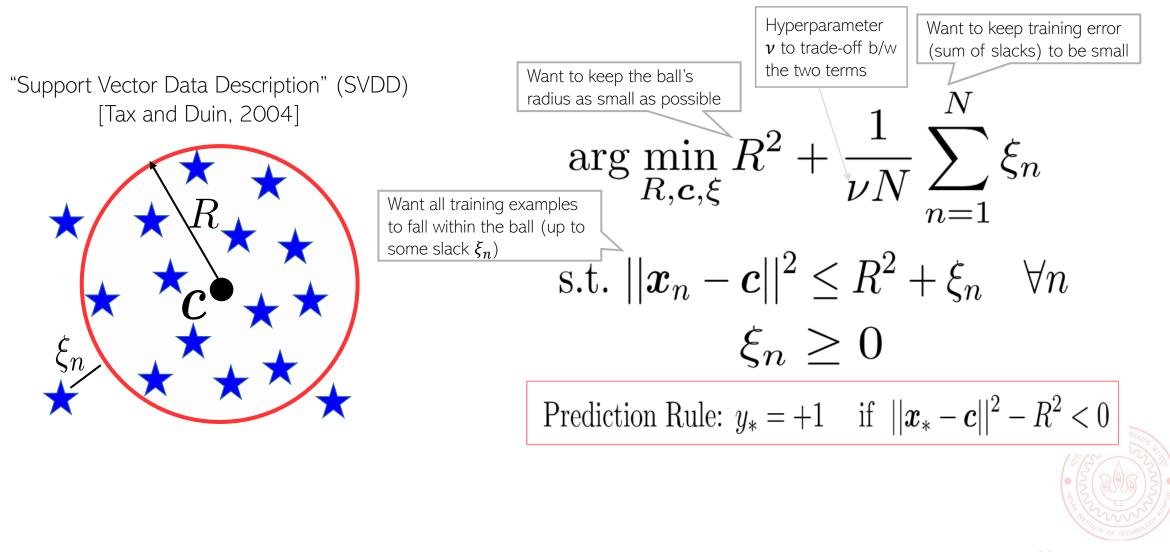
One-class classification is an approach to learn using only one class of examples

One-class Classification via SVM-type Methods

There are two popular SVM-type approaches to solve one-class problems



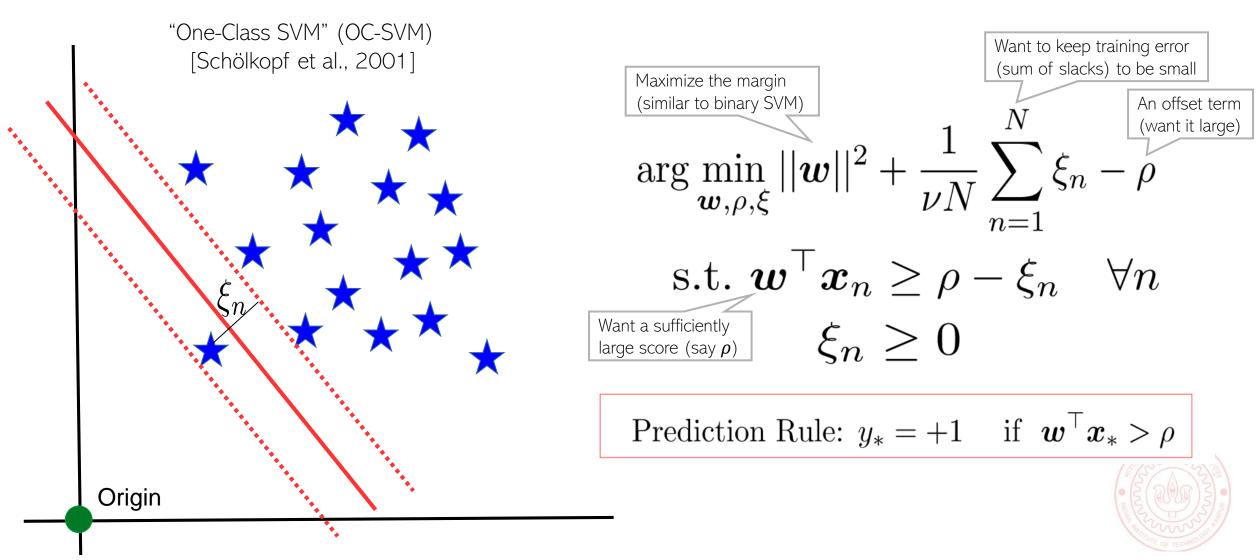
One-class Classification via SVM-type Methods



CS771: Intro to ML

14

One-class Classification via SVM-type Methods

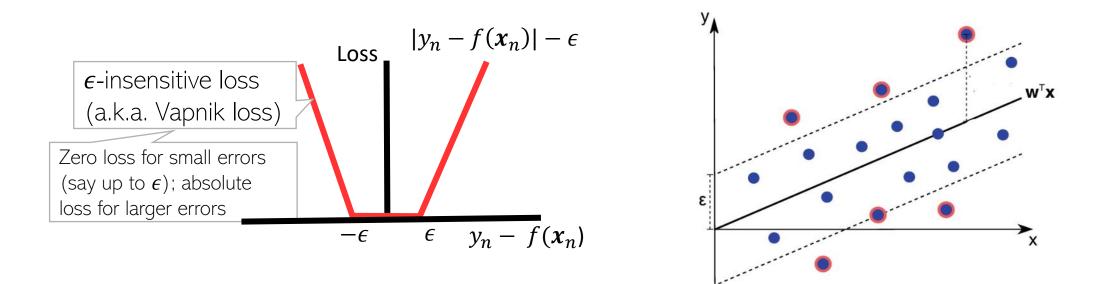


CS771: Intro to ML

15

Support Vector Regression (SVR)

- SVR is an SVM variants for regression problems
- SVR uses ϵ -insensitive loss for regression



Like the classification case, SVR also leads to a constrained optimization problem

16

Next class

Nonlinear learning via Kernel Methods

