

Soft-Margin SVM

= Goal: Still want to maximize the margin such that

= Soft-margin constraints y,(w'x,, + b) = 1 — &, are satisfied for all training ex.

= Do not have too many margin violations (sum of slacks Y:N_, &, should be small)

om ./ slack * The objective func. for soft-margin SVM
class +1 .' .‘ O //
O A S Wxpb=-1 5 N
s 9" Y min f(w, b, &) = 1L oS,
oo L w,b, & 2 —
® R 0] —
& = w subject to yn(w' xp+b) >1-(,, £, >0 n=1,...,N
/@ s B
wx+b=1 / " BN
/ ')_,/. @ W oassa w Hyperparameter C controls the trade off between large margin
sbsn,” W = and small training error (need to tune)

" Joo large C: small training error but also small margin (bad)
= Joo small C: large margin but large training error (bad)

CS771: Intro to ML

Solving Soft-Margin SVM

* Recall the soft-margin SVM optimization problem

2 N
w
min f(w, b, &) = [wl +C En
w,b,& . n=1
subject to 1 < y,(w'x, + b)+&,, —&, <0 n=1,..., N

= Here & = [&4, &5, ..., En] is the vector of slack variables

" Introduce Lagrange multipliers a,,, 5, for each constraint and solve Lagrangian

N N N
.) l|w||? T ,
wn:lle a}nagg}ﬂ L(w,b, & a,3) = > + +C ,?Zl En + ,?21 an{l — yn(Ww xn,+ b)—E&n}— ”E:1 Bnén

" The terms in red color above were not present in the hard-margin SVM
* Two set of dual variables @ = a4, a5, ..., ay] and B = |f1, B2, ..., By]
= Will eliminate the primal var w, b, § to get dual problem containing the dual variables

CS771: Intro to ML

Solving Soft-Margin SVM

* The Lagrangian problem to solve

Note: if we ignore the bias term b then we don't
need to handle the constraint YN_; a3, = 0
(problem becomes a bit more easy to solve)

ll/

Otherwise, the a,,'s are coupled and some opt. techniques e’
such as co-ordinate aspect can't easily applied

2
Di-,u.{j) || || ++CZ£H+ZQ {I_Yn(w xn"‘b) ‘SH} Z 5:}6;1

min max L(w,b,&,
w,b.€ «>0,8>0 n—=1
= Take (partial) derivatives of L wirt. w, b, and &,, and setting to zero gives
Weighted sum of training inputs
oL _ - e oL
a_W_ = —;anj"nxna ﬁ_oz}’zanyn—o a£n=0=>c—cen—,8n:0

" Using C — a,

" Substituting these in the Lagrangian L gives the Dual problem

— B, =0and B, = 0, we have a,, < C (for hard-margin, a,, = 0)

The dual variables don't

Given a, w and b can be
found just like the hard-margin
SVM case

max
C.B>0

appear in the dual problem!

Zan — — Z AmQnYmYn(X x,,) s.t.

m,n=1

N
Z apyn =0
n=1

Maximizing a concave function
(or minimizing a convex function)
sta<Cand¥N_,a,y,=0.
Many methods to solve it.

o

N PR S
mgé Lpla) = a1 5 Ga

1 In the solution, e will still be sparse just like the
hard-margin SVM case. Nonzero a,, correspond
to the support vectors

(Note: For various SVM solvers, can see “Support Vector Machine Solvers §7Z6ltt(4 ngﬁg IH'?) ML

Support Vectors in Soft-Margin SVM

" The hard-margin SVM solution had only one type of support vectors
= Al lied on the supporting hyperplanes w'x,, + b = 1andw'x,, + b = —1

* The soft-margin SVM solution has three types of support vectors (with nonzero a;,)

1. Lying on the supporting hyperplanes
O 2. Lying within the margin region but still on
the correct side of the hyperplane

class -1 3. Lying on the wrong side of the hyperplane
(misclassified training examples)

(Proof left as an exercise)
CS771: Intro to ML

SVMs via Dual Formulation: Some Comments

» Recall the final dual objectives for hard-margin and soft-margin SVM

1
Hard-Margin SVM: max Lp(a)=a ' 1— EaTGa

a>0

1
Soft-Margin SVM: max Lo(a)=a'l-— EaTGa

" The dual formulation is nice due to two primary reasons

Note: Both these ignore the bias term
b otherwise will need another

constraint YN_, a,y, = 0

= Allows conveniently handling the margin based constraint (via Lagrangians)

= Allows learning nonlinear separators by replacing inner products in Gy = ynymanxm by
general kernel-based similarities (more on this when we talk about kernels)

" However, dual formulation can be expensive it N is large (esp. compared to D)

* Need to solve for N variables a = [aq, a5, ..., ay]
= Need to pre-compute and store N X N gram matrix G

" | ot of work on speeding up SVM in these settings (e.g., can use co-ord. descent for &)

CS771: Intro to ML

A Co-ordinate Ascent Algorithm for SVM

» Recall the dual objective of soft-margin SVM (assuming no bias b)

N 1N
argmax 2 a, — = Uy Oy Vi, Vi Xy Xy

0<as<C n=1 2 mn=1
Note that w = YN_; a,, v, x,,

" Focusing on just one of the components of & (say a,,), the objective becomes

Can efficiently compute it if we also store w.

Can compute these in . - 5
Itis equal to w' X, — a1l x5 ||

the beginning itself | .| IS equal tow
1 ot | IR RO S

2 2 ,', T \
argmax o, ~Un ”xn” - anyri\ m#n CmYmXm Xn /
O< < 2 2 \‘x

<an<C

e
-
~ -
~~~~~
“““““
________
___________________

" The above is a simple quadratic maximization of a concave function: Global maxima
= |f constraint violated, project a, in [0,C]. If @, <0, setitto O, if a,, > C, setitto C
» Can cycle through each coordinate «,, in a random or cyclic fashion

CS771: Intro to ML



Solving for SVM in the Primal

* Maximizing margin subject to constraints led to the soft-margin formulation of SVM

subject to yn(wa,, +b)>1-&, £ >0 n=1,..., N

= Note that slack &, is the same as max{0,1 — y,(w'x,, + b)}, i.e., hinge loss for (x,, ;)

" Thus the above is equivalent to minimizing the €, regularized hinge loss

N
A
L(w,b) = Z max{0,1 — y,(w'x,+ b)} + EWTW

n=1

= Sum of slacks is like sum of hinge losses, C and A play similar roles

= Can learn (w, b) directly by minimizing L(w, b) using (stochastic) (sub)grad. descent
= Hinge-loss version preferred for linear SVMs, or with other regularizers on w (€.g., £1)

CS771: Intro to ML



SVM: At Test Time

* Prediction for a test point

Dot product similarity of

y* — Slgn(WTx* + b) the test input x, with the (ApprOaCh 1 )

training input x,,

N
sign (Z Uy Vi X Xy + b) (Approach 2)

n=1

" For linear SVMs, we usually prefer approach 1 since it is faster (just one dot product)

" The second approach’s cost scales in the number of support vectors found by SVM
(i.e., training examples with nonzero a;,). Also need to store them at test time

" The second approach is useful (and has to be used) for nonlinear SVMs where
w cannot usually be expressed as a finite dimensional vector (more when we talk

about kernel methods)
CS771: Intro to ML



Multi-class SVM

* Multiclass SVMs (assuming K > 2 classes) use K wt vectors W = [wq,w,, ..., W]
Prediction at test time:  J: = argmaXgegq 2,.. k) Wi X,

" | ike binary SVM, can formulate a maximum-margin problem (without or with slacks)

; - w2 ; s wkll?
W = argmin E —_— w = argmmE —|—CE £n
w 2 w 2
k=1 n=1
T T T T
st. w, x,>w,x,+1 Vk#y, st. w, x, 2w, x,+1-& Vk#yn
Score on correct class Score on an incorrect class k # y,

Crammer-Singer

= The version with slack corresponds to minimizing a multi-class hinge loss 0 - e
N 1K
L(W) = E max{01+maxwx —wa}+—E we||?
( ) - Ky, k*n Yn'tn 2 k=1” k”

Loss=0 if score on correct class is at least 1 more than score on next best scoring class
CS771: Intro to ML



Multi-class Classification using Binary Classification

" Can use binary classifiers to solve multiclass problems

" One-vs-All (also called One-vs-Rest): Construct K binary classification problems

Solid lines: one-vs-all
boundaries

Dotted lines:
Effective multi-class
boundaries

= All-Pairs: Learn K-choose-2 binary classifiers, one for each pair of classes (j, k)

Weight vector of the pairwise
Whichever class k wins the most classifier for class j and k
over other classes (or has the V. = arg max E ijkx*
largest total scores against all k < P Positive score if class k wins over
other classes) is the prediction J#

class j in pairwise comparison CS771: Intro to ML



One-class Classification

» Can we learn from examples of just one class, say positive examples?

* May be desirable if there are many types of negative examples

Positive
" Examples
= / “Outlier/Novelty Detection”
i Wi problems can also be A
> formulated like this >0
i voa /

= Several Types
\of “Negative”
Examples

» One-class classification is an approach to learn using only one class of examples

Pic credit: Refael Chickvashvili CS771: Intro to ML



One-class Classification via SVM-type Methods

" There are two popular SVM-type approaches to solve one-class problems

"One-Class SVM" (OC-SVM)

"Support Vector Data Description” (5VDD) [Scholkopf et al., 2001]

[Tax and Duin, 2004 ]

* [

én
/ Allow some slack for
* * the positive examples
Pretend that origin represents all

the negative examples (note:
we aren't given any of those)

Supporting hyperplane

Learn a ball of smallest possible radius (as in binary SYM)

R centered at location ¢ that encloses
all positive examples (may allow some
positives to “slack off" and fall outside)

~1 Decision boundary

CS771: Intro to ML




One-class Classification via SVM-type Methods

Hyperparameter Want to keep training error
v to trade-off b/w | | (sum of slacks) to be smal

Want to keep the ball's the two terms

"Support Vector Data Description” (SVDD) radius as small as possible

[Tax and Duin, 2004] 1 N
arg min R* 4 E En
vIN ‘
=

R,c,§

[ Want all training examples

* to fall within the ball (up to

some slack &) 9 5
.t @, —c||" <R+, Vn
En = 0

&n =
/
x X ‘ Prediction Rule: y, =41 if [jz, —¢|* = R* < 0 ‘

CS771: Intro to ML



One-class Classification via SVM-type Methods

"One-Class SVYM" (OC-SVM)
[Schoélkopf et al., 2001 ]

Want to keep training error

. : (sum of slacks) to be small
Maximize the margin

(similar to binary SVM) An offset term
(want it large)

N
1
arg min |lw|]® + — Y & —p
vIN —

w,p,&

s.t.w' x, > p—&, Yn

Want a sufficiently
large score (say p) gn > O

‘ Prediction Rule: y, = +1 if w'ax, > p

CS771: Intro to ML



Support Vector Regression (SVR)

" 5VR is an SVM variants for regression problems

" SVR uses e-insensitive loss for regression

I\
—fx)| —€ -
loss  Pn—f(xn)] i
e-insensitive loss ®. e
‘ e
(a.k.a. Vapnik loss) e o
o - o i
Zero loss for small errors sl & .
(say up to €); absolute H I z ®
loss for larger errors . o ©
— ‘ -
€ € Yn-— f(xn) ® X
@

" | ike the classification case, SVR also leads to a constrained optimization problem

CS771: Intro to ML



Next class

= Nonlinear learning via Kernel Methods

CS771: Intro to ML



	Slide 1: Support Vector Machines (contd)
	Slide 2: Soft-Margin SVM
	Slide 3: Solving Soft-Margin SVM
	Slide 4: Solving Soft-Margin SVM
	Slide 5: Support Vectors in Soft-Margin SVM
	Slide 6: SVMs via Dual Formulation: Some Comments
	Slide 7: A Co-ordinate Ascent Algorithm for SVM
	Slide 8: Solving for SVM in the Primal
	Slide 9: SVM: At Test Time
	Slide 10: Multi-class SVM
	Slide 11: Multi-class Classification using Binary Classification
	Slide 12: One-class Classification
	Slide 13: One-class Classification via SVM-type Methods
	Slide 14: One-class Classification via SVM-type Methods
	Slide 15: One-class Classification via SVM-type Methods
	Slide 16: Support Vector Regression (SVR)
	Slide 17: Next class

