
Subgradient Descent: Some Examples
+

Large-Margin Classification (SVM)

CS771: Introduction to Machine Learning

Piyush Rai

CS771: Intro to ML

Sub-gradients
2

▪ For convex non-diff fn, can define sub-gradients at point(s) of non-differentiabilty

▪ For a convex, non-diff function 𝑓(𝒙), sub-gradient at 𝒙∗ is any vector 𝒈 s.t. ∀𝒙

differentiable

 here

non-differentiable

 here

Equation of unique tangent at 𝑥1

𝑓 𝑥1 + 𝒈⊤(𝑥 − 𝑥1)

𝑥1

One extreme tangent at 𝑥2
𝑓 𝑥2 + 𝒈1

⊤(𝑥 − 𝑥2)

The other extreme tangent at 𝑥2
𝑓 𝑥2 + 𝒈2

⊤(𝑥 − 𝑥2)

𝑥2

Region containing all sub-gradients

𝑓 𝒙 ≥ 𝑓 𝒙∗ + 𝒈⊤(𝒙 − 𝒙∗)

𝑓 𝑥 Convex, thus lies

above all its tangents

CS771: Intro to ML

Sub-gradients, Sub-differential, and Some Rules
3

▪ Set of all sub-gradient at a non-diff point 𝒙∗ is called the sub-differential

▪ Some basic rules of sub-diff calculus to keep in mind

▪ Scaling rule: 𝜕 𝑐 ⋅ 𝑓 𝐱 = 𝑐 ⋅ 𝜕𝑓 𝐱 = 𝑐 ⋅ 𝐯 ∶ 𝐯 ∈ 𝜕𝑓 𝐱

▪ Sum rule: 𝜕 𝑓 𝐱 + 𝑔 𝐱 = 𝜕𝑓 𝐱 + 𝜕𝑔 𝐱 = 𝐮 + 𝐯 ∶ 𝐮 ∈ 𝜕𝑓 𝐱 , 𝐯 ∈ 𝜕𝑔 𝐱

▪ Affine trans: 𝜕𝑓 𝐚⊤𝐱 + 𝑏 = 𝐚 ⋅ 𝜕𝑓 𝑡 = 𝐚 ⋅ 𝑐: 𝑐 ∈ 𝜕𝑓 𝑡 , where 𝑡 = 𝐚⊤𝐱 + 𝑏

▪ Max rule: If ℎ(𝒙) = max{𝑓(𝒙), 𝑔(𝒙)} then we calculate 𝜕ℎ(𝒙) at 𝒙∗ as

▪ If 𝑓 𝒙∗ > 𝑔 𝒙∗ , 𝜕ℎ 𝒙∗ = 𝜕𝑓 𝒙∗ , If 𝑔 𝒙∗ > 𝑓 𝒙∗ , 𝜕ℎ 𝒙∗ = 𝜕𝑔 𝒙∗

▪ If 𝑓 𝒙∗ = 𝑔 𝒙∗ , 𝜕ℎ 𝒙∗ = {𝛼𝐚 + 1 − 𝛼 𝐛 ∶ 𝐚 ∈ 𝜕𝑓 𝒙∗ , 𝐛 ∈ 𝜕𝑔 𝒙∗ , 𝛼 ∈ 0,1 }

▪ 𝒙∗ is a stationary point for a non-diff function 𝑓(𝒙) if the zero vector belongs to
the sub-differential at 𝑥∗, i.e., 𝟎 ∈ 𝜕𝑓 𝒙∗

𝜕𝑓 𝒙∗ ≜ 𝒈 ∶ 𝑓 𝐱 ≥ 𝑓 𝒙∗ + 𝒈⊤ 𝒙 − 𝒙∗ ∀𝐱

The affine transform rule

is a special case of the

more general chain rule

CS771: Intro to ML

Subgradient For Regression with Absolute Loss
4

▪ Absolute Loss for regression: 𝐿 𝒘 = |𝑦𝑛 − 𝒘⊤𝒙𝑛|

▪ Can use chain and max rule of sub-diff calculus

▪ Assume 𝑡 = 𝑦𝑛 − 𝒘⊤𝒙𝑛. Then 𝒈𝑛 = 𝜕𝐿 𝒘 = −𝒙𝑛𝜕|𝑡|
▪ 𝜕𝐿 𝒘 = −𝒙𝑛 × 1 = −𝒙𝑛 if 𝑡 > 0

▪ 𝜕𝐿 𝒘 = −𝒙𝑛 × −1 = 𝒙𝑛 if 𝑡 < 0

▪ 𝜕𝐿 𝒘 = −𝒙𝑛 × 𝑐 = −𝑐𝒙𝑛 where 𝑐 ∈ [−1, +1] if 𝑡 = 0

▪ If we pick 𝑐 = 0 then 𝒈𝑛 = −sign 𝑡 𝒙𝑛

𝑦𝑛 − 𝒘⊤𝒙𝑛

|𝑦𝑛 − 𝒘⊤𝒙𝑛|

𝑡

|𝑡|

00

𝜕 𝑡 = ቐ
1 if 𝑡 > 0
−1 if 𝑡 < 0
−1, +1 if 𝑡 = 0

Using max rule of sub-

differentials and using

𝑡 = max{𝑡, −𝑡}

Non-differentiable at

𝑦𝑛 − 𝒘⊤𝒙𝑛 = 0

Can now use subgradient descent

or stochastic subgradient descent

using these (sub)gradients

CS771: Intro to ML

Subgradient for Classification with Perceptron Loss
5

▪ Perceptron loss for binary classification: 𝐿 𝑤 = σ𝑛=1
𝑁 max{0, −𝑦𝑛𝒘⊤𝒙𝑛}

▪ If we pick 𝑐 = −1 then 𝒈𝑛 = −𝕀 𝑦𝑛𝒘⊤𝒙𝑛 ≤ 0 𝑦𝑛𝒙𝑛

▪ Stochastic subgradient descent for Perceptron loss will have updates of the form

Subgradients w.r.t. 𝒘
Using max rule of

sub-differentials

𝒈𝑛 = ൞

0 for 𝑦𝑛𝒘⊤𝒙𝑛 > 0

−𝑦𝑛𝒙𝑛 for 𝑦𝑛𝒘⊤𝒙𝑛 < 0

𝑐𝑦𝑛𝒙𝑛 for 𝑦𝑛𝒘⊤𝒙𝑛 = 0 (where c ∈ [−1,0])

if 𝑦𝑛𝒘(𝑡)⊤
𝒙𝑛 ≤ 0

𝒘(𝑡+1) = 𝒘(𝑡) + 𝜂𝑡𝑦𝑛𝒙𝑛

Meaning: The current weight

vector does not correctly

predict the label of 𝒙𝑛

“mistake-driven” update

(update only when the current

weights make a mistake)

CS771: Intro to ML

▪ Initialize 𝒘 as 𝒘(0), set 𝜂𝑡 = 1
▪ For iteration 𝑡 = 0,1,2, … (or until convergence)

▪ Pick a training example (𝑥𝑛, 𝑦𝑛) randomly

▪ If 𝑦𝑛𝒘(𝑡)⊤
𝒙𝑛 ≤ 0 (i.e., mistake) then update

Perceptron Algorithm for Binary Classification
6

▪ Stochastic sub-grad desc on Perceptron loss is also known as the Perceptron algorithm

▪ An example of an online learning algorithm (processes one training ex. at a time)

▪ Assuming 𝒘(0) = 0, easy to see that the final 𝒘 has the form 𝒘 = σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛𝒙𝑛

▪ 𝛼𝑛 is total number of mistakes made by the algorithm on example (𝒙𝑛, 𝑦𝑛)

▪ Important: 𝒘 in many classification/regression models can be written as 𝒘 = σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛𝒙𝑛

Note: An example

may get chosen

several times during

the entire run

Meaning of 𝛼𝑛 may be different

depending on the problem

Updates are “corrective”: If 𝑦𝑛 = +1

and 𝒘⊤𝒙𝑛 < 0, after the update

𝒘⊤𝒙𝑛 will be less negative. Likewise,

if 𝑦𝑛 = −1 and 𝒘⊤𝒙𝑛 > 0, after the

update 𝒘⊤𝒙𝑛 will be less positive

If training data is linearly separable,

the Perceptron algo will converge in a

finite number of iterations

(Block & Novikoff theorem)
𝒘(𝑡+1) = 𝒘(𝑡) + 𝑦𝑛𝒙𝑛

Thus 𝒘 is In the span

of training inputs

CS771: Intro to ML

Perceptron and (lack of) Margins
7

▪ Perceptron would learn a hyperplane (of many possible) that separates the classes

▪ Doesn’t guarantee any “margin” around the hyperplane
▪ The hyperplane can get arbitrarily close to some training example(s) on either side

▪ This may not be good for generalization performance

▪ Can artificially introduce margin by changing the mistake condition to 𝑦𝑛𝒘⊤𝒙𝑛 ≤ 𝛾

▪ Methods like logistic regression also do not guarantee large margins

▪ Support Vector Machine (SVM) does it directly by learning the max. margin hyperplane

Basically, it will learn the hyperplane

which corresponds to the 𝒘 that

minimizes the Perceptron loss

𝛾 > 0 is some pre-specified margin

Kind of an “unsafe” situation to have

– ideally would like it to be

reasonably away from closest

training examples from either class

CS771: Intro to ML

Learning Large-Margin
Hyperplanes

8

CS771: Intro to ML

Support Vector Machine (SVM)
9

▪Hyperplane based classifier. Ensures a large margin around the hyperplane

▪ Will assume a linear hyperplane to be of the form 𝒘⊤𝒙 + 𝑏 = 0 (nonlinear ext. later)

▪ Two other “supporting” hyperplanes defining a “no man’s land”
▪ Ensure that zero training examples fall in this region (will relax later)

▪ The SVM idea: Position the hyperplane s.t. this region is as “wide” as possible

𝒘⊤𝒙 + 𝑏 = 0

𝒘⊤𝒙 + 𝑏 = −1

𝒘⊤𝒙 + 𝑏 = 1
Class +1

𝒘⊤𝒙 + 𝑏 ≥ 1

Class -1

𝒘⊤𝒙 + 𝑏 ≤ −1

𝒘⊤𝒙𝑛 + 𝑏 ≥ 1 if 𝑦𝑛 = +1

𝒘⊤𝒙𝑛 + 𝑏 ≤ −1 if 𝑦𝑛 = −1

𝑦𝑛(𝒘⊤𝒙𝑛 + 𝑏) ≥ 1 ∀𝑛

𝛾 = min
1≤𝑛≤𝑁

𝒘⊤𝒙𝑛 + 𝑏

𝒘

“Margin” of the hyperplane

Distance from the closest

point (on either side)

Total margin =
2

𝒘

Want the hyperplane (𝒘, 𝑏) such

that this margin is maximized

(max-margin hyperplane) and

𝑦𝑛(𝒘⊤𝒙𝑛 + 𝑏) ≥ 1 ∀𝑛

=
1

𝒘

Constrained

optimization

problem The 1/-1 in supp. h.p.

equations is arbitrary; can

replace by any scalar m/-m

and solution won’t change,

except a simple scaling of 𝒘

SVM originally proposed by Vapnik

and colleagues in early 90s

Distance of an input

𝒙𝑛 from the h.p.

CS771: Intro to ML

Hard-Margin SVM
10

▪ Hard-Margin: Every training example must fulfil margin condition 𝑦𝑛(𝒘⊤𝒙𝑛 + 𝑏) ≥ 1

▪ Meaning: Must not have any example in the no-man’s land

𝒘⊤𝒙 + 𝑏 = 0

𝒘⊤𝒙 + 𝑏 = −1

𝒘⊤𝒙 + 𝑏 = 1
Class +1

𝒘⊤𝒙 + 𝑏 ≥ 1

Class -1

𝒘⊤𝒙 + 𝑏 ≤ −1

▪ Also want to maximize margin 2𝛾 =
2

𝒘

▪ Equivalent to minimizing 𝒘 2 or
𝒘 2

2

▪ The objective func. for hard-margin SVM

Constrained optimization

problem with 𝑁 inequality

constraints. Objective and

constraints both are convex

Lagrange based

optimization can be

used to solve it

CS771: Intro to ML

Soft-Margin SVM (More Commonly Used)
11

▪ Allow some training examples to fall within the
no-man’s land (margin region)

▪ Even okay for some training examples to fall
totally on the wrong side of h.p.

▪ Extent of “violation” by a training input (𝒙𝑛, 𝑦𝑛)
is known as slack 𝜉𝑛 ≥ 0

▪ 𝜉𝑛 > 1 means totally on the wrong side

 𝒘⊤𝒙𝑛 + 𝑏 ≥ 1 − 𝜉𝑛 if 𝑦𝑛 = +1

𝒘⊤𝒙𝑛 + 𝑏 ≤ −1 + 𝜉𝑛 if 𝑦𝑛 = −1

𝑦𝑛(𝒘⊤𝒙𝑛 + 𝑏) ≥ 1 − 𝜉𝑛 ∀𝑛
𝜉𝑛 = max{0,1 − 𝑦𝑛(𝒘⊤𝒙𝑛 + 𝑏)}

Note/verify that the slack

for each training example

is just the hinge loss

Soft-margin constraint

Helps in getting a wider

margin (and better

generalization)

CS771: Intro to ML

Soft-Margin SVM (Contd)
12

▪ Goal: Still want to maximize the margin such that

▪ Soft-margin constraints 𝑦𝑛(𝒘⊤𝒙𝑛 + 𝑏) ≥ 1 − 𝜉𝑛 are satisfied for all training ex.

▪ Do not have too many margin violations (sum of slacks σ𝑛=1
𝑁 𝜉𝑛 should be small)

▪ The objective func. for soft-margin SVM

▪ Hyperparameter 𝐶 controls the trade off between large margin

and small training error (need to tune)

▪ Too large 𝐶: small training error but also small margin (bad)

▪ Too small 𝐶: large margin but large training error (bad)

Constrained optimization

problem with 2𝑁 inequality

constraints. Objective and

constraints both are convex

Sum of slacks is like

the training error

Inversely prop.

to margin
training

error

Trade-off hyperparam

Lagrange based optimization

can be used to solve it

CS771: Intro to ML

Solving the SVM Problem

13

CS771: Intro to ML

Solving Hard-Margin SVM
14

▪ The hard-margin SVM optimization problem is

▪ A constrained optimization problem. One option is to solve using Lagrange’s method

▪ Introduce Lagrange multipliers 𝛼𝑛 (𝑛 = 1, … , 𝑁), one for each constraint, and solve

▪ 𝜶 = [𝛼1, 𝛼2, … , 𝛼𝑁] denotes the vector of Lagrange multipliers

▪ It is easier (and helpful; we will soon see why) to solve the dual: min and then max

CS771: Intro to ML

Solving Hard-Margin SVM
15

▪ The dual problem (min then max) is

▪ Take (partial) derivatives of ℒ w.r.t. 𝒘 and 𝑏 and setting them to zero gives (verify)

▪ The solution 𝒘 is simply a weighted sum of all the training inputs

▪ Substituting 𝑤 = σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛𝒙𝑛 in the Lagrangian, we get the dual problem as (verify)

IMPORTANT: inputs appear only as pairwise

dot products. This will be useful later on when

we make SVM nonlinear using kernel methods

𝛼𝑛 tells us how important

training example (𝒙𝑛, 𝑦𝑛) is

G is an 𝑁 × 𝑁 p.s.d. matrix, also called the Gram
Matrix, 𝐺𝑛𝑚 = 𝑦𝑛𝑦𝑚𝒙𝑛

⊤𝒙𝑚 , and 1 is a vector of all 1s
Maximizing a concave function

(or minimizing a convex function)

s.t. 𝜶 ≥ 𝟎 and σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛 = 0 .

Many methods to solve it.

This is also a “quadratic

program” (QP) – a quadratic

function of the variables 𝜶

(Note: For various SVM solvers, can see “Support Vector Machine Solvers” by Bottou and Lin)

Note: if we ignore the bias term 𝑏 then we don’t

need to handle the constraint σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛 = 0

(problem becomes a bit more easy to solve)

Otherwise, the 𝛼𝑛’s are coupled and

some opt. techniques such as co-

ordinate ascent can’t easily be applied

CS771: Intro to ML

Solving Hard-Margin SVM
16

▪ One we have the 𝛼𝑛’s by solving the dual, we can get 𝒘 and 𝑏 as

▪ A nice property: Most 𝛼𝑛’s in the solution will be zero (sparse solution)

𝒘⊤𝒙 + 𝑏 = 0

𝒘⊤𝒙 + 𝑏 = −1

𝒘⊤𝒙 + 𝑏 = 1
▪ Reason: KKT conditions

▪ For the optimal 𝛼𝑛’s, we must have

▪ Thus 𝛼𝑛 nonzero only if 𝑦𝑛 𝒘⊤𝒙𝑛 + 𝑏 = 1, i.e., the

training example lies on the boundary

▪ These examples are called support vectors

𝛼𝑛 1 − 𝑦𝑛 𝒘⊤𝒙𝑛 + 𝑏 = 0

CS771: Intro to ML

Solving Soft-Margin SVM
17

▪ Recall the soft-margin SVM optimization problem

▪ Here 𝝃 = 𝜉1, 𝜉2, … , 𝜉𝑁 is the vector of slack variables

▪ Introduce Lagrange multipliers 𝛼𝑛, 𝛽𝑛 for each constraint and solve Lagrangian

▪ The terms in red color above were not present in the hard-margin SVM

▪ Two set of dual variables 𝜶 = [𝛼1, 𝛼2, … , 𝛼𝑁] and 𝜷 = [𝛽1, 𝛽2, … , 𝛽𝑁]

▪ Will eliminate the primal var 𝒘, b, 𝝃 to get dual problem containing the dual variables

CS771: Intro to ML

Solving Soft-Margin SVM
18

▪ The Lagrangian problem to solve

▪ Take (partial) derivatives of ℒ w.r.t. 𝒘, 𝑏, and 𝜉𝑛 and setting to zero gives

▪ Using 𝐶 − 𝛼𝑛 − 𝛽𝑛 = 0 and 𝛽𝑛 ≥ 0, we have 𝛼𝑛 ≤ 𝐶 (for hard-margin, 𝛼𝑛 ≥ 0)

▪ Substituting these in the Lagrangian ℒ gives the Dual problem

Weighted sum of training inputs

Maximizing a concave function

(or minimizing a convex function)

s.t. 𝜶 ≤ 𝑪 and σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛 = 0 .

Many methods to solve it.

In the solution, 𝜶 will still be sparse just like the

hard-margin SVM case. Nonzero 𝛼𝑛 correspond

to the support vectors

The dual variables 𝛽 don’t

appear in the dual problem!Given 𝜶, 𝒘 and 𝑏 can be

found just like the hard-margin

SVM case

(Note: For various SVM solvers, can see “Support Vector Machine Solvers” by Bottou and Lin)

Note: if we ignore the bias term 𝑏 then we don’t

need to handle the constraint σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛 = 0

(problem becomes a bit more easy to solve)

Otherwise, the 𝛼𝑛’s are coupled and some opt. techniques

such as co-ordinate aspect can’t easily applied

CS771: Intro to ML

Support Vectors in Soft-Margin SVM
19

▪ The hard-margin SVM solution had only one type of support vectors

▪ All lied on the supporting hyperplanes 𝒘⊤𝒙𝑛 + 𝑏 = 1 and 𝒘⊤𝒙𝑛 + 𝑏 = −1

▪ The soft-margin SVM solution has three types of support vectors (with nonzero 𝛼𝑛)

1. Lying on the supporting hyperplanes

2. Lying within the margin region but still on

the correct side of the hyperplane

3. Lying on the wrong side of the hyperplane

(misclassified training examples)

CS771: Intro to ML

SVMs via Dual Formulation: Some Comments
20

▪ Recall the final dual objectives for hard-margin and soft-margin SVM

▪ The dual formulation is nice due to two primary reasons
▪ Allows conveniently handling the margin based constraint (via Lagrangians)

▪ Allows learning nonlinear separators by replacing inner products in 𝐺𝑛𝑚 = 𝑦𝑛𝑦𝑚𝒙𝑛
⊤𝒙𝑚 by

general kernel-based similarities (more on this when we talk about kernels)

▪ However, dual formulation can be expensive if 𝑁 is large (esp. compared to 𝐷)
▪ Need to solve for 𝑁 variables 𝜶 = [𝛼1, 𝛼2, … , 𝛼𝑁]

▪ Need to pre-compute and store 𝑁 × 𝑁 gram matrix G

▪ Lot of work on speeding up SVM in these settings (e.g., can use co-ord. descent for 𝜶)

Note: Both these ignore the bias term

𝑏 otherwise will need another

constraint σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛 = 0

CS771: Intro to ML

SVM: At Test Time
21

▪ Prediction for a test point

▪ For linear SVMs, we usually prefer approach 1 since it is faster (just one dot product)

▪ The second approach’s cost scales in the number of support vectors found by SVM
(i.e., training examples with nonzero 𝛼𝑛). Also need to store them at test time

▪ The second approach is useful (and has to be used) for nonlinear SVMs where
𝒘 cannot usually be expressed as a finite dimensional vector (more when we talk
about kernel methods)

𝑦∗ = sign(𝒘⊤𝒙∗ + 𝑏)

= sign ෍
𝑛=1

𝑁

𝛼𝑛𝑦𝑛𝒙𝑛
⊤𝒙∗ + 𝑏 (Approach 2)

(Approach 1)
Dot product similarity of

the test input 𝒙∗ with the

training input 𝒙𝑛

CS771: Intro to ML

Solving for SVM in the Primal
22

▪ Maximizing margin subject to constraints led to the soft-margin formulation of SVM

▪ Note that slack 𝜉𝑛 is the same as max{0,1 − 𝑦𝑛 𝒘⊤𝒙𝑛 + 𝑏 }, i.e., hinge loss for (𝒙𝑛, 𝑦𝑛)

▪ Thus the above is equivalent to minimizing the ℓ2 regularized hinge loss

▪ Sum of slacks is like sum of hinge losses, 𝐶 and 𝜆 play similar roles

▪ Can learn (𝒘, 𝑏) directly by minimizing ℒ(𝒘, 𝑏) using (stochastic)(sub)grad. descent

▪ Hinge-loss version preferred for linear SVMs, or with other regularizers on 𝒘 (e.g., ℓ1)

CS771: Intro to ML

A Co-ordinate Ascent Algorithm for SVM
23

▪ Recall the dual objective of soft-margin SVM (assuming no bias 𝑏)

▪ Focusing on just one of the components of 𝛂 (say 𝛼𝑛), the objective becomes

▪ The above is a simple quadratic maximization of a concave function: Global maxima

▪ If constraint violated, project 𝛼𝑛 in [0, 𝐶]: If 𝛼𝑛 < 0, set it to 0, if 𝛼𝑛 > 𝐶, set it to 𝐶

▪ Can cycle through each coordinate 𝛼𝑛 in a random or cyclic fashion

argmax
𝟎≤𝛂≤𝐶

 ෍
𝑛=1

𝑁

𝛼𝑛 −
1

2
෍

𝑚,𝑛=1

𝑁

𝛼𝑚𝛼𝑛𝑦𝑚𝑦𝑛𝒙𝑚
⊤ 𝒙𝑛

argmax
𝟎≤𝛼𝑛≤𝐶

 𝛼𝑛 −
1

2
𝛼𝑛

2 𝒙𝑛
2 −

1

2
𝛼𝑛𝑦𝑛 σ𝑚≠𝑛 𝛼𝑚𝑦𝑚𝒙𝑚

⊤ 𝒙𝑛

Can compute these in

the beginning itself

Note that 𝒘 = σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛𝒙𝑛

Can efficiently compute it if we also store 𝒘.

It is equal to 𝒘⊤𝒙𝑛 − 𝛼𝑛𝑦𝑛 𝒙𝑛
2

CS771: Intro to ML

SVM: Summary
24

▪ A hugely (perhaps the most, before deep learning became fashionable ☺) popular
classification algorithm

▪ Reasonably mature, highly optimized SVM softwares freely available (perhaps the
reason why it is more popular than various other competing algorithms)

▪ Some popular ones: libSVM, LIBLINEAR, sklearn also provides SVM

▪ Lots of work on scaling up SVMs* (both large 𝑁 and large 𝐷)

▪ Extensions beyond binary classification (e.g., multiclass, structured outputs)

▪ Can even be used for regression problems (Support Vector Regression)

▪ Nonlinear extensions possible via kernels

* See: “Support Vector Machine Solvers” by Bottou and Lin

	Slide 1: Subgradient Descent: Some Examples + Large-Margin Classification (SVM)
	Slide 2: Sub-gradients
	Slide 3: Sub-gradients, Sub-differential, and Some Rules
	Slide 4: Subgradient For Regression with Absolute Loss
	Slide 5: Subgradient for Classification with Perceptron Loss
	Slide 6: Perceptron Algorithm for Binary Classification
	Slide 7: Perceptron and (lack of) Margins
	Slide 8: Learning Large-Margin Hyperplanes
	Slide 9: Support Vector Machine (SVM)
	Slide 10: Hard-Margin SVM
	Slide 11: Soft-Margin SVM (More Commonly Used)
	Slide 12: Soft-Margin SVM (Contd)
	Slide 13: Solving the SVM Problem
	Slide 14: Solving Hard-Margin SVM
	Slide 15: Solving Hard-Margin SVM
	Slide 16: Solving Hard-Margin SVM
	Slide 17: Solving Soft-Margin SVM
	Slide 18: Solving Soft-Margin SVM
	Slide 19: Support Vectors in Soft-Margin SVM
	Slide 20: SVMs via Dual Formulation: Some Comments
	Slide 21: SVM: At Test Time
	Slide 22: Solving for SVM in the Primal
	Slide 23: A Co-ordinate Ascent Algorithm for SVM
	Slide 24: SVM: Summary

