Probability and Statistics Refresher for Probabilistic Machine Learning

Piyush Rai

CSE Department, IIT Kanpur
Some Basic Concepts You Should Know About

- Random variables (discrete/continuous), probability distributions over discrete/continuous r.v.'s
- Notions of joint, conditional, and marginal distributions
- Properties of random variables (and of functions of random variables)
 - Expectation and variance/covariance
- Examples of various probability distributions (and when is each appropriate) and their properties
 - Mean/mode/variance etc of a probability distribution
- Multivariate Gaussian distribution and its properties (very important)
- Functions of distributions, e.g., KL divergence, Entropy, etc.

Note: This is only a (very!) quick review of these things. Please refer to a text such as PRML (Bishop) Chapter 2 + Appendix B, or PML-1 (Murphy) Chapter 2 and 3 for more details

Note: Some other pre-requisites (e.g., concepts from information theory, linear algebra, optimization, etc.) will be introduced as and when they are required
Informally, a random variable (r.v.) X denotes possible outcomes of an event. Can be **discrete** (i.e., finite many possible outcomes) or **continuous**.

Some examples of **discrete r.v.**
- A random variable $X \in \{0, 1\}$ denoting outcomes of a coin-toss
- A random variable $X \in \{1, 2, \ldots, 6\}$ denoting outcome of a dice roll

Some examples of **continuous r.v.**
- A random variable $X \in (0, 1)$ denoting the bias of a coin
- A random variable X denoting heights of students in CS698S
- A random variable X denoting time to get to your hall from the department
Discrete Random Variables

- For a discrete r.v. X, $p(x)$ denotes the probability that $p(X = x)$
- $p(x)$ is called the **probability mass function** (PMF)

\[
p(x) \geq 0 \\
p(x) \leq 1 \\
\sum_{x} p(x) = 1
\]
Continuous Random Variables

- For a continuous r.v. X, a probability $p(X = x)$ is meaningless.
- Instead we use $p(X = x)$ or $p(x)$ to denote the probability density at $X = x$.
- For a continuous r.v. X, we can only talk about probability within an interval $X \in (x, x + \delta x)$.
 - $p(x)\delta x$ is the probability that $X \in (x, x + \delta x)$ as $\delta x \to 0$.

The probability density $p(x)$ satisfies the following:

$$p(x) \geq 0 \quad \text{and} \quad \int_{x} p(x)dx = 1 \quad \text{(note: for continuous r.v., } p(x) \text{ can be } > 1)$$
A word about notation..

- $p(.)$ can mean different things depending on the context
 - $p(X)$ denotes the distribution (PMF/PDF) of an r.v. X
 - $p(X = x)$ or $p(x)$ denotes the **probability** or **probability density** at point x

- Actual meaning should be clear from the context (but be careful)
- Exercise the same care when $p(.)$ is a specific distribution (Bernoulli, Beta, Gaussian, etc.)
- The following means **drawing a random sample** from the distribution $p(X)$

 $$x \sim p(X)$$
Joint Probability Distribution

Joint probability distribution \(p(X, Y) \) models probability of co-occurrence of two r.v. \(X, Y \)

For discrete r.v., the joint PMF \(p(X, Y) \) is like a table (that sums to 1)

\[
\sum_x \sum_y p(X = x, Y = y) = 1
\]

For continuous r.v., we have joint PDF \(p(X, Y) \)

\[
\int_x \int_y p(X = x, Y = y) dx dy = 1
\]
Marginal Probability Distribution

- Intuitively, the probability distribution of one r.v. regardless of the value the other r.v. takes
- For discrete r.v.’s: $p(X) = \sum_y p(X, Y = y)$, $p(Y) = \sum_x p(X = x, Y)$
- For discrete r.v. it is the sum of the PMF table along the rows/columns

![Diagram showing marginal distributions]

- For continuous r.v.: $p(X) = \int_Y p(X, Y = y)dy$, $p(Y) = \int_X p(X = x, Y)dx$
- Note: Marginalization is also called “integrating out” (especially in Bayesian learning)
Conditional Probability Distribution

- Probability distribution of one r.v. given the value of the other r.v.
- Conditional probability \(p(X \mid Y = y) \) or \(p(Y \mid X = x) \): like taking a slice of \(p(X, Y) \)
- For a discrete distribution:

\[
\begin{array}{c|c|c|c|c|c}
X & Y \\
\hline
\hline
y_1 & p(x_1 \mid y) & Y \\
\hline
y_2 & p(x_2 \mid y) & X \\
\hline
\end{array}
\]

- For a continuous distribution\(^1\):

\[
\begin{array}{c|c|c|c|c|c}
x & \\
\hline
\hline
y_1 & p(x_1 \mid y) & y \\
\hline
y_2 & p(x_2 \mid y) & X \\
\hline
\end{array}
\]

\(^1\)Picture courtesy: Computer vision: models, learning and inference (Simon Price)
Some Basic Rules

- **Sum rule:** Gives the marginal probability distribution from joint probability distribution

 - For discrete r.v.: \(p(X) = \sum_Y p(X, Y) \)

 - For continuous r.v.: \(p(X) = \int_Y p(X, Y) dY \)

- **Product rule:** \(p(X, Y) = p(Y|X)p(X) = p(X|Y)p(Y) \)

- **Bayes rule:** Gives conditional probability

 \[
 p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}
 \]

 - For discrete r.v.: \(p(Y|X) = \frac{p(X|Y)p(Y)}{\sum_Y p(X|Y)p(Y)} \)

 - For continuous r.v.: \(p(Y|X) = \frac{p(X|Y)p(Y)}{\int_Y p(X|Y)p(Y) dY} \)

- Also remember the **chain rule**

 \[
 p(X_1, X_2, \ldots, X_N) = p(X_1)p(X_2|X_1) \ldots p(X_N|X_1, \ldots, X_{N-1})
 \]
CDF and Quantiles

- Cumulative distribution function (CDF): $F(x) = p(X \leq x)$
- $\alpha \leq 1$ quantile is defined as the x_{α} s.t.

$$p(X \leq x_{\alpha}) = \alpha$$
Independence

- X and Y are independent ($X \perp \perp Y$) when knowing one tells nothing about the other

\[
p(X|Y = y) = p(X) \\
p(Y|X = x) = p(Y) \\
p(X, Y) = p(X)p(Y)
\]

- $X \perp \perp Y$ is also called marginal independence

- Conditional independence ($X \perp \perp Y|Z$): independence given the value of another r.v. Z

\[
p(X, Y|Z = z) = p(X|Z = z)p(Y|Z = z)
\]
Expectation

- Expectation or mean μ of an r.v. with PMF/PDF $p(X)$

$$E[X] = \sum_{x} xp(x) \quad \text{(for discrete distributions)}$$

$$E[X] = \int_{x} xp(x) \, dx \quad \text{(for continuous distributions)}$$

- Note: The definition applies to functions of r.v. too (e.g., $E[f(X)]$)

- Note: Expectations are always w.r.t. the underlying probability distribution of the random variable involved, so sometimes we'll write this explicitly as $E_p(.)$, unless it is clear from the context

- Linearity of expectation

$$E[\alpha f(X) + \beta g(Y)] = \alpha E[f(X)] + \beta E[g(Y)]$$

(a very useful property, true even if X and Y are not independent)

- Rule of iterated/total expectation

$$E_{p(X)}[X] = E_{p(Y)}[E_{p(X|Y)}[X|Y]]$$
Variance and Covariance

- **Variance** σ^2 (or “spread” around mean μ) of an r.v. with PMF/PDF $p(X)$

\[
\text{var}[X] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mu^2
\]

- **Standard deviation**: std[X] = $\sqrt{\text{var}[X]} = \sigma$

- For two scalar r.v.’s x and y, the **covariance** is defined by

\[
\text{cov}[x, y] = \mathbb{E}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])] = \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y]
\]

- For **vector** r.v. x and y, the **covariance matrix** is defined as

\[
\text{cov}[x, y] = \mathbb{E}[(x - \mathbb{E}[x])(y^T - \mathbb{E}[y^T])] = \mathbb{E}[xy^T] - \mathbb{E}[x]\mathbb{E}[y^T]
\]

- Cov. of components of a vector r.v. x: $\text{cov}[x] = \text{cov}[x, x]$

- **Note**: The definitions apply to functions of r.v. too (e.g., $\text{var}[f(X)]$)

- **Note**: Variance of sum of independent r.v.’s: $\text{var}[X + Y] = \text{var}[X] + \text{var}[Y]$
KL Divergence

- Kullback–Leibler divergence between two probability distributions $p(X)$ and $q(X)$

\[
KL(p||q) = \int p(X) \log \frac{p(X)}{q(X)} dX = -\int p(X) \log \frac{q(X)}{p(X)} dX \quad \text{(for continuous distributions)}
\]

\[
KL(p||q) = \sum_{k=1}^{K} p(X = k) \log \frac{p(X = k)}{q(X = k)} \quad \text{(for discrete distributions)}
\]

- It is non-negative, i.e., $KL(p||q) \geq 0$, and zero if and only if $p(X)$ and $q(X)$ are the same
- For some distributions, e.g., Gaussians, KL divergence has a closed form expression
- KL divergence is not symmetric, i.e., $KL(p||q) \neq KL(q||p)$
Entropy

- Entropy of a continuous/discrete distribution $p(X)$

$$H(p) = - \int p(X) \log p(X) dX$$

$$H(p) = - \sum_{k=1}^{K} p(X = k) \log p(X = k)$$

- In general, a peaky distribution would have a smaller entropy than a flat distribution.

- Note that the KL divergence can be written in terms of expectation and entropy terms.

$$KL(p||q) = \mathbb{E}_{p(X)}[-\log q(X)] - H(p)$$

- Some other definition to keep in mind: conditional entropy, joint entropy, mutual information, etc.
Transformation of Random Variables

Suppose $y = f(x) = Ax + b$ be a linear function of an r.v. x

Suppose $E[x] = \mu$ and $\text{cov}[x] = \Sigma$

- **Expectation of y**

 $$E[y] = E[Ax + b] = A\mu + b$$

- **Covariance of y**

 $$\text{cov}[y] = \text{cov}[Ax + b] = A\Sigma A^T$$

Likewise if $y = f(x) = a^T x + b$ is a scalar-valued linear function of an r.v. x:

- $E[y] = E[a^T x + b] = a^T \mu + b$

- $\text{var}[y] = \text{var}[a^T x + b] = a^T \Sigma a$

Another very useful property worth remembering
Common Probability Distributions

Important: We will use these extensively to model *data* as well as *parameters*

Some **discrete distributions** and what they can model:

- **Bernoulli:** Binary numbers, e.g., outcome (head/tail, 0/1) of a coin toss
- **Binomial:** Bounded non-negative integers, e.g., # of heads in n coin tosses
- **Multinomial:** One of $K (>2)$ possibilities, e.g., outcome of a dice roll
- **Poisson:** Non-negative integers, e.g., # of words in a document
- .. and many others

Some **continuous distributions** and what they can model:

- **Uniform:** numbers defined over a fixed range
- **Beta:** numbers between 0 and 1, e.g., probability of head for a biased coin
- **Gamma:** Positive unbounded real numbers
- **Dirichlet:** vectors that sum of 1 (fraction of data points in different clusters)
- **Gaussian:** real-valued numbers or real-valued vectors
- .. and many others
Discrete Distributions
Bernoulli Distribution

- Distribution over a binary r.v. $x \in \{0, 1\}$, like a coin-toss outcome
- Defined by a probability parameter $p \in (0, 1)$
 \[P(x = 1) = p \]
- Distribution defined as: $\text{Bernoulli}(x; p) = p^x (1 - p)^{1-x}$
- Mean: $\mathbb{E}[x] = p$
- Variance: $\text{var}[x] = p(1 - p)$
Binomial Distribution

- Distribution over number of successes m (an r.v.) in a number of trials
- Defined by two parameters: total number of trials (N) and probability of each success $p \in (0, 1)$
- Can think of Binomial as multiple independent Bernoulli trials
- Distribution defined as
 \[
 \text{Binomial}(m; N, p) = \binom{N}{m} p^m (1-p)^{N-m}
 \]

- Mean: $\mathbb{E}[m] = Np$
- Variance: $\text{var}[m] = Np(1-p)$
Also known as the **categorical distribution** (models categorical variables)

Think of a random assignment of an item to one of K bins - a K dim. binary r.v. x with single 1 (i.e., $\sum_{k=1}^{K} x_k = 1$): **Modeled by a multinoulli**

\[
\begin{bmatrix}
0 & 0 & 0 & \ldots & 0 & 1 & 0 & 0
\end{bmatrix}
\]

length = K

Let vector $p = [p_1, p_2, \ldots, p_K]$ define the probability of going to each bin

- $p_k \in (0, 1)$ is the probability that $x_k = 1$ (assigned to bin k)
- $\sum_{k=1}^{K} p_k = 1$

The multinoulli is defined as: Multinoulli($x; p$) = $\prod_{k=1}^{K} p_k^{x_k}$

Mean: $\mathbb{E}[x_k] = p_k$

Variance: $\text{var}[x_k] = p_k(1 - p_k)$

(Piyush Rai, IITK)
Multinomial Distribution

- Think of repeating the Multinoulli N times
- Like distributing N items to K bins. Suppose x_k is count in bin k
 \[0 \leq x_k \leq N \quad \forall \quad k = 1, \ldots, K, \quad \sum_{k=1}^{K} x_k = N \]
- Assume probability of going to each bin: $p = [p_1, p_2, \ldots, p_K]$
- Multinomial models the bin allocations via a discrete vector x of size K
 \[
 [x_1 \ x_2 \ \ldots \ x_{k-1} \ x_k \ x_{k-1} \ldots \ x_K]
 \]
- Distribution defined as
 \[
 \text{Multinomial}(x; N, p) = \binom{N}{x_1 x_2 \ldots x_K} \prod_{k=1}^{K} p_k^{x_k}
 \]
- Mean: $\mathbb{E}[x_k] = Np_k$
- Variance: $\text{var}[x_k] = Np_k(1 - p_k)$
- Note: For $N = 1$, multinomial is the same as multinoulli
Poisson Distribution

- Used to model a non-negative integer (count) r.v. k
- Examples: number of words in a document, number of events in a fixed interval of time, etc.
- Defined by a positive rate parameter λ
- Distribution defined as

\[
\text{Poisson}(k; \lambda) = \frac{\lambda^k e^{-\lambda}}{k!} \quad k = 0, 1, 2, \ldots
\]

- Mean: $\mathbb{E}[k] = \lambda$
- Variance: $\text{var}[k] = \lambda$

(Piyush Rai, IITK)
The Empirical Distribution

- Given a set of points ϕ_1, \ldots, ϕ_K, the empirical distribution is a discrete distribution defined as

$$p_{emp}(A) = \frac{1}{K} \sum_{k=1}^{K} \delta_{\phi_k}(A)$$

where $\delta_{\phi}(.)$ is the **dirac function** located at ϕ, s.t.

$$\delta_{\phi}(A) = \begin{cases}
1 & \text{if } \phi \in A \\
0 & \text{if } \phi \notin A
\end{cases}$$

- The “weighted” version of the empirical distribution is

$$p_{emp}(A) = \sum_{k=1}^{K} w_k \delta_{\phi_k}(A) \quad \text{(where } \sum_{k=1}^{K} w_k = 1)$$

and the weights and points $(w_k, \phi_k)_{k=1}^{K}$ together define this discrete distribution.
Continuous Distributions
Uniform Distribution

- Models a continuous r.v. x distributed uniformly over a finite interval $[a, b]$

$$\text{Uniform}(x; a, b) = \frac{1}{b - a}$$

- Mean: $\mathbb{E}[x] = \frac{(b+a)}{2}$
- Variance: $\text{var}[x] = \frac{(b-a)^2}{12}$
Beta Distribution

- Used to model an r.v. p between 0 and 1 (e.g., a probability)
- Defined by two shape parameters α and β

$$\text{Beta}(p; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1 - p)^{\beta-1}$$

- Mean: $\mathbb{E}[p] = \frac{\alpha}{\alpha+\beta}$
- Variance: $\text{var}[p] = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
- Often used to model the probability parameter of a Bernoulli or Binomial (also conjugate to these distributions)
Gamma Distribution

- Used to model positive real-valued r.v. x
- Defined by a shape parameters k and a scale parameter θ

\[
\text{Gamma}(x; k, \theta) = \frac{x^{k-1}e^{-\frac{x}{\theta}}}{\theta^k \Gamma(k)}
\]

- Mean: $\mathbb{E}[x] = k\theta$
- Variance: $\text{var}[x] = k\theta^2$

Often used to model the rate parameter of Poisson or exponential distribution (conjugate to both), or to model the inverse variance (precision) of a Gaussian (conjugate to Gaussian if mean known)

Note: There is another equivalent parameterization of gamma in terms of shape and rate parameters (rate = 1/scale). Another related distribution: Inverse gamma.
Dirichlet Distribution

- Used to model non-negative r.v. vectors $\mathbf{p} = [p_1, \ldots, p_K]$ that sum to 1

 $0 \leq p_k \leq 1, \quad \forall k = 1, \ldots, K \quad \text{and} \quad \sum_{k=1}^{K} p_k = 1$

- Equivalent to a distribution over the $K - 1$ dimensional simplex

- Defined by a K size vector $\alpha = [\alpha_1, \ldots, \alpha_K]$ of positive reals

- Distribution defined as

 $$\text{Dirichlet}(\mathbf{p}; \alpha) = \frac{\Gamma\left(\sum_{k=1}^{K} \alpha_k\right)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} p_k^{\alpha_k-1}$$

- Often used to model the probability vector parameters of Multinoulli/Multinomial distribution

- Dirichlet is conjugate to Multinoulli/Multinomial

Note: Dirichlet can be seen as a generalization of the Beta distribution. Normalizing a bunch of Gamma r.v.’s gives an r.v. that is Dirichlet distributed.
Dirichlet Distribution

- For \(\mathbf{p} = [p_1, p_2, \ldots, p_K] \) drawn from Dirichlet(\(\alpha_1, \alpha_2, \ldots, \alpha_K \))

 Mean: \(\mathbb{E}[p_k] = \frac{\alpha_k}{\sum_{k=1}^{K} \alpha_k} \)

 Variance: \(\text{var}[p_k] = \frac{\alpha_k(\alpha_0 - \alpha_k)}{\alpha_0^2(\alpha_0 + 1)} \) where \(\alpha_0 = \sum_{k=1}^{K} \alpha_k \)

- Note: \(\mathbf{p} \) is a point on \((K-1)\)-simplex

- Note: \(\alpha_0 = \sum_{k=1}^{K} \alpha_k \) controls how peaked the distribution is

- Note: \(\alpha_k \)'s control where the peak(s) occur

Plot of a 3 dim. Dirichlet (2 dim. simplex) for various values of \(\alpha \):
Now comes the Gaussian (Normal) distribution..
Univariate Gaussian Distribution

- Distribution over real-valued scalar r.v. x
- Defined by a scalar **mean** μ and a scalar **variance** σ^2
- Distribution defined as

$$N(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Mean: $\mathbb{E}[x] = \mu$
- Variance: $\text{var}[x] = \sigma^2$
- Precision (inverse variance) $\beta = 1/\sigma^2$
Multivariate Gaussian Distribution

- Distribution over a multivariate r.v. vector $x \in \mathbb{R}^D$ of real numbers
- Defined by a **mean vector** $\mu \in \mathbb{R}^D$ and a $D \times D$ **covariance matrix** Σ

$$
\mathcal{N}(x; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^D|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu)}
$$

- The covariance matrix Σ must be symmetric and positive definite
 - All eigenvalues are positive
 - $z^\top \Sigma z > 0$ for any real vector z
- Often we parameterize a multivariate Gaussian using the inverse of the covariance matrix, i.e., the **precision matrix** $\Lambda = \Sigma^{-1}$
Multivariate Gaussian: The Covariance Matrix

The covariance matrix can be spherical, diagonal, or full
Some nice properties of the Gaussian distribution..
Multivariate Gaussian: Marginals and Conditionals

- Given x having multivariate Gaussian distribution $\mathcal{N}(x|\mu, \Sigma)$ with $\Lambda = \Sigma^{-1}$. Suppose

$$x = \begin{pmatrix} x_a \\ x_b \end{pmatrix}, \quad \mu = \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \Lambda_{aa} & \Lambda_{ab} \\ \Lambda_{ba} & \Lambda_{bb} \end{pmatrix}$$

- The marginal distribution is simply

$$p(x_a) = \mathcal{N}(x_a|\mu_a, \Sigma_{aa})$$

- The conditional distribution is given by

$$p(x_a|x_b) = \mathcal{N}(x|\mu_{a|b}, \Lambda_{aa}^{-1})$$

$$\mu_{a|b} = \mu_a - \Lambda_{aa}^{-1}\Lambda_{ab}(x_b - \mu_b)$$

Thus marginals and conditionals of Gaussians are Gaussians
Multivariate Gaussian: Marginals and Conditionals

- Given the conditional of an r.v. y and marginal of r.v. x, y is conditioned on

$$p(y|x) = \mathcal{N}(y|Ax + b, L^{-1})$$

$$p(x) = \mathcal{N}(x|\mu, \Lambda^{-1})$$

- Marginal of y and “reverse” conditional are given by

$$p(x|y) = \mathcal{N}(x|\Sigma\{A^TL(y-b) + \Lambda\mu\}, \Sigma)$$

$$p(y) = \mathcal{N}(y|A\mu + b, L^{-1} + AA^{-1}A^T)$$

where $\Sigma = (\Lambda + A^TLA)^{-1}$

- Note that the “reverse conditional” $p(x|y)$ is basically the posterior of x is the prior is $p(x)$

- Also note that the marginal $p(y)$ is the predictive distribution of y after integrating out x

- Very useful property for probabilistic models with Gaussian likelihoods and/or priors. Also very handy for computing marginal likelihoods.
Gaussians: Product of Gaussians

- Pointwise multiplication of two Gaussians is another (unnormalized) Gaussian

\[\mathcal{N}(x; \mu, \Sigma) \mathcal{N}(x; \nu, P) = \frac{1}{Z} \mathcal{N}(x; \omega, T), \]

where

\[T = (\Sigma^{-1} + P^{-1})^{-1} \]
\[\omega = T(\Sigma^{-1} \mu + P^{-1} \nu) \]
\[Z^{-1} = \mathcal{N}(\mu; \nu, \Sigma + P) = \mathcal{N}(\nu; \mu, \Sigma + P) \]
Multivariate Gaussian: Linear Transformations

- Given a \(\mathbf{x} \in \mathbb{R}^d \) with a multivariate Gaussian distribution

\[\mathcal{N}(\mathbf{x}; \mu, \Sigma) \]

- Consider a linear transform of \(\mathbf{x} \) into \(\mathbf{y} \in \mathbb{R}^D \)

\[\mathbf{y} = A\mathbf{x} + \mathbf{b} \]

where \(A \) is \(D \times d \) and \(\mathbf{b} \in \mathbb{R}^D \)

- \(\mathbf{y} \in \mathbb{R}^D \) will have a multivariate Gaussian distribution

\[\mathcal{N}(\mathbf{y}; A\mu + \mathbf{b}, A\Sigma A^T) \]
Some Other Important Distributions

- **Wishart Distribution and Inverse Wishart (IW) Distribution**: Used to model $D \times D$ p.s.d. matrices
 - Wishart often used as a conjugate prior for modeling precision matrices, IW for covariance matrices
 - For $D = 1$, Wishart is the same as gamma dist., IW is the same as inverse gamma (IG) dist.

- **Normal-Wishart Distribution**: Used to model mean and precision matrix of a multivar. Gaussian
 - **Normal-Inverse Wishart (NIW)**: Used to model mean and cov. matrix of a multivar. Gaussian
 - For $D = 1$, the corresponding distr. are Normal-Gamma and Normal-Inverse Gamma (NIG)

- **Student-t Distribution** (a more robust version of Normal distribution)
 - Can be thought of as a mixture of infinite many Gaussians with different precisions (or a single Gaussian with its precision/precision matrix given a gamma/Wishart prior and integrated out)