
Second-order Birkhoff Polytope

and the Problem of Graph

Isomorphism Detection

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Pawan Kumar Aurora

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

June, 2015

mailto:paurora@cse.iitk.ac.in
http://www.cse.iitk.ac.in
http://www.iitk.ac.in

ii

iii

iv

Synopsis

Graph Isomorphism (GI) problem is a classic problem in the theory of computing.

Given two graphs G,G′ on n vertices each, GI problem is to decide if G,G′ are

isomorphic or not. The problem remains elusive for general graphs in the sense

that neither a polynomial time algorithm is known for it nor is it established that

this problem is NP-complete. Here it must be acknowledged that polynomial time

algorithms are known for the GI problem on special classes of graphs. The best

known algorithm for general graphs is moderately exponential.

In this research work we attempt to devise a polynomial time algorithm for GI for

general graphs. Most of the attempts for designing a polynomial time algorithm for

this problem have been based on combinatorial, group theoretic or graph theoretic

techniques or a combination of these. A small number of attempts have also been

based on linear programming. In this work we revisit linear programming approach

to design an algorithm for the problem.

If we label the vertices of both the input graphs by 1, . . . , n, then each isomor-

phism is a permutation σ such that vertices i and j are adjacent in G if and only

if the vertices σ(i) and σ(j) are adjacent in G′. The earlier LP based approaches

use the commutation relation AP = PA′ satisfied by isomorphic pairs of graphs

where A and A′ denote the adjacency matrices of the two graphs and P denotes

the permutation matrix corresponding to an isomorphism between the two graphs.

Replacing P by a doubly stochastic variable matrix Y gives a linear program whose

zero-one solutions are the isomorphisms between the two graphs. The feasible region

of this linear program is known as the standard GI polytope or Tinhofer polytope

(let’s say T). It has been shown that GI can be decided for certain classes of graphs

in a constant number of rounds of the Sherali-Adams (SA) lift and project method

starting with the polytope T.

Consider the polytope P obtained by one SA lift step applied to the Birkhoff

polytope, B. It can be shown that there is a one to one correspondence between the

integer points of P and the integer points of B, with each integer point corresponding

to a permutation. We refer to the convex hull of integer points in P as the second-

order Birkhoff polytope and denote it by B[2]. In the literature this polytope is

studied in the context of the Quadratic Assignment Problem and hence is also

called the QAP-polytope. We show that B[2] is full-dimensional in the affine plane

of polytope P, i.e., the two polytopes have the same dimension.

Adding graph based conditions, also referred to as the edge/non-edge condi-

tions, to the linear description of polytope P, we get our linear program, LP-GI.

The feasible region of this linear program contains exactly those integer points (per-

mutations) which correspond to the isomorphisms between the given pair of graphs.

It can be shown that the two graphs are isomorphic if and only the feasible region

intersects with B[2]. In the case of non-isomorphic pairs of graphs this fact implies

that the feasible region is either empty or confined to P \B[2]. We present an exact

algorithm to determine if the feasible region is contained in P \ B[2] (i.e., deciding

non-isomorphism). The most significant result of this thesis is that under a reason-

able assumption this algorithm decides non-isomorphism in polynomial time. The

said assumption is related to the facial structure of B[2] which is discussed next.

The non-negativity constraints in the linear program LP-GI define all the facets

of polytope P. Each of these constraints also define facets of polytope B[2]. We

refer to these as the trivial facets of B[2]. There are other facets of the polytope

which we will refer to as non-trivial facets. Exponentially many non-trivial facets

of B[2] are known in the QAP literature and in this thesis we identify exponentially

many additional facets. We give three general inequalities which define three classes

of (exponentially many) supporting planes of B[2]. These supporting planes define

faces of the polytope including all its known facets. We also define a partial ordering

on these supporting planes/inequalities and show that no minimal inequality is ever

violated by any solution of the LP, irrespective of whether the graphs are isomorphic

or not.

We analyze our exact algorithm for those cases when each point in the feasible

region of LP-GI, for a pair of non-isomorphic graphs, violates one of the above men-

tioned inequalities. In such case clearly each point violates at least one minimal

inequality (an inequality that it violates but does not violate any lower inequality in

the ordering). If there exists a single inequality which is a minimal violated inequal-

ity for all points in the feasible region, then we show that the algorithm terminates

in polynomial time. We perform several experiments with strongly regular graphs

and CFI-graphs and report the results. In every non-isomorphic instance in these

experiments we find that the feasible region is zero-one reducible, a property which

ensures that the algorithm takes polynomial time to detect non-isomorphism.

We also consider the general case when no single minimal violated inequality

exists for every point in the feasible region. We modify our exact algorithm to

handle the general case efficiently. If k is the minimal number of regions into which

the feasible region can be divided such that each region has a single minimal violated

inequality then the modified algorithm runs in time exponential in k. We believe

that the value of k should be small.

We also investigate if all the non-trivial facets of B[2] are discovered or more

are yet to be found out. We develop a single generic inequality such that all the

known facets are its instances and prove that there must be at least one facet of the

polytope which is not an instance of this generic equation, implying that all facets

of the polytope are not yet known.

Finally, we restrict the feasible region of LP-GI to the cone of positive semidef-

inite matrices and observe that the resulting semidefinite program is the Lovász

Theta function of a product of the input graphs. We also perform experiments us-

ing this formulation and find that the algorithm converges in fewer iterations than

with the linear program, as should be expected.

viii

Acknowledgements

I am forever indebted to my advisor Prof. Shashank K. Mehta for making this

thesis possible. Most of the work in this thesis is the outcome of several hours of

discussions that we have had over the past five years.

I would like to thank Prof. Arunava Banerjee at UFL for teaching with such

passion and enthusiasm that sparked my interest in algorithms and theoretical com-

puter science.

I would like to express my gratitude and thanks to my parents for being sup-

portive of my decision to pursue doctoral studies and for sharing several of my

responsibilites during the past several years so as to let me focus on my research.

Last but not the least I would like to thank my wife Sonal for bearing with me

all these years. Your support at difficult times kept me going.

x

To Mummy, Papa, Sonal, Kartikeya and Kritika

xii

Contents

List of Figures xvii

1 Introduction 1

1.1 The Graph Isomorphism Problem . 1

1.1.1 Combinatorial Approach to Graph Isomorphism 2

1.1.2 Graph Theoretic Approach to Graph Isomorphism 4

1.1.3 Group Theoretic Approach to Graph Isomorphism 6

1.1.4 Polyhedral Approach to Graph Isomorphism 7

1.2 Our Contributions . 10

1.3 Organization . 12

2 A Linear Programming Approach to Graph Isomorphism 13

2.1 Introduction . 13

2.2 Integer Linear Program for GI . 13

2.2.1 Affine Plane of B[2] . 14

2.3 Linear Programming Relaxation . 16

2.4 Using the LP to Solve GI . 19

2.4.1 Zero-One Reducibility . 19

2.4.2 The Search Algorithm . 20

2.5 Conclusion . 22

3 Facial Structure of B[2] 23

3.1 Introduction . 23

3.2 Some Facets of B[2] . 23

3.2.1 A Useful Identity . 25

xiv CONTENTS

3.2.2 Facets Due to the Non-negativity Constraint 27

3.2.3 The Connection Lemma . 28

3.2.4 A Polynomial Sized Family of Facets 29

3.2.5 An Exponential Sized Family of Facets 31

3.3 Conclusion . 34

4 Non-Isomorphism Detection 35

4.1 Introduction . 35

4.2 Partial Ordering on Supporting Planes of B[2] 36

4.3 Polynomiality of Algorithm 1 . 38

4.3.1 A Minimal Violated Inequality of Type (4.1) 38

4.3.2 A Minimal Violated inequality of Type (4.2) 38

4.3.2.1 Restriction to Facets 38

4.3.2.2 General 1-box Inequality 41

4.3.3 A Minimal Violated Inequality of Type (4.3) 41

4.4 The General Case . 44

4.4.1 A Generalized Algorithm for GI 44

4.4.1.1 k-SearchVar() . 45

4.4.1.2 The Procedure . 45

4.4.1.3 A Bound for k . 47

4.5 Conclusion . 48

5 There are more Facets 51

5.1 Introduction . 51

5.2 Insufficiency of inequality (5.1) . 51

5.3 Towards a general inequality for all facets of B[2] 54

5.4 Conclusion . 57

6 A Semidefinite Formulation 59

6.1 Introduction . 59

6.2 CP Formulation of GI . 60

6.2.1 United Vectors . 61

6.2.2 Difference in cpϑ values for Isomorphic and Non-Isomorphic

Graphs . 62

CONTENTS xv

6.2.3 The Second-order Birkhoff Polytope 63

6.3 SDP Relaxation - Lovász Theta Function 64

6.3.1 Null space lemma . 68

6.4 A unified equation for the known Facets of B[2] 69

6.4.1 Geometry of the Feasible region 70

6.5 Conclusion . 71

7 Experiments 73

7.1 Introduction . 73

7.2 LP-GI-2: An Alternate Linear Program 73

7.3 Strongly Regular Graphs . 75

7.4 The Cai-Fürer-Immerman construction 76

7.5 Experiments with the Linear Program 78

7.5.1 Experimental setup . 78

7.5.2 Results . 79

7.6 Experiments with the Lovász Theta function 80

7.6.1 Experimental setup . 80

7.6.2 Results . 82

7.7 Conclusion . 82

8 Conclusions 85

8.1 Open Problems . 86

8.1.1 GI belongs to co-NP? . 86

8.1.2 Geometry of the Feasible Region 87

A Dimension of B[2] 89

A.1 Introduction . 89

A.2 Eigenvalues and eigenvectors of the matrix of permutation counts . . 90

A.2.1 First Eigenvalue . 90

A.2.2 Second Eigenvalue . 91

A.2.3 Third Eigenvalue . 95

A.2.4 Fourth Eigenvalue . 99

References 111

xvi CONTENTS

List of Figures

1.1 Relationships between the various polytopes 8

4.1 Execution of Algorithm 2 . 46

7.1 (a) CFI Gadget F3, (b) Symbolic F3 77

7.2 (a) A Regular Bond, (b) A Twisted Bond 77

7.3 (a) CFI Graph based on K4, (b) Same graph but with one Twisted

Bond . 77

7.4 Bonds: (a) Standard, (b) After one level of contraction, (c) After two

levels of contractions . 78

A.1 Index Graphs for the Eigenvectors for Second Eigenvalue 92

A.2 Index Graphs for the Eigenvectors for Third Eigenvalue 97

xviii LIST OF FIGURES

Chapter 1

Introduction

1.1 The Graph Isomorphism Problem

The graph isomorphism problem (GI) is a well-studied computational problem; listed

as an open problem in (Kar72) and (GJ79). Formally, given two graphs G1 and

G2 on n vertices each, GI is a decision problem that asks if there exists a bijec-

tion σ : V (G1) → V (G2) such that {u, v} ∈ E(G1) iff {σ(u), σ(v)} ∈ E(G2).

Each such bijection is called an isomorphism between G1, G2. Without loss of

generality, we assume that the vertices in both the graphs are labeled by inte-

gers 1, . . . , n. Hence V (G1) = V (G2) = [n] and each bijection is a permutation

of 1, . . . , n. Apart from its practical applications in chemical identification (Jr.65),

scene analysis (ABB+73) and construction and enumeration of combinatorial con-

figurations (CM78), what makes this problem interesting is the fact that it is not

known to be NP-complete (AT05) nor is there an algorithm known that can solve it

in polynomial time. In fact, if GI were NP-complete then the ”polynomial time hi-

erarchy”, a hierarchy of complexity classes between P and PSPACE, would collapse

to its second level (BHZ87; Sch88), an unlikely scenario. Moreover, the problem of

counting the number of isomorphisms between the input pair of graphs is known

to be polynomial-time equivalent to GI itself (Mat79), another unlikely scenario

since for all known NP-complete problems the counting version seems to be much

harder. The fastest known graph isomorphism algorithm has running time 2O(
√
n logn)

(BL83; ZKT82; Bab81). However, polynomial time algorithms are known for special

graph classes: trees (AHU74; CB81), planar graphs (HT72; HW74), bounded genus

2 Introduction

(FM80; Mil80), bounded eigenvalue multiplicity (BGM82), bounded degree (Luk82),

graphs with excluded minors (Pon88), bounded tree width (Bod90), interval graphs

(LB79; Kle96; KKLV10), graphs with excluded topological subgraphs (GM12). It

may be noted here that there are certain graph classes for which the problem is as

hard as the general problem (GI-complete). These include bipartite graphs, chordal

graphs, rectangle intersection graphs (Ueh08), graphs of bounded degeneracy and

graphs of bounded expansion. At the same time, there are softwares, the leading

one called Nauty (MP14), based on heuristics that can solve the problem fairly well

in practice for almost all graphs.

A problem closely related to the graph isomorphism problem is the problem of

finding a canonical or standard form of a class of isomorphic graphs (also known as

the graph canonization problem). Intuitively, it is a labeling procedure which labels

each graph uniquely. Then two graphs are isomorphic if and only if their canonical

forms are identical.

All the known algorithms for GI employ one or more of three broad approaches:

combinatorial, graph theoretic, and group theoretic. A polyhedral approach ap-

plies quite naturally to the graph isomorphism problem. Recently there has been

a renewed interest in this approach. In the following sections we briefly review the

major results and algorithms based on these four approaches.

1.1.1 Combinatorial Approach to Graph Isomorphism

Combinatorial algorithms for GI are generic algorithms that do not use the proper-

ties of specific graph classes. Most combinatorial algorithms for graph isomorphism

attempt to find a canonical labeling. Two techniques are proposed to this end. First

one is called refinement. It treats two vertices with the same labels as potentially

isomorphic (belonging to the same orbit). One begins with uniform labeling for

all vertices. In each step each class (set of vertices with same label) is split into

multiple classes. For example if two vertices with same labels have different number

of neighbors in various classes, then these vertices are themselves placed in different

classes in the subsequent refinement step. The second technique is called individ-

ualization. Given a set of vertices with the same labels, we choose a subset and

force unique labels on them. Then proceed with refinement. If it leads to a unique

1.1 The Graph Isomorphism Problem 3

labeling for each vertex then canonization task is complete. The time complexity

of solving GI using this technique is exponential in the size of the subset on which

unique labels were forced. The popular software for finding automorphism groups

of a graph, called nauty, uses the techniques of individualization and refinement.

The process of labeling can alternatively be viewed as that of dividing the vertices

into equivalence classes that are closed under automorphisms.

The most basic algorithm in this class is known as the classic vertex classifica-

tion (C-V-C) algorithm (Mal14). A single graph is obtained by taking the disjoint

union of G1, G2. Then the following procedure is applied to the resulting graph.

Initially all vertices are assigned the same label, i.e., all the vertices belong to a

single class. In subsequent steps, also known as the refinement steps, two vertices

belonging to a class, continue to remain in the same class in the following step, if

they have the same number of neighbors in each class. In particular, after the first

refinement step two vertices continue in the same class if and only if they have the

same number of neighbors (or degree) in the graph, since initially there is only one

class. The refinement process stops when the classes have stabilized i.e., a refine-

ment step does not result in any new classification. It can be shown that a stable

classification is reached in at most n refinement steps. If there exists a class in the

stable classification that has different number of vertices from the two graphs, then

it can be concluded that these graphs are not isomorphic to each other. However,

the converse need not be true, i.e., all classes in a stable classification having the

same number of vertices from both the graphs does not guarantee that the graphs

are isomorphic except when both graphs have exactly one vertex in each class in

which case the graphs have only the trivial automorphism (or are rigid graphs).

In (BK79), the authors show that the application of only two refinement steps

of the above procedure results in a canonical labeling of random graphs with high

probability. Immerman and Lander show in (IL90) that a stable classification can

be used to solve GI in polynomial time for the case of all trees. However, the C-V-C

algorithm fails to even start in the case of regular graphs.

In order to deal with more difficult graphs Weisfeiler and Lehman proposed k-

WL algorithm, (WL68). This is a generalization of the vertex classification method

described above. In this case all k-tuples of vertices are considered. So the C-V-

C method can be considered as 1-WL or 1-dimensional WL. The procedure starts

4 Introduction

with an initial classification having two k-tuples (u1, . . . , uk), (v1, . . . , vk) in the same

class if ui → vi for i = 1, . . . , k is an isomorphism between the induced graphs on

{u1, . . . , uk} and {v1, . . . , vk}.
Just as a vertex in a graph has a single set of neighbors, a k-tuple of vertices

has k sets of neighbors. The i-th set of neighbors of a k-tuple (u1, . . . , uk) is the

set of all k-tuples obtained by replacing ui with each vertex in the graph (other

than ui). So in the refinement step two tuples continue in the same partition if they

have the same number of ith neighbors in each partition for all i. Stable partition (or

classification) is reached after at most nk steps. Kucera shows in (Kuc87) that 2-WL

can decide isomorphism almost surely on random regular graphs. This follows an

earlier result of (Bol82) on distinguishing almost all pairs of regular graphs. There

exists a fixed constant k for which the k-WL algorithm is able to distinguish any pair

of non-isomorphic planar graphs (Gro98). Moreover, there is a k such that k-WL

can distinguish all pairs of interval graphs (Lau10). For every class C of graphs with

excluded minors there is a k such that k-WL can distinguish all pairs in C (Gro11).

However, on the negative side, for every k there are non-isomorphic 3-regular graphs

Gk, Hk of size O(k) that are not distinguished by k-WL (CFI92).

Malkin gives another combinatorial algorithm in (Mal14) that he calls the k-

dimensional C-V-C algorithm. It differs from the k-dimensional WL algorithm in

the way it defines the neighbors of a tuple, but then the algorithm considers not

only the number of neighbors in all the partitions but also the number of non-

neighbors. He shows that the C-V-C algorithm and the WL algorithm are strongly

related: the k-dim WL algorithm is stronger than the k-dim C-V-C algorithm, but

the (k + 1)-dim C-V-C algorithm is stronger than the k-dim WL algorithm.

1.1.2 Graph Theoretic Approach to Graph Isomorphism

In this section we briefly review the polynomial time isomorphism algorithms for

planar graphs, interval graphs and graphs of bounded genus.

The Hopcroft-Tarjan algorithm for planar graphs (HT72) essentially reduces the

problem of testing isomorphism of general planar graphs to that of testing isomor-

phism of 3-connected planar graphs. The given pair of graphs are first divided

into connected components, then each connected component is further divided into

1.1 The Graph Isomorphism Problem 5

biconnected components and finally each biconnected component is divided into

3-connected components. They show that the 3-connected components are unique

and efficiently computable. Moreover the 3-connected components form a tree. Also

3-connected components have at most two embeddings in the plane. Using these

facts they are able to assign unique labels to the graphs and hence determine their

isomorphism.

Hopcroft and Wong (HW74) gave a linear time algorithm for planar graphs im-

proving the O(n log n) bound obtained by the algorithm described above. Their

algorithm basically improves the complexity of the 3-connected planar graph iso-

morphism problem, which dominated the complexity of the previous algorithm. In

their approach they apply reductions simultaneously to the given pair of graphs such

that the reduced graphs are isomorphic if and only if the original graphs are. These

reductions replace certain subgraphs with subgraphs of another type. Moreover

all possible reductions are assigned a priority and every time the highest priority

reduction, among those applicable, is applied. It is shown that when no further

reduction is applicable, the graph is either the five regular polyhedral graph or the

trivial graph having a single vertex. These graphs can be tested for isomorphism by

exhaustive matching in constant time.

Lueker and Booth (LB79) gave a linear time algorithm for deciding if a given

pair of interval graphs are isomorphic. They reduce the problem to that of tree

isomorphism for which they use a modified version of the algorithm due to Aho-

Hopcroft-Ullman (AHU74). In (LB79), the authors construct a PQ-tree for each

interval graph and then attach labels to the two trees in such a way as to guarantee

that the labeled trees represent the graphs up to isomorphism. Their result exploits

the fact that a graph is interval if and only if there exists a linear ordering of

its cliques such that for each vertex v, the set of cliques that contain v appear

consecutively within this ordering. PQ-tree is a data structure that is used to

efficiently decide if a given graph is an interval graph.

Miller’s (Mil80) algorithm for testing isomorphism of bounded genus graphs ex-

tends the algorithm of (FMR79) for embedding a graph on a surface of genus g.

Both the algorithms take nO(g) steps. Filotti and Mayer (FM80) came up with a

similar algorithm independently.

6 Introduction

The algorithms described above are all polynomial time algorithms that exploit

specific graph theoretic properties. There is also a moderately exponential time

result for strongly regular graphs due to Babai (Bab80) that exploits the fact that for

graphs belonging to this class there exists a vertex set of size O(
√
n log n) that when

individualized leads to a canonical labeling. This was later improved by Spielman

(Spi96), who showed that every strongly regular graph that has degree at most

d = o(n2/3) and second largest eigenvalue o(d), contains a set of O(n1/4
√

log n)

vertices whose individualization will result in a unique labeling after two refinement

steps. Babai et al. (BCS+13) further improve this result by combining the above

method with ideas from group theory.

1.1.3 Group Theoretic Approach to Graph Isomorphism

The group theoretic approach dominated research on the graph isomorphism prob-

lem since the early 1980s. In fact this line of research has led to significant develop-

ments in computational group theory. One of the earliest results (Mat79) establishes

that the problems of isomorphism recognition (GI), computation of an isomorphism

(if one exists), computation of the number of isomorphisms, computation of a gener-

ating set of the automorphism group, computation of the order of the automorphism

group and the problem of computing an automorphism partition (two vertices x, y

belong to the same partition if and only if there exists at least one automorphism

that maps x to y) of a graph are polynomially equivalent. Out of these compu-

tationally equivalent problems, most algorithms for graph isomorphism that make

use of permutation group theory, compute the generating set of the automorphism

group of the disjoint union of the given pair of graphs. It is well known that any

group G has a generating set of size less than log2(|G|). So, even though the order

of the automorphism group of a graph may be exponential, it has a generating set

of polynomial size.

The first poly-time algorithm for a restricted class of graphs using group-theoretic

methods is due to (Bab79; FHL80) for the class of colored graphs with bounded

color-class-size. Let a vertex coloring induce a partition C = {C1, C2, . . . , Cm} on the

vertex set of a graph G. Then AutC(G), the automorphism group of G that respects

1.1 The Graph Isomorphism Problem 7

this partition, can be computed in O((k!)6 · poly(n)) time where k = maxi |Ci| is a

constant.

A significant algorithm based on group theory is the one due to Luks. He gave

a polynomial time algorithm for graphs of bounded degree (Luk82). The algo-

rithm with best known time complexity for general graphs combines this result with

Zemlyachenko’s degree reduction technique (ZKT82; Bab81; BL83), which uses com-

binatorial ideas of individualization and refinement.

Other algorithms that use ideas from group theory include those for graphs with

bounded eigenvalue multiplicity (BGM82), k-contractible graphs (Mil83) and graphs

with excluded minors (Pon88).

1.1.4 Polyhedral Approach to Graph Isomorphism

Before discussing the next approach, it would be appropriate to describe briefly the

Sherali-Adams lift-and-project method as it plays an important role in the polyhe-

dral approach.

The Sherali-Adams hierarchy of progressively stronger relaxations of integer

polytopes, is defined as follows. We are given an explicit description of a starting

polytope P0 in terms of a system of linear inequalities Ax − b ≥ 0. Also, P0 is

contained in the unit cube in Rn. We have the integer polytope, P = conv(P0 ∩
{0, 1}n). Starting from P0, the Sherali-Adams method constructs a hierarchy of

progressively stronger linear relaxations of P , given as P0 ⊇ P1 ⊇ · · · ⊇ Pn = P .

The procedure for obtaining Pk for some k ≥ 1, is summarized below.

First we multiply each constraint Aix− bi ≥ 0 by each product
∏

i∈I xi
∏

j∈J(1−
xj) where I, J are disjoint subsets of {1, . . . , n} such that |I ∪J | = k, to obtain a set

of polynomial inequalities. To this we add the inequalities
∏

i∈I xi
∏

j∈J(1−xj) ≥ 0

where I, J are disjoint subsets of {1, . . . , n} such that |I ∪ J | = min(k + 1, n).

The next step is to linearize the system of polynomial inequalities. This is done

by replacing each x2
i by xi and subsequently substituting each product monomial∏

l∈L xl with a new variable yL. So we have y{xi} = xi. The resulting polytope P̂k

lies in Rd where d =
∑

j∈{1,...,k+1}
(
n
j

)
. Finally, polytope Pk is obtained by projecting

P̂k back onto Rn: Pk = {x ∈ Rn : xi = y{i} ∀ y ∈ P̂k}.

8 Introduction

One SA lift step

One SA lift step One SA lift step

Edge/non−edge constraints

Integer hull
Integer hull

Integer hull

P QG1G2

BG1G2

T 2
G1G2

B[2]
G1G2

B[2]

PG1G2

B

TG1G2

AX = XB constraints

Figure 1.1: Relationships between the various polytopes

Next, we look at the definitions of various polytopes that we will encounter in the

thesis. Some of these appear in the literature related to the polyhedral approach.

Figure 1.1 shows the relationships between the various polytopes and also gives

an idea about their origins. We will now define these formally in the order in which

they appear in the figure, starting from the top.

B: is popularly known as the Birkhoff polytope. It is the convex hull of all the

permutation matrices, where a permutation matrix Pσ is a n × n 0/1 matrix such

that (Pσ)ij = 1 if and only if σ(i) = j, for some permutation σ ∈ Sn, where Sn is the

symmetric group of permutations of [n]. Clearly, B lies in Rn×n. From the Birkhoff-

von Neumann theorem that every doubly-stochastic matrix can be expressed as the

convex combination of permutation matrices, we have B = {X ∈ [0, 1]n×n|Xe =

XT e = e}, where e is a vector of all 1s.

P: is the polytope that is obtained after one lift step of the Sherali-Adams (SA)

(SA90) lift-and-project method, starting with the polytope B. P lies in the space

Rn2×n2
.

QG1G2 : is actually not a polytope, but simply an algebraic set. It is defined

as {X ∈ [0, 1]n×n| XuvXpq = 0 for all {u, p} ∈ EG1 , {v, q} /∈ EG2 or {u, p} /∈

1.1 The Graph Isomorphism Problem 9

EG1 , {v, q} ∈ EG2 , Xe = XT e = e} in (Mal14). Here G1, G2 are simple undirected

graphs on n vertices each. Clearly, QG1G2 ⊆ B.

TG1G2 : is the standard GI polytope, also known as the Tinhofer polytope. It is

defined as {X ∈ [0, 1]n×n| AX = XB,Xe = eX = e} in (Tin91). Here A,B are the

adjacency matrices of the graphs G1, G2, respectively. Again, TG1G2 ⊆ B.

BG1G2 : is the convex hull of those permutation matrices Pσ that correspond to

the isomorphisms (given by σ) between G1, G2. It can be shown that a permutation

matrix Pσ belongs to QG1G2 if and only if σ is an isomorphism between G1, G2. Same

is true for TG1G2 , i.e., a permutation matrix Pσ belongs to TG1G2 if and only if σ

is an isomorphism between G1, G2. Hence, BG1G2 ⊆ QG1G2 . Also, BG1G2 ⊆ TG1G2 .

Moreover, BG1G2 is the convex hull of the integer points in QG1G2 . Similarly, BG1G2

is the convex hull of the integer points in TG1G2 .

B[2]: is the convex hull of the integer points in P. Each integer point in P is

a n2 × n2 symmetric 0/1 matrix, P
[2]
σ , that we call the second-order permutation

matrix since there is a one-to-one correspondence between these matrices and the

permutation matrices, given as P
[2]
σ (ij, kl) = Pσ(i, j)Pσ(k, l). For the same reason,

we call this polytope as the second-order Birkhoff polytope.

PG1G2 : is the polytope in Rn2×n2
that is obtained after one lift step of SA, starting

with QG1G2 . Polytope P is same as PG1G2 with G1, G2 as either empty or complete

graphs. Hence, polytope P can be referred to as the superset of PG1G2 for all G1, G2.

T2
G1G2

: is the polytope in Rn2×n2
that is obtained after one lift step of SA, starting

with TG1G2 . It can be shown that T2
G1G2

⊆ PG1G2 . It follows from (Mal14, Lemma

3.2) for the case of k = 2.

B
[2]
G1G2

: is the convex hull of those vertices of B[2] that correspond to isomor-

phisms between G1, G2. It can be shown that a second-order permutation matrix

P
[2]
σ belongs to PG1G2 if and only if σ is an isomorphism between G1, G2. Same

is true for T2
G1G2

, i.e., a second-order permutation matrix P
[2]
σ belongs to T2

G1G2
if

and only if σ is an isomorphism between G1, G2. Hence, B
[2]
G1G2

⊆ PG1G2 . Also,

B
[2]
G1G2

⊆ T2
G1G2

. Moreover, B
[2]
G1G2

is the convex hull of the integer points in PG1G2 .

Similarly, B
[2]
G1G2

is the convex hull of the integer points in T2
G1G2

.

Atserias and Maneva in (AM12) show that if k-WL distinguishes G1, G2 then the

kth level of the Sherali-Adams relaxation (SA90) (henceforth referred to as k-SA),

starting with TG1G2 , has no solution, or TkG1G2
= ∅. Also, in the same paper they

10 Introduction

show that if k-SA has no solution, then (k+1)-WL distinguishes G1, G2. Later Grohe

and Otto in their paper (GO12) prove the existence of graph pairs G1, G2 such that

k-WL does not distinguish G1, G2 (k-WL has a solution) and k-SA has no solution

(able to distinguish). They also show the existence of graph pairs G1, G2 such that

k-SA has a solution and (k + 1)-WL distinguishes G1, G2. These results establish

that the distinguishing power of k-SA is sandwiched between those of k-WL and

(k + 1)-WL.

Malkin in a recent paper (Mal14) basically confirms the results described above.

More than that he shows that k-SA defined above, is the geometric analogue of the

k-dimensional C-V-C algorithm. Further, he shows that k lift-and-project steps of

SA starting with QG1G2 is the geometric analogue of the k-WL algorithm. Finally, he

proves the relationship Qk+1
G1G2

⊆ TkG1G2
⊆ QkG1G2

which is the same as that established

by Atserias and Maneva in (AM12).

From the above we can conclude that there is a strong relationship between the

existing polyhedral and combinatorial approaches to GI. Also, as noted earlier, there

exist graphs (CFI graphs) for every k that cannot be distinguished by the k-WL

algorithm. Hence, we see the limitations of the polyhedral approach.

Recently, ODonnell, Wright, Wu, and Zhou (OWWZ14) and Codenotti, Schoen-

beck, and Snook (SSC14) studied the Lasserre hierarchy (Las01) of semi-definite re-

laxations of the integer linear program for GI. They proved that the same CFI-graphs

as mentioned above cannot even be distinguished by o(n) levels of the Lasserre hi-

erarchy.

1.2 Our Contributions

In the previous section we observed that the lift-and-project methods are not good

enough to solve the Graph Isomorphism problem for general graphs, at least when

we start with the polytope that corresponds to a natural formulation of the problem.

All the attempts so far have been in showing that a constant number of rounds will

not suffice to obtain the integer hull of the starting polytope. However, there has

been no attempt to study an intermediate polytope that is obtained after a constant

number of rounds. It is possible that an intermediate polytope, though not equal

to the integer hull, has some interesting properties that can allow the problem to

1.2 Our Contributions 11

be solved efficiently, at least in some special situations. This applies to not just the

Graph Isomorphism problem but also to other problems where only hardness results

are known. In this thesis we look closely at the polytopes, P,B[2], and observe some

interesting aspects of their geometry that can be exploited to obtain a procedure

for solving GI. However, several aspects of the geometry still remain unknown and

in future it would be nice to have a better understanding of them.

In this thesis we show that a given pair of graphs G1, G2 are isomorphic if and

only if PG1G2 contains at least one point from B[2]. Hence, for non-isomorphic

graphs, PG1G2 , if non-empty, must be confined to P \B[2]. Moreover, we show that

the polytopes P and B[2] have the same dimension and each facet plane of P defines

a facet of B[2]. B[2] has other facets as well. Clearly, the region P \ B[2] is defined

by these other facets of B[2].

We study the facial structure of B[2]. This polytope is also studied in the litera-

ture of Quadratic Assignment Problem (QAP) (Kai97), where exponentially many

facets of this polytope are identified. In this work we identify exponentially many

additional facets of B[2]. Further, we define a partial ordering on each of the known

families of facets.

We observe that the polytope PG1G2 is the disjoint union of BG1G2 and the region

PG1G2 \B[2]. So the region PG1G2 \B[2] must violate the inequalities associated with

one or more facets of B[2]. We call an inequality X a minimal violated inequality for

a point p in the feasible region, if X is violated by p but any inequality less than X in

the partial ordering, is not violated by p. We show that if there exists a single X for

all p in the region PG1G2 \ B[2], then a simple search algorithm can solve the graph

isomorphism problem in polynomial time. We also study the general case when

more than one minimal violated inequalities are required to separate PG1G2 \ B[2]

from B[2]. We present an algorithm for GI that runs in O(nk) time where k is a

minimal number of minimal violated inequalities that separate PG1G2 \ B[2] from

B[2].

We believe that one of the contributions of this thesis is to provide a geometric

characterization of the hard instances of the graph isomorphism problem. Clearly,

these are the cases when a large number of facet defining inequalities of B[2] are

required to separate PG1G2 \B[2] from B[2].

12 Introduction

1.3 Organization

The rest of the thesis is organized as follows. In Chapter 2 we present our in-

teger programming formulation of the graph isomorphism problem and its linear

programming relaxation. We study the feasible regions and introduce the two poly-

topes, P and B[2], and the special relationship that they share. We also introduce

the concept of zero-one reducibility and show that a simple search algorithm must

terminate in polynomial time if the feasible region is zero-one reducible. In Chapter

3 we study the facial structure of polytope B[2] and present an exponential set of

its facets. In Chapter 4 we show that there exists a partial ordering on the facet

planes described in chapter 3 and that this ordering extends to some planes that

support lower dimensional faces of B[2]. Further, we show that if there exists a single

minimal violated inequality for all points in the feasible region of our LP, then the

simple search algorithm presented in Chapter 2 terminates in polynomial time for

non-isomorphic graphs. In the same chapter we discuss the general case when such

an inequality does not exist. In Chapter 5 we show that there are facets of polytope

B[2] that still need to be discovered. In Chapter 6 we present some results related

to the semidefinite program obtained by restricting the feasible region of the LP

presented in Chapter 2, to the cone of positive semidefinite matrices. We show that

this program is nothing but the Lovász Theta function of a product graph. Finally

in Chapter 7 we present the results of some experiments first using the LP formula-

tion and later the SDP formulation. These experiments are done with graphs taken

from two classes considered difficult for GI. We conclude in Chapter 8 summarizing

our contributions and present some open problems that provide avenues for further

research.

Chapter 2

A Linear Programming Approach

to Graph Isomorphism

2.1 Introduction

In this chapter we derive an integer linear program for graph isomorphism. Each

(integer) solution of this program corresponds to a permutation that gives an iso-

morphism between the two graphs. The convex hull of these points is denoted by

B[2] when both graphs are either empty ((V, ∅)) or complete (Kn). The polytope of

the corresponding linear program (LP), after relaxing the integrality constraint, is

denoted by P. We show that the graphs are isomorphic if and only if the feasible

region of the LP intersects B[2]. Further, we describe a simple search algorithm to

determine if the feasible region of the linear program is confined to P \B[2], thereby

establishing non-isomorphism.

2.2 Integer Linear Program for GI

Define a second-order permutation matrix P
[2]
σ corresponding to a permutation σ

as (P
[2]
σ)ij,kl = (Pσ)ij(Pσ)kl, where Pσ is the permutation matrix corresponding to

σ. We call the convex hull of the second-order permutation matrices, the second-

order Birkhoff polytope B[2] since the first-order Birkhoff polytope B[1] or simply the

well known Birkhoff polytope is defined as the convex hull of all the permutation

14 A Linear Programming Approach to Graph Isomorphism

matrices. In (PR09) a completely positive formulation of Quadratic Assignment

Problem (QAP) is given. The feasible region of this program is precisely B[2], see

theorem 3 in (PR09).

Let B
[2]
G1G2

denote the convex hull of the P
[2]
σ where σ are the isomorphisms

between G1 and G2. If the graphs are non-isomorphic, then B
[2]
G1G2

= ∅. Clearly

B[2] = B
[2]
G1G2

when G1 = G2 = ([n], ∅) or G1 = G2 = Kn. As B
[2]
G1G2

is a polytope

we have an obvious observation.

Observation 2.2.1. Given a pair of graphs, there exists a linear program (probably

with exponentially many constraints) such that the feasible region of the program

(B
[2]
G1G2

) is non-empty if and only if the graphs are isomorphic.

Next we will develop an integer linear program such that the convex hull of its

feasible points is B
[2]
G1G2

. It is easy to verify that for every permutation σ, Y = P
[2]
σ

satisfies equations 2.1a-2.1e.

Yij,kl − Ykl,ij = 0 , ∀ i, j, k, l (2.1a)

Yij,il = Yji,li = 0 , ∀ i, ∀ j 6= l (2.1b)∑
k

Yij,kl = Yij,ij , ∀ i, j, l (2.1c)∑
k

Yij,lk = Yij,ij , ∀ i, j, l (2.1d)∑
j

Yij,ij =
∑
j

Yji,ji = 1 , ∀ i (2.1e)

The solution plane of these equations will be denoted by P .

2.2.1 Affine Plane of B[2]

Lemma 2.2.2. The solution plane of equations 2.1a-2.1e, P , is the affine plane

spanned by P
[2]
σ s, i.e., P = {∑σ ασP

[2]
σ |
∑

σ ασ = 1}.

Proof. We will first show that the dimension of the solution plane is no more than

n!/(2(n− 4)!) + (n− 1)2 + 1.

In the following discussion we will split matrix Y into n2 non-overlapping sub-

matrices of size n × n which will be called blocks. The n blocks that contain the

2.2 Integer Linear Program for GI 15

diagonal entries of Y will be called diagonal blocks. Note that Yij,kl is the jl-th entry

of the ik-th block. From the equation 2.1b, the off-diagonal entries of the diagonal

blocks are zero and the diagonal entries of the off-diagonal blocks are also zero.

Assume that the first n − 1 diagonal entries of the first n − 1 diagonal blocks are

given. Then all the remaining diagonal entries can be determined using equations

2.1e. Therefore there are at most (n−1)2 independent entries in the diagonal blocks.

Consider any off-diagonal block with first entry given by Yr1,s1 where r ≤ n −
3, r < s < n. The sum of the entries in any row of this block is same as the main

diagonal entry of that row in Y , see equation 2.1d. Same holds for the columns

from symmetry condition 2.1a. Hence by fixing all but one off-diagonal entries

of the first principal sub-matrix of the block, of size (n − 1) × (n − 1), we can

fill in all the remaining entries. From equation 2.1c all the entries in the right

most blocks 1n, . . . , (n− 3)n can be determined. Lower triangular entries of Y are

determined by symmetry. At this stage we have only three blocks viz., (n−2)(n−1),

(n−2)n and (n−1)n above the main diagonal and their symmetric blocks below the

main diagonal, whose entries remain to be determined. Consider the first principal

(n − 1) × (n − 1) sub-matrix of the (n − 2)(n − 1)-th block. Let’s say we are

given the entries in the upper triangular portion of this sub-matrix. We will show

that this is sufficient to determine the remaining entries in matrix Y . Clearly the

entry Y(n−2)1,(n−1)n can be determined from equation 2.1d. Now using equation

2.1c we can determine all the entries in the first row of the (n − 2)n-th block. So

we know the entries in the first column of the n(n − 2)-th block from symmetry.

Again using condition 2.1c we can determine the entries in the first column of the

n(n − 1)-th block. That leads to the determination of entries in the first column

of the (n − 2)(n − 1)-th block using conditions 2.1a and 2.1c. Now using a similar

argument for the second row onwards of the (n − 2)(n − 1)-th block, we can fill in

the remaining entries.

Hence we see that the number of independent variables, including those in diag-

onal blocks, is no more than (n− 1)2+((n− 1)(n− 2)− 1)(2 + · · ·+ (n− 2))+(n−
1)(n− 2)/2 = n!/(2(n− 4)!) +(n− 1)2 + 1.

In Appendix A we show that the dimension of B[2] polytope is n!
2(n−4)!

+(n−1)2+1

(the same is also shown in (Kai97)). This claim along with the result of the previous

paragraph leads to the conclusion that equations 2.1a-2.1e define the affine plane

spanned by the P
[2]
σ s.

16 A Linear Programming Approach to Graph Isomorphism

Corollary 2.2.3. B[2] is full dimensional in P .

Lemma 2.2.4. The only 0/1 solutions of equations 2.1a-2.1e are P
[2]
σ s.

Proof. Let Y be a 0/1 solution of the system of linear equations given by 2.1a-

2.1e. Note that equations 2.1e and the non-negativity of the entries ensure that the

diagonal of the solution is a vectorized doubly stochastic matrix. As the solution is

a 0/1 matrix, the diagonal must be a vectorized permutation matrix, say Pσ. Then

Yij,ij = (Pσ)ij ∀i, j.
Equations 2.1a and 2.1d imply that Yij,kl = 1 if and only if Yij,ij = 1 and

Ykl,kl = 1. Hence Yij,kl = Yij,ij · Ykl,kl = (Pσ)ij · (Pσ)kl = (P
[2]
σ)ij,kl.

Let G1 = ([n], E1) and G2 = ([n], E2) be simple graphs on n vertices each. Define

a graph G = (V,E), where V = [n] × [n] and {ij, kl} ∈ E if either {i, k} ∈ E1 and

{j, l} ∈ E2 or {i, k} /∈ E1 and {j, l} /∈ E2. G is called the symmetric tensor product

of G1 and G2.

Corollary 2.2.5. The only 0/1 solutions of equations 2.1a-2.1e and Yij,kl = 0 ∀
{ij, kl} /∈ E, are the P

[2]
σ where σ are the isomorphisms between G1 and G2.

Corollary 2.2.5 gives the following integer program for GI.

IP-GI: Find a point Y

subject to 2.1a-2.1e (2.2a)

Yij,kl = 0 , ∀ {ij, kl} /∈ E (2.2b)

Yij,kl ∈ {0, 1} , ∀ i, j, k, l

Note IP-GI is a feasibility formulation of GI. To formulate an optimization program

for GI, replace the conditions 2.1e by
∑

i Yij,ij ≤ 1 and
∑

j Yij,ij ≤ 1, and set

the objective to maximize
∑

i,j Yij,ij. The solutions of IP-GI coincide with those

solutions of the optimization version where the objective function evaluates to n.

2.3 Linear Programming Relaxation

Program LP-GI, given below, is the linear programming relaxation of IP-GI. Here

we only require that Yij,kl ≥ 0 for all i, j, k, l. The condition Yij,kl ≤ 1 is implicit for

2.3 Linear Programming Relaxation 17

all i, j, k, l. Let PG1G2 denote the feasible region of LP-GI. Note that PG1G2 is same

as Q̂2
G1G2

as defined in (Mal14). In (Mal14), the author defines a semi-algebraic set

QGH as the set of n×n doubly stochastic matrices X satisfying XijXkl = 0 ∀ {i, k} ∈
E(G), {j, l} 6∈ E(H) or {i, k} 6∈ E(G), {j, l} ∈ E(H). The author refers to QkGH as

the k-th Sherali-Adams relaxation (SA90) of QGH and Q̂kGH as the lifted polytope in

Rnk×nk
given via an extended formulation, whose projection in Rn×n is the polytope

QkGH . Clearly B
[2]
G1G2

⊆ PG1G2 . Define P = PG1G2 where G1 = G2 = ([n], ∅) or

G1 = G2 = Kn. P is contained in the unit-cube {0, 1}n2×n2
, so it is a polytope. It

is also contained in the plane P , hence it too is a full-dimensional polytope in that

plane.

LP-GI: Find a point Y

subject to Yij,kl − Ykl,ij = 0 , ∀ i, j, k, l (2.3a)

Yij,il = Yji,li = 0 , ∀ i, ∀j 6= l (2.3b)∑
k

Yij,kl =
∑
k

Yij,lk = Yij,ij , ∀ i, j, l (2.3c)∑
j

Yij,ij =
∑
j

Yji,ji = 1 , ∀ i (2.3d)

Yij,kl = 0 , ∀ {ij, kl} /∈ E (2.3e)

Yij,kl ≥ 0 , ∀ i, j, k, l

Lemma 2.3.1. P = B[2] for n ≤ 3.

Proof. P = B[2] holds trivially for n = 1 and n = 2. We will show that for n = 3 any

point Y ∈ P can be expressed as a convex combination of P
[2]
σ s. Fix an arbitrary

index pair ij such that Yij,ij > 0. Define an n × n matrix M where Mkl = Yij,kl.

Conditions 2.1c-2.1d ensure that M is a doubly stochastic matrix (one that is scaled

by Yij,ij). Every doubly stochastic matrix can be expressed as a convex combination

of permutation matrices so it follows that there exists a permutation σ such that

Yij,kσ(k) > 0 for all k ∈ [n]. Due to symmetry of Y (condition 2.1a) and condition

2.1d, we have Ykσ(k),kσ(k) > 0 and Ykσ(k),ij > 0 for all k. W.l.o.g. let Y11,11 > 0.

Also let σ be the identity permutation. So we have Y11,22 = Y22,11 > 0, Y11,33 =

Y33,11 > 0, Y22,22 > 0 and Y33,33 > 0. Now if Y22,33 = Y33,22 > 0, we can subtract

min{Y11,22, Y22,33, Y33,11} times P
[2]
σ from Y without introducing any negative entries

18 A Linear Programming Approach to Graph Isomorphism

in the residual matrix. At least one positive entry will reduce to zero. A suitably

scaled residual matrix would still belong to P and the same process can be repeated.

To complete the argument we will show that Y22,33 = Y33,22 cannot be zero. Assume

that Y22,33 = Y33,22 = 0. Then from the conditions
∑

i Y22,3i = Y22,22 =
∑

i Y22,i1 and

Y22,32 = Y22,21 = 0 we conclude that Y22,11 = 0, contradicting the fact that Y22,11 is

positive.

The following observations are in order.

Observation 2.3.2. PG1G2 ∩ B[2] = B
[2]
G1G2

is the convex hull of P
[2]
σ s where σ are

the isomorphisms between G1 and G2.

Proof. From Corollary 2.2.5, we know that P
[2]
σ s are the only 0/1 points in PG1G2

where σ are the isomorphisms between G1 and G2. Clearly, B
[2]
G1G2

⊆ PG1G2 ∩ B[2].

Let Y ∈ (PG1G2 ∩B[2]) \B[2]
G1G2

. Since Y ∈ B[2] but Y 6∈ B
[2]
G1G2

, we can express Y as

a convex combination of P
[2]
σ s such that at least one of these does not correspond to

an isomorphism between G1, G2. Let such a P
[2]
σ correspond to some permutation

σ1. So we have Yij,kl = 0 for some ij, kl such that σ1(i) = j and σ1(k) = l i.e.,

P
[2]
σ1 (ij, kl) = 1. This is impossible. Hence (PG1G2 ∩B[2]) \B[2]

G1G2
= ∅.

Consider the feasible region PG1G2 after a sequence of 0/1 assignments to some

of the free variables. We have the following corollary to the above observation.

Corollary 2.3.3. Let xi = αi for i = 1, . . . , k be a sequence of k 0/1 assign-

ments to the free variables xi (each xi corresponds to some Yij,kl in LP-GI). Then

(PG1G2 |x1=α1,...,xk=αk
) ∩ B[2] = conv(P

[2]
σ | σ is an isomorphism between G1, G2 that

respects xi = αi for all i ∈ {1, . . . , k}).

Proof. Similar to that of Observation 2.3.2. Note that
∑

i βiyi = γ for γ ∈ {0, 1},∑
i βi = 1, β ≥ 0 implies that yi = γ for all i such that βi > 0.

Observation 2.3.4. Graphs G1, G2 are isomorphic if and only if the feasible region

of LP-GI shares at least one point with B[2].

Proof. Let Y be a point in the feasible region of LP-GI such that Y ∈ B[2]. From

Observation 2.3.2 Y can be expressed as
∑

σ ασP
[2]
σ where the sum is over the isomor-

phisms between G1 and G2. Since Y is non-empty, ασ′ > 0 for some isomorphism σ′.

Also, since Y respects the constraints 2.3e, P
[2]
σ′ must also respect these constraints.

2.4 Using the LP to Solve GI 19

Hence, P
[2]
σ′ belongs to the feasible region of LP-GI and σ′ gives an isomorphism

between G1, G2.

For the other direction, let σ′′ be an isomorphism between G1, G2. So P
[2]
σ′′ must

respect the constraints 2.3e. All the other constraints of LP-GI are satisfied by every

P
[2]
σ . Hence P

[2]
σ′′ belongs to the feasible region of LP-GI. Also, P

[2]
σ′′ is a vertex of

B[2].

Observation 2.3.5. Vertices of B[2] (i.e., P
[2]
σ) are a subset of the vertices of P.

Proof. Since P is contained in the unit cube in Rn2×n2
, any vertices of the unit cube

in Rn2×n2
that are contained in P must form the vertices of P. Clearly, P

[2]
σ are such

vertices. Hence, B[2] ⊆ P.

Observation 2.3.6. The complete set of facet planes of P is Yij,kl = 0∀i 6= k,∀j 6= l.

Proof. Observe that Yij,kl = 0 ∀i 6= k,∀j 6= l are the only bounding planes of

polytope P. Hence, these are the only planes that can form the facets of polytope

P. However, there is no way to differentiate one of these from the other. So, if one

of these defines a facet, then so must the other. Hence, Yij,kl = 0∀i 6= k, ∀j 6= l is a

complete set of facet planes of P.

From Observations 2.3.6, 2.3.5 and Theorem 3.2.10 we have the following result.

Theorem 2.3.7. All facet defining planes of P also define facets of B[2] and all

vertices of B[2] are also vertices of P. Besides, the dimensions of the two polytopes

are same (both are full dimensional polytopes in plane P).

2.4 Using the LP to Solve GI

We first define the notion of zero-one reducibility of a region.

2.4.1 Zero-One Reducibility

Definition 2.4.1. Let R be a region in RN and let x1, . . . , xN denote the coordinate

variables. The region R is said to be zero-one reducible if either R = ∅ or R is a

single point with all 0/1 coordinates or there exists some index i and α ∈ {0, 1} such

that R|xi=1−α = ∅ and R|xi=α is zero-one reducible.

20 A Linear Programming Approach to Graph Isomorphism

Suppose a region R ⊂ RN is zero-one reducible. Then xj1 , xj2 , . . . , xjr will be

called a reduction sequence if there exist αj1 , . . . , αjr ∈ {0, 1} such that R|xj1=αj1
,...,

xji−1
=αji−1

,xji=1−αji
= ∅ ∀i and R|xj1=αj1

,...,xjr=αjr
= ∅. Suppose xj1 , xj2 , . . . , xjr is a

reduction sequence for R. Also suppose that there exists xj and βj ∈ {0, 1} such

that R|xj=1−βj = ∅. If xj 6= xji for any i, then xj1 , xj2 , . . . , xjr is also a reduction

sequence for R|xj=βj . On the other hand, if j = ji, then xj1 , . . . , xji−1
, xji+1

, . . . , xjr

is a reduction sequence for R|xj=βj . Hence R|xj=βj is also zero-one reducible.

From the above observation we can design a polynomial time recursive procedure

to detect zero-one reducibility of a given region if we can detect in polynomial time

whether the given region is empty or not, which in our case is equivalent to solving

LP-GI with additional constraints of the form xi = αi. The resulting linear program

clearly has constraints that are polynomially many in the number of variables, and

hence can be solved efficiently using say the ellipsoid method. Given the region R, a

sub-routine SearchV ar() will consider each dimension j and each value α ∈ {0, 1}
and check if R|xj=1−α = ∅. If such j and α are found, then repeat the procedure to

detect the zero-one reducibility of R|xj=α.

The procedure will try to detect if the feasible region of LP-GI for the given pair

of graphs is zero-one reducible. In the case when the region does not reduce along

any dimension, i.e., it is not zero-one reducible, we select any variable xj and invoke

the procedure for both the regions: R|xj=0 and R|xj=1. Therefore it will detect if

there is any 0/1 point in the feasible region.

2.4.2 The Search Algorithm

The objective of the algorithm is to check if the feasible region intersects B[2] or

not. We know from Observation 2.3.2 that if the feasible region intersects B[2], then

there must be at least one P
[2]
σ in the region because the entire intersection is the

convex hull of P
[2]
σ s that correspond to the isomorphisms between the two graphs.

Since P
[2]
σ are the only 0/1 points in the feasible region (in the entire P), all we need

to detect is whether there is any 0/1 point in the feasible region PG1G2 .

Algorithm 1 gives the algorithm which returns true if the graphs are isomorphic

otherwise it returns false. It is based on the procedure described above. Parameter

Q denotes the equations of the form x = 0 and x = 1 which are set in the process.

2.4 Using the LP to Solve GI 21

LP (Q) represents LP-GI with additional equations Q. The second parameter U

denotes the set of variables that are free (not yet set to either zero or one). Initially

Q = Q0 is an empty set and U = U0 is the set of all the variables not set in 2.3b

and 2.3e. Sub-routine SearchV ar(Q,U) returns a tuple (x, α) when the feasible

region of LP-GI with additional conditions Q and x = 1 − α is empty. If no such

variable/value pair is found, then it returns (null,−1).

Function: GISolver(Q,U)

if LP (Q) is infeasible then

return false/* Graphs are non-isomorphic */

else

if LP (Q) is feasible and U = ∅ then

return true/* Graphs are isomorphic */

else

(x, α) := SearchV ar(Q,U);

if α = 1 then
return GISolver(Q ∪ {x = 1}, U \ {x});

else

if α = 0 then
return GISolver(Q ∪ {x = 0}, U \ {x});

else

Select an arbitrary variable x from U ;

return GISolver(Q ∪ {x = 0}, U \ {x}) ∨
GISolver(Q ∪ {x = 1}, U \ {x});

end

end

end

end
Algorithm 1: Algorithm for GI

If we view the space searched by GISolver as a tree with (Q0, U0) as the root, then

those nodes, (Q,U), have two children where SearchV ar(Q,U) returns (null,−1).

Call them split nodes. All other internal nodes have one child each. Let there be at

most τ split nodes along any path from root to the leaves. Then the time complexity

of this algorithm is O(p(n)2τ) where p(n) denotes a polynomial in n. Observe that

22 A Linear Programming Approach to Graph Isomorphism

if the feasible region of LP (Q0) is zero-one reducible, then the tree will not have

any split nodes and the procedure will require polynomial time.

2.5 Conclusion

In this chapter we gave an integer program for GI where there is a one to one

correspondence between the isomorphisms and the solution points. The convex hull

of the solution points is denoted by B
[2]
G1G2

. The polytope of the LP relaxation of

the integer program is denoted by PG1G2 . We studied the relationship between the

two polytopes when G1 = G2 = (V, ∅) or G1 = G2 = Kn. We defined the concept of

zero-one reducibility and presented an exact algorithm for GI that takes polynomial

time if PG1G2 is zero-one reducible.

Chapter 3

Facial Structure of B[2]

3.1 Introduction

Among various definitions of the Quadratic Assignment problem (QAP), see (Kai97),

one is min{∑ij,kl(AikBjl + Dij,kl)Yij,kl|Y ∈ B[2]} (PR09) where A,B,D are input

matrices. This may also be stated as min{〈(A⊗B+D), Y 〉| Y ∈ B[2]}. Thus QAP

is an optimization problem over B[2]. In the literature (Kai97) B[2] is referred to as

QAP-polytope.

B[2] is a zero-one polytope as is the Birkhoff polytope. But unlike the latter

which has only n2 facets, B[2] has exponentially many known facets (JK97; Kai97)

and exponentially many additional facets are identified in this chapter. We also

present a generic inequality such that all the previously known facets and the new

facets discovered in this chapter are special instances of this inequality. In chapter

5 we will show that there are some facets which are yet to be discovered.

3.2 Some Facets of B[2]

In the previous chapter we have shown that equations 2.1a-2.1e describe the affine

plane, P , spanned by the vertices of B[2]. The linear description of the polytope

now requires the description of the planes which define its facets. In this section

we will identify exponentially many new facets of B[2], in addition to exponentially

many already known facets given in (JK97; Kai97). We will represent a facet by

24 Facial Structure of B[2]

an inequality f(x) ≥ 0 which defines the half space that contains the polytope and

the plane f(x) = 0 contains the facet. Observe that the facet plane is given by the

intersection of P with the plane given by f(x) = 0.

All the known facets of B[2], including the ones that we are going to present in

this chapter, are special instances of the following general inequality.∑
ijkl

nijnklYij,kl + (β − 1/2)2 ≥ (2β − 1)
∑
ij

nijYij,ij + 1/4 (3.1)

where β ∈ Z and nij ∈ Z for all (ij).

Lemma 3.2.1. B[2] respects the inequality (3.1).

Proof. We will show that P
[2]
σ for every σ ∈ Sn satisfies (3.1). The same must then

hold for their convex combination since (3.1) defines a half-space, which is convex.

(3.1) reduces to (
∑

i niσ(i) − (β − 1/2))2 ≥ 1/4 for Y = P
[2]
σ . Since nij, β ∈ Z, the

left hand side expression is the square of a positive number whose fractional part is

1/2. Clearly, this square is at least 1/4.

The first set of facets are the instances of (3.1) where ni0j0 = nk0l0 = 1 for some

(i0j0) 6= (k0l0), all other nij = 0, and β = 1.

Theorem 3.2.2. Yi0j0,k0l0 ≥ 0 defines a facet of B[2] for every i0, j0, k0, l0 such that

i0 6= k0 and j0 6= l0.

The above theorem is proved in (Kai97). We give an alternative proof in section

3.2.2.

The next set of facets are due to β = np1q1 = np2q2 = np1q2 = 1, nkl = −1, and

the rest of the nij are zero. Here p1, p2, k are any distinct indices. Similarly q1, q2, l

are also any distinct indices.

Theorem 3.2.3. Inequality Yp1q1,kl + Yp2q2,kl + Yp1q2,kl ≤ Ykl,kl + Yp1q1,p2q2 defines a

facet of B[2], where p1, p2, k are distinct and q1, q2, l are also distinct and n ≥ 6.

The third set of facets is due to β = ni1j1 = · · · = nimjm = 1, nkl = −1 and the

remaining nij = 0.

Theorem 3.2.4. Inequality Yi1j1,kl + Yi2j2,kl + . . .+ Yimjm,kl ≤ Ykl,kl +
∑

r<s Yirjr,isjs,

defines a facet of B[2], where i1, . . . , im, k are all distinct and j1, . . . , jm, l are also

distinct. In addition, n ≥ 6,m ≥ 3.

3.2 Some Facets of B[2] 25

Proofs of theorems 3.2.3, 3.2.4 appear in sections 3.2.4, 3.2.5, respectively.

The next two sets of facets are established in (Kai97). Let P1 and P2 be disjoint

subsets of [n]. Similarly let Q1 and Q2 also be disjoint subsets of [n]. In these facets

nij = 1 if (ij) ∈ (P1×Q2)∪ (P2×Q1) and nij = −1 if (ij) ∈ (P1×Q1)∪ (P2×Q2).

All other nij are zero. In the following case P2 = Q1 = ∅.

Theorem 3.2.5. (Kai97, Definition 8.5) Following inequality defines a facet of B[2]

(β − 1)
∑

(ij)∈P1×Q2
Yij,ij ≤

∑
(ij),(kl)∈P1×Q2,i<k

Yij,kl + (1/2)(β2 − β)

when (i) β + 1 ≤ |P1|, |Q2| ≤ n− 3, (ii) |P1|+ |Q2| ≤ n− 3 + β, (iii) β ≥ 2.

The next set of facets, with Q1 = ∅, is given by the following theorem.

Theorem 3.2.6. (Kai97, Definition 8.6) Following inequality defines a facet of B[2]

−(β − 1)
∑

(ij)∈P1×Q2
Yij,ij + β

∑
(ij)∈P2×Q2

Yij,ij +
∑

(ij),(kl)∈P1×Q2,i<k
Yij,kl +∑

(ij),(kl)∈P2×Q2,i<k
Yij,kl −

∑
(ij)∈P1×Q2,(kl)∈P2×Q2

Yij,kl + (1/2)(β2 − β) ≥ 0

where the conditions on the parameters are as given in (Kai97, Definition 8.6).

3.2.1 A Useful Identity

The following lemma gives a method to establish a facet.

Let X be a set of vectors. Then LS(X) denotes the subspace spanned by the

vectors in X.

Lemma 3.2.7. Let V be the set of vertices of a polytope such that the affine plane

of V does not contain the origin and f(x) ≥ 0 be a linear inequality satisfied by all

the vertices. Let S = {v ∈ V |f(v) = 0} such that V \ S 6= ∅. Also, let a vertex

v0 ∈ V \ S be such that V ⊂ LS({v0} ∪ S). Then the affine plane of S defines a

facet, i.e., f(x) ≥ 0 defines a facet (intersection of f(x) = 0 plane with the affine

plane of V is the facet plane).

Proof. Let d denote the dimension of LS(V). So the dimension of the affine plane

of V is d−1. Also V ⊂ LS({v0}∪S) so the dimension of LS(S) is at least d−1. As

the affine plane of S does not contain the origin, the dimension of the affine plane of

S is at least d− 2. Observe that V is not contained in LS(S) since f(x) is non-zero

for x ∈ V \ S. We conclude that the dimension of the affine plane of S is exactly

one less than that of the affine plane of V . 2

26 Facial Structure of B[2]

Corollary 3.2.8. Let G = (V \ S,E) be a graph with the property that {u, v} ∈ E
iff u− v ∈ LS(S). If G is connected, then S is a facet.

Proof. Since G is connected, there exists a simple path in G between every pair

of vertices. Let us fix an arbitrary vertex as v0. Now consider any vertex u in

V (G) \ {v0}. There must exist a simple path between u and v0 via some vertices

u1, u2, . . . , uk. Since {u, u1}, {u1, u2}, . . . , {uk, v0} are edges on this path and u−v ∈
LS(S) for {u, v} ∈ E, we have uk − v0 ∈ LS(S) or uk ∈ LS(S ∪ {v0}). Now, since

uk−1 − uk ∈ LS(S), we have uk−1 ∈ LS(S ∪ {uk}) or uk−1 ∈ LS(S ∪ {v0}). This

could now be extended to lead to u ∈ LS(S ∪ {v0}). The rest follows from the

lemma.

We say that a permutation σ′ is a transposition of another permutation σ (or

that σ and σ′ are transpositions of each other) if the images of the two permutations

differ at two indices, i.e., if there are two distinct indices x, y such that σ(x) =

σ′(y), σ(y) = σ′(x) and σ(z) = σ′(z) for all z ∈ [n] \ {x, y}.
Let k1, k2, k3 be any three integers belonging to [n]. Let σ1, . . . , σ6 be a set of

permutations of Sn which have same image for each element of [n] \ {k1, k2, k3}, i.e.,

σi(z) = σj(z) for all z ∈ [n] \ {k1, k2, k3} for every i, j ∈ {1, . . . , 6}. Let images

of k1, k2, k3 under σ1, . . . , σ6 be (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a)

respectively. Further, suppose x, y be any two elements of [n] \ {k1, k2, k3}. Let σ′i
be transposition of σi on indices x and y, for each i = 1, . . . , 6. Following is a useful

identity.

Lemma 3.2.9. Let Σ = {σ1, . . . , σ6, σ
′
1, . . . , σ

′
6} be a set of permutations as defined

above. Then
∑

σ∈Σ sign(σ)P
[2]
σ (ij, kl) = 0 ∀ i, j, k, l.

Proof. All we need to show is that
∑

σ∈Σ,σ(i)=j,σ(k)=l sign(σ) = 0 ∀ i, j, k, l. Note that

two permutations have opposite signs if they are transpositions of each other. So

from the above we have sign(σ1) = sign(σ4) = sign(σ5) = −sign(σ2) = −sign(σ3)

= −sign(σ6). Also, sign(σi) = −sign(σ′i) leading to
∑

σ∈{σ1,...,σ6} sign(σ) = 0 as

well as
∑

σ∈{σ′1,...,σ′6}
sign(σ) = 0. Let us assume that σi(x) = d and σi(y) = e. So,

σ′i(x) = e and σ′i(y) = d, for all i ∈ {1, . . . , 6}. We consider the following six cases.

Case (i). i ∈ {k1, k2, k3}, k ∈ {x, y}: here the only interesting scenario is when

j ∈ {a, b, c} and l ∈ {d, e} since otherwise none of the permutations in Σ would con-

tribute anything to the sum. Now, depending on l we either get contributions from

3.2 Some Facets of B[2] 27

two permutations in {σ1, . . . , σ6} or we get contributions from two permutations in

{σ′1, . . . , σ′6}. Moreover, these permutations must be transpositions of each other.

W.l.o.g. let i = k1, j = a, k = x, l = d. So the contributing permutations are σ1, σ2.

Note that these are transpositions of each other.

Case (ii). {i, k} ⊂ {k1, k2, k3}: here we get contributions from two permutations,

one from σi, say σ1 w.l.o.g. and the other σ′1. Clearly these are transpositions of

each other.

Case (iii). {i, k} = {x, y}: depending on j, l we have either contributions from

{σ1, . . . , σ6} or contributions from {σ′1, . . . , σ′6}.
Case (iv). i ∈ {k1, k2, k3}, k ∈ [n] \ {k1, k2, k3, x, y}: we get contributions from

two permutations from σi and the corresponding two permutations from σ′i. Clearly

their signs cancel each other.

Case (v). i ∈ {x, y}, k ∈ [n] \ {k1, k2, k3, x, y}: depending on j we have either

{σ1, . . . , σ6} contributing to the sum or {σ′1, . . . , σ′6} contributing to the sum.

Case (vi). {i, k} ∩ {k1, k2, k3, x, y} = ∅: here we have all the twelve permutations

contributing to the sum and hence their signs add up to zero.

3.2.2 Facets Due to the Non-negativity Constraint

In this section V will denote the set {P [2]
σ |σ ∈ Sn} and S will denote {P [2]

σ |f(P
[2]
σ) =

0}.

Theorem 3.2.10. The non-negativity constraint Yij,kl ≥ 0, defines a facet of B[2]

for every i, j, k, l such that i 6= k and j 6= l.

Proof. Observe that the non-negativity condition is satisfied by every P
[2]
σ . Every

vertex in the set V \ S corresponds to a permutation σ where σ(i) = j and σ(k) =

l. Consider a graph G = (V \ S,E) where E = {P [2]
σ , P

[2]
σ′ } such that σ, σ′ are

transpositions of each other. Since the set of permutations corresponding to the

vertices in V \ S is isomorphic to the group Sn−2, G must be a connected graph.

Let P
[2]
σ1 and P

[2]

σ′1
be a pair of matrices in V \S where σ and σ′ are transpositions

of each other. Let k1 = i, k2 = k and k3 be any element other than x, y, i, k. Consider

all the permutations σ2, . . . , σ6, σ
′
2, . . . , σ

′
6 as defined in the context of lemma 3.2.9.

Observe that all the P
[2]
σ s corresponding to these ten permutations belong to S.

Hence we can express P
[2]
σ1 − P [2]

σ′1
in terms of vertices in S using the identity in the

lemma. From Corollary 3.2.8 the inequality defines a facet. 2

28 Facial Structure of B[2]

We will use the following lemma to show that the graph under consideration is

connected, hence the name. This is required to prove that certain inequality defines

a facet of B[2], as shown in Corollary 3.2.8.

3.2.3 The Connection Lemma

Lemma 3.2.11. (1) Let X be a set of vertices P
[2]
σ such that σ(1) = 1, . . . , σ(a) = a

and σ(a + 1) /∈ I1, . . . , σ(a + b) /∈ Ib where Ij are subsets of [n] \ {1, 2, . . . , a} such

that | ∪i Ii| ≤ n − a − b. Let G = (X,E) be a graph in which {P [2]
σ , P

[2]
σ′ } ∈ E iff σ

and σ′ are transpositions of each other. Then G is connected.

(2) Let X be a set of vertices P
[2]
σ such that σ(1) = 1, . . . , σ(a) = a, σ(a + 1) 6=

x1, . . . , σ(a + b) 6= xb, where all xi are distinct and greater than a and a + b < n.

Let G = (X,E) be a graph in which {P [2]
σ , P

[2]
σ′ } ∈ E iff σ and σ′ are transpositions

of each other. Then G is connected.

Proof. (1) Let I = ∪iIi. Without loss of generality assume that I ⊆ {a+ b+ 1, a+

b + 2, . . . , n}. Hence the P
[2]
σ corresponding to the identity permutation belongs to

X.

Given any vertex P
[2]
σ0 ∈ X, we will show that there is a path from P

[2]
σ0 to P

[2]
σ:σ(i)=i

in G. Starting from P
[2]
σ0 , suppose the path has been built up to P

[2]
σ for some σ such

that for some i ∈ {a + 1, . . . , a + b}, σ(i) ∈ {a + b + 1, . . . , n}. Hence there must

exist a j ∈ {a+ b+ 1, a+ b+ 2, . . . , n} such that σ(j) ∈ {a+ 1, . . . , a+ b}. Consider

the permutation σ′ which is the transposition of σ with respect to the indices i, j.

P
[2]
σ′ is also in X and {P [2]

σ , P
[2]
σ′ } is an edge. Extend the path to P

[2]
σ′ . Finally we

will reach a permutation in which all indices in the range a + 1, . . . , a + b map to

a+ 1, . . . , a+ b and hence all the indices in a+ b+ 1, . . . , n map to a+ b+ 1, . . . , n.

Next perform transpositions within indices of a + 1, . . . , a + b so that finally

σ(i) maps to i for all i in this range. Note that the vertices corresponding to the

permutations generated in the process, all belong to X. In the end we do the same

for indices in the range a+ b+ 1, . . . , n.

(2) The claim is vacuously true if X is empty. So we assume that it is non-empty.

By relabeling we can make sure that xi 6= a + i for all 1 ≤ i ≤ b. So without loss

of generality we can assume that P
[2]
σ:σ(i)=i belongs to X. To prove the claim we will

show that starting from any arbitrary vertex P
[2]
σ0 ∈ X there is a path from P

[2]
σ0 to

3.2 Some Facets of B[2] 29

P
[2]
σ:σ(i)=i. While tracing this path, the current permutation σ has σ(a + i) 6= a + i

while σ(a+ j) = a+ j for all j < i. Let σ−1(a+ i) = a+ k.

If either a + k > a + b or a + k ≤ a + b and σ(a + i) 6= xk, then perform

transposition on indices a+ i and a+ k resulting into the new permutation σ′ that

is “closer” to the identity and P
[2]
σ′ ∈ X.

Now consider the case where σ(a+ i) = xk. Observe that there must be at least

three indices beyond a+ i− 1. Let a+ j be any index greater than a+ b. Perform

transposition on indices a+ j and a+k giving σ′ and then perform transposition on

a + i and a + j. Let the new permutation be σ′′. Observe that both, P
[2]
σ′ and P

[2]
σ′′ ,

belong to X. So the path extends by edges {P [2]
σ , P

[2]
σ′ } and {P [2]

σ′ , P
[2]
σ′′}. Further, σ′′

is closer to the identity.

Thus the path eventually reaches the identity. 2

3.2.4 A Polynomial Sized Family of Facets

Theorem 3.2.12. Inequality Yp1q1,kl + Yp2q2,kl + Yp1q2,kl ≤ Ykl,kl + Yp1q1,p2q2, defines

a facet of B[2], where p1, p2, k are distinct and q1, q2, l are also distinct and n ≥ 6.

Proof. The set of vertices which satisfy the inequality strictly is the union of X1 =

{P [2]
σ |σ(p1) = q1, σ(p2) = q2, σ(k) 6= l} and X2 = {P [2]

σ |σ(p1) 6= q1, σ(p1) 6= q2,

σ(p2) 6= q2, σ(k) = l}. So V \ S = X1 ∪X2.

Define a graph G = (X1 ∪X2, E) where E is the set of edges {P [2]
σ , P

[2]
σ′ } where

σ is a transposition of σ′. From lemma 3.2.11 the subgraphs on X1 and X2 are each

connected. We also notice that there is no edge connecting these components. So

we add a special edge {P [2]
α1 , P

[2]
α2 } to G making the graph connected, where P

[2]
α1 is

an arbitrary member of X1 and α2 is defined below. Let i2 = α−1
1 (l) and r be any

index other than p1, p2, k, i2. So α1 maps p1 → q1, p2 → q2, k → b, i2 → l, r → a for

some a and b. Define α2 to be the permutation which maps p1 → a, p2 → q1, k →
l, i2 → b, r → q2. At all other indices the images of α1 and α2 coincide. Observe

that P
[2]
α2 ∈ X2.

Now we will show that for each edge {P [2]
x′ , P

[2]
y′ } of the graph, P

[2]
x′ −P

[2]
y′ belongs

to LS(S). We begin with the edge {P [2]
α1 , P

[2]
α2 }. Let σ1 = α1. Define σ2, . . . , σ6 using

k1 = p1, k2 = p2, k3 = r as described before lemma 3.2.9. Taking x = k and y = i2,

define σ′1, . . . , σ
′
6. See that α2 = σ′5. The rest of the permutations are in S. Hence

30 Facial Structure of B[2]

from lemma 3.2.9 P
[2]
α1 − P [2]

α2 can be expressed as a linear combination of vertices in

S.

Next we will show that each edge in the graph on X1 has the same property. Let

{P [2]
σ1 , P

[2]

σ′1
} be an edge in the graph on X1. In both permutations p1 and p2 map

to q1 and q2 respectively. Define k1 = p1 and k2 = p2. Also, define k3 as the index

different from p1, p2, k, such that σ1(k3) = σ′1(k3). Note that such an index must

exist since n ≥ 6. Consider 5 new permutations formed from σ1 by permuting the

images of k1, k2 and k3. Call them σ2, . . . , σ6. Similarly define σ′2, . . . , σ
′
6 from σ′1.

Observe that in each σi for i ≥ 2, k does not map to l. In addition either p1 does

not map to q1 or p2 does not map to q2. Hence P
[2]
σ2 , . . . , P

[2]
σ6 belong to S. Similarly

P
[2]

σ′2
, . . . , P

[2]

σ′6
also belong to S. From lemma 3.2.9, P

[2]
σ1 − P [2]

σ′1
∈ LS(S).

Now we consider the edges ofX2. Let {P [2]
σ1 , P

[2]

σ′1
} be one such edge. Let x, y be the

indices at which σ1 and σ′1 differ. Consider two cases of σ1: (1) σ1(p1) = a, σ1(p2) =

b, σ1(k) = l, σ1(r) = q1, σ1(s) = q2, (2) σ1(p1) = a, σ1(p2) = q1, σ1(k) = l, σ1(r) = q2.

Case (1) Subcase |{p1, p2, r, s} ∩ {x, y}| ≤ 1: If p1 /∈ {x, y}, then define k1 = k,

k2 = p1, and k3 be any index in {r, s} \ {x, y}. Otherwise k1 = k, k2 = p2, k3 = s.

All the permutations σ2, . . . , σ6 and σ′2, . . . , σ
′
6 as defined before lemma 3.2.9 are in

S. So P
[2]
σ1 − P [2]

σ′1
can be expressed as a linear combination of points in S using the

identity.

Subcase {x, y} ⊂ {p1, p2, r, s}: Only three cases are possible here: x = p2, y = r;

x = σ−1
1 (q1), y = σ−1

1 (q2); and x = p1, y = p2, apart from exchanging the roles of

x and y. In the first case let k1 = p1, k2 = s, k3 = k and use lemma 3.2.9. The

remaining two cases are proved differently.

In these two cases we will not show that P
[2]
σ − P [2]

σ′ can be expressed as a linear

combination of vertices in S. Instead, we will delete such edges from E and show

that the reduced graph is still connected. Consider an edge {P [2]
σ , P

[2]
σ′ } of the second

type where σ maps: p1 → a, p2 → b, k → l, r → q1, s → q2, u → v and σ′ maps:

p1 → a, p2 → b, k → l, r → q2, s → q1, u → v. Note that since n ≥ 6, the pair u, v

always exists. Rest of the indices have the same images in the two permutations.

To show that after dropping the edges of this class the graph remains connected,

define two new permutations: α1: p1 → a, p2 → b, k → l, r → v, s→ q2, u→ q1 and

α2: p1 → a, p2 → b, k → l, r → q2, s→ v, u→ q1. Other mappings are same as in σ.

Observe that {P [2]
σ , P

[2]
α1 }, {P [2]

α1 , P
[2]
α2 } and {P [2]

α2 , P
[2]
σ′ } are edges in the reduced graph,

hence there is a path from P
[2]
σ to P

[2]
σ′ in it.

3.2 Some Facets of B[2] 31

Let {P [2]
σ , P

[2]
σ′ } be an edge of the third type. So σ maps p1 → a, p2 → b, k →

l, r → q1, s → q2 and σ′ maps p1 → b, p2 → a, k → l, r → q1, s → q2. Again to

show a path from P
[2]
σ to P

[2]
σ′ in the graph after deleting both types of edges, define

α1:p1 → a, p2 → q1, k → l, r → b, s→ q2 and α2: p1 → b, p2 → q1, k → l, r → a, s→
q2. Other mappings are same as in σ. Note that {P [2]

σ , P
[2]
α1 } is an edge of the first

type. The remaining edges {P [2]
α1 , P

[2]
α2 } and {P [2]

α2 , P
[2]
σ′ } are covered in Case (2).

Case (2) Subcase {p1, p2, r = σ−1(q2)} ∩ {x, y} = ∅: In this case define k1 =

p1, k2 = p2, k3 = r. See that σ2, . . . , σ6 and σ′2, . . . , σ
′
6 belong to S.

Subcase |{p1, p2, r = σ−1(q2)} ∩ {x, y}| = 1: If x = p1 or y = p1, then k1 =

p2, k2 = r, k3 = k. If x = p2 or y = p2, then k1 = p1, k2 = r, k3 = k. Finally if x = r

or y = r, then k1 = p1, k2 = p2, k3 = k. In each case lemma 3.2.9 gives a desired

linear expression in terms of points in S for P
[2]
σ1 − P [2]

σ′1
.

Subcase {x, y} ⊂ {p1, p2, r = σ−1(q2)} does not arise because in this case every

transposition leads to a permutation in S.

From Corollary 3.2.8 we conclude that S is a facet. 2

Total number of facets defined by this theorem is n2(n− 1)2(n− 2)2.

3.2.5 An Exponential Sized Family of Facets

Consider the following inequality

Yi1j1,kl + Yi2j2,kl + . . .+ Yimjm,kl ≤ Ykl,kl +
∑
r<s

Yirjr,isjs (3.2)

where n ≥ 6, 3 ≤ m ≤ n − 3, indices i1, . . . , im, k are distinct and j1, . . . , jm, l are

also distinct. In the rest of this section we will show that inequality (3.2) also defines

a facet of B[2].

We will continue to use S to denote the set of vertices for which the given in-

equality is tight. Let T denote the set of remaining vertices. Set T can be subdivided

into the following classes:

1. T1 : k → l, i1 6→ j1, i2 6→ j2, . . . , im 6→ jm.

2. T2 : k → l and three or more ir → jr.

3. T3 : k 6→ l and two or more ir → jr.

32 Facial Structure of B[2]

In classes T2 and T3 we do further subdivision. If a permutation in T2 maps ir

to jr for x out of m indices, then such a permutation belongs to subclass denoted

by T2,x. Similarly T3,x is defined. Observe that T2 = ∪x≥3T2,x and T3 = ∪x≥2T3,x.

Lemma 3.2.13. Let m ≥ 3. The graph G1 on T1, with edge set {P [2]
σ′ , P

[2]
σ′′} where

σ′ is a transposition of σ′′, is connected. Further the difference vector corresponding

to each edge belongs to LS(S).

Proof. The first part of the lemma is established from lemma 3.2.11(2).

For the second part let {P [2]
σ1 , P

[2]

σ′1
} be an edge in G1 where σ1(x) = σ′1(y) and

σ1(y) = σ′1(x). As m is at least 3, there exists r ≤ m such that ir /∈ {x, y} and

jr /∈ {σ1(x), σ1(y)}. Without loss of generality assume that r = 1. So we have

description of σ1 and σ′1 as follows: σ1 : k → l, x → α, y → β, i1 → γ, δ → j1, . . .

and σ′1 : k → l, x→ β, y → α, i1 → γ, δ → j1,

Taking k1 = k, k2 = i1, k3 = δ, x as x and y as y, generate permutations

σ2, . . . , σ6, σ
′
2, . . . , σ

′
6 as defined before lemma 3.2.9. Vertices corresponding to each

of these permutations belong to S. Hence from lemma 3.2.9, P
[2]
σ1 − P [2]

σ′1
∈ LS(S).

2

Corollary 3.2.14. Given any P
[2]
σ∗ in T1, each P

[2]
σ in T1 belongs to LS({P [2]

σ∗}∪S).

Lemma 3.2.15. Let n ≥ 5. Then T3,2 ⊂ LS(T1 ∪ S).

Proof. Consider any arbitrary permutation, σ, with the corresponding vertex be-

longing to T3,2. Let β = σ−1(l) and γ be any arbitrary element from [n]\{k, i1, i2, β}.
The description of σ is: k → α, i1 → j1, i2 → j2, β → l, γ → δ and all other maps

are different from (ip, jp) for any p. Our goal is to show that P
[2]
σ ∈ LS(T1 ∪ S).

Consider two cases.

Case: (β, α) 6= (ip, jp) for any p. Take σ1 = σ, k1 = i1, k2 = i2, k3 = γ, x = k, y =

β. All the vertices corresponding to permutations σ2, . . . , σ6, σ
′
1, . . . , σ

′
6 generated

with these parameters belong to S ∪ T1. From lemma 3.2.9 P
[2]
σ1 ∈ LS(T1 ∪ S).

Case: (β, α) = (i3, j3). In this case σ : k → j3, i1 → j1, i2 → j2, i3 → l, γ → δ.

Take σ1 = σ, k1 = k, k2 = i1, k3 = i2, x = i3, y = γ. Then we see that P
[2]
σ1

and P
[2]

σ′1
both belong to T3,2 and the vertices corresponding to the remaining ten

permutations belong to S. So P
[2]
σ1 − P

[2]

σ′1
∈ LS(S). Now from the first case P

[2]

σ′1

belongs to LS(T1 ∪ S). Therefore P
[2]
σ1 also belongs to LS(T1 ∪ S). 2

3.2 Some Facets of B[2] 33

Lemma 3.2.16. Let n ≥ 5. Then T2,3 ⊂ LS(T1 ∪ S).

Proof. Let P
[2]
σ be an arbitrary element of T2,3. We will express P

[2]
σ as a linear

combination of some members of T3,2 ∪ S. The rest will follow from lemma 3.2.15.

Without loss of generality assume that the given permutation σ in T2,3 maps

k → l, i1 → j1, i2 → j2, i3 → j3. Also let σ map α → β for some α /∈ {k, i1, i2, i3}.
Now generate the permutations σ2, . . . , σ6, σ

′
1, . . . , σ

′
6 with parameters σ1 = σ, k1 =

i2, k2 = i3, k3 = α, x = k, y = i1. See that P
[2]

σ′1
∈ T3,2 and the remaining ten

permutations belongs to S. So P
[2]
σ1 − P

[2]

σ′1
∈ LS(S). From lemma 3.2.15, P

[2]
σ ∈

LS(S ∪ T1). 2

Lemma 3.2.17. Let n ≥ 6. Given any P
[2]
σ in T3,r with r > 2, it can be expressed

as a linear combination of elements in T1 ∪ S.

Proof. Let P
[2]
σ1 ∈ T3,r with r ≥ 3. Assume that σ1 maps α→ l, k → γ, i1 → j1, i2 →

j2, i3 → j3, . . . , ir → jr. If r = 3, then consider the parameters x = i3, y = α, k1 =

i1, k2 = i2, k3 = β /∈ {i1, i2, i3, k, α}. Otherwise let x = i4, y = α, k1 = i1, k2 =

i2, k3 = i3. Generate σ2, . . . , σ6, σ
′
1, . . . , σ

′
6. Corresponding vertices either belong to

S or to ∪2≤x<rT3,x. So using induction on r and the result of lemma 3.2.15 as the

base case, lemma 3.2.9 gives that P
[2]
σ1 ∈ LS(T1 ∪ S).

Similarly following lemma can also be proved.

Lemma 3.2.18. Let n ≥ 6. Given any P
[2]
σ in T2,r with r > 3, it can be expressed

as a linear combination of elements in T1 ∪ S.

Lemmas 3.2.15-3.2.18 lead to the following corollary.

Corollary 3.2.19. If n ≥ 6, then T2 ∪ T3 ⊂ LS(T1 ∪ S).

Theorem 3.2.20. If n ≥ 6, then inequality (3.2) defines a facet of B[2].

Proof. From corollaries 3.2.14 and 3.2.19 every vertex in T can be expressed as a

linear combination of a fixed vertex in T and the vertices in S. Now the result

follows from lemma 3.2.7. 2

The number of facets defined by this theorem is
∑n−3

m=3
n2(n−1)2...(n−m)2

m!
.

34 Facial Structure of B[2]

3.3 Conclusion

In this chapter we presented several facets of the B[2] polytope. These include two

new families of facets apart from those which are known in the QAP literature.

We also defined a general inequality that captures all these facets. In chapter 6 we

will reformulate this inequality using the fact that every matrix in B[2] is positive

semidefinite.

The conditions given in Theorem 3.2.3 can be included in LP-GI because their

count is polynomial in the size of the graphs. Therefore PG1G2 for non-isomorphic

G1, G2, if non-empty, must violate one or more of the inequalities associated with

the remaining facets of B[2]. These include the three exponential families defined

in this chapter as well as the facets which are still unknown. In the next chapter

we will analyze Algorithm 1 when every point in the feasible region violates one or

more of the inequalities given by 3.2.4, 3.2.5 and 3.2.6.

Chapter 4

Non-Isomorphism Detection

4.1 Introduction

In this chapter we will first show that under a reasonable assumption, Algorithm 1

determines non-isomorphism in polynomial time. Later we will present a modified

version of Algorithm 1 to handle the general case efficiently. We will show that the

new algorithm runs in time that is exponential in a certain geometric parameter.

In section 4.2 we will define a partial ordering on certain hyperplanes that support

the polytope B[2]. These include those that define the facets described in chapter 3.

We exploit this ordering to show the polynomiality of Algorithm 1 in section 4.3.

We begin with a review of the results of the previous chapters. We have seen that

the feasible region of LP-GI is PG1G2 which contains the polytope B
[2]
G1G2

. Polytope

P is the intersection of the half spaces Yij,kl ≥ 0 and the affine plane P . Therefore

its facets are due to the planes Yij,kl = 0 (called zero planes). Each PG1G2 is a face of

P that is restricted to the planes Yij,kl = 0 where {i, k} ∈ E1, {j, l} /∈ E2 or {i, k} /∈
E1, {j, l} ∈ E2. Two graphs are isomorphic if and only if PG1G2∩ B[2] = B

[2]
G1G2

6= ∅.
So for non-isomorphic graphs, if PG1G2 is non-empty, then it must belong to P\B[2].

In chapter 3 we have seen that the zero planes Yij,kl = 0 also define the facets of

B[2]. We refer to these as the trivial facets of B[2]. Several non-trivial facets were also

presented in chapter 3. Clearly, for the case of non-isomorphic graphs, the feasible

region must violate the inequalities associated with one or more non-trivial facets

of B[2].

Since P
[2]
σ are the only integral (0/1) points in P and they form the vertices of B[2],

36 Non-Isomorphism Detection

every point in PG1G2 must be non-integral if the input graphs are non-isomorphic.

Algorithm 1 exhaustively searches for a 0/1 point in the feasible region of LP-GI.

We investigate the time complexity of the algorithm in this chapter.

4.2 Partial Ordering on Supporting Planes of B[2]

In chapter 3 we described several families of facet defining inequalities. In this section

we revisit the three exponential families and relax some of the conditions so that each

family now also includes inequalities that define some of the lower dimensional faces

of B[2]. Then we define a partial ordering on these supporting planes/inequalities.

Let X be a supporting plane such that the corresponding inequality is violated

by some point p in the feasible region. Also, let the point p does not violate any

inequality that lies at a level lower than that of X in the ordering. Then we call X a

minimal violated inequality for point p. We show in the next section that Algorithm

1 determines non-isomorphism in polynomial time if there exists a common minimal

violated inequality for all points in the feasible region of LP-GI. In this section we

also show that all the minimal inequalities, with respect to the partial ordering,

are satisfied by all points in P. Hence if a point in PG1G2 violates any one of the

inequalities belonging to one of the three exponentially large families described in

Chapter 3, then there must exist a minimal violated inequality for that point.

The first family of inequalities, described in Theorem 3.2.4, is given below. Let

i1, . . . , im, k be m + 1 distinct indices. Similarly let j1, . . . , jm, l be distinct indices.

Let A = {(i1, j1), . . . , (im, jm)}. Then the inequality Q1(k, l, A) is given by

∑
(i,j)∈A

Yij,kl ≤ Ykl,kl +
∑

(i,j) 6=(i′,j′)∈A

Yij,i′j′ . (4.1)

Let A′ ⊆ A. Then we define Q1(k, l, A′) ≺ Q1(k, l, A). Note that the inequalities

in this family corresponding to |A| = 1, i.e., Yij,kl ≤ Ykl,kl for all i, j ∈ [n], cannot be

violated by any point in P. The same is true for inequalities corresponding to A = ∅
i.e., 0 ≤ Ykl,kl. An inequality corresponding to m ≥ 2 can however by violated by a

point in P\ B[2]. Therefore if an inequality of this class is violated, then there will

be a minimal inequality which will be violated and all the lower inequalities will be

satisfied. Note that the facets in theorem 3.2.4 require m ≥ 3. So here we have

relaxed that condition to also include the inequalities corresponding to the case of

4.2 Partial Ordering on Supporting Planes of B[2] 37

m = 2, which define lower dimensional faces of B[2].

The next are the one-box inequalities, described in Theorem 3.2.5. Let P and Q

be sets of indices and β ≥ 0 be an integer, then the inequality Q2(P,Q, β) is

(β − 1)
∑

(ij)∈P×Q

Yij,ij ≤
∑

(ij),(kl)∈P×Q,i<k

Yij,kl + (β2 − β)/2. (4.2)

It may be noted that these correspond to facets when β+1 ≤ min{|P |, |Q|}, |P |+
|Q| ≤ n− 3 + β, β ≥ 2. Here we consider the inequality without these restrictions.

If P ′ ⊆ P and Q′ ⊆ Q, then ordering is defined as Q2(P ′, Q′, β) ≺ Q2(P,Q, β)

and if 0 ≤ β′ ≤ β, then Q2(P,Q, β′) ≺ Q2(P,Q, β). In this case the lowest

level inequalities correspond to β = 0, |P | = |Q| = 2, i.e., 0 ≤ ∑(ij)∈P×Q Yij,ij +∑
(ij),(kl)∈P×Q,i<k Yij,kl which cannot be violated.

The last family of inequalities discussed in Chapter 3 is the two-box inequality.

Let Q,P1, and P2 be index sets such that P1 ∩ P2 = ∅ and β be any integer.

Then the inequality Q3(P1, P2, Q, β) is

− (β − 1)
∑

(ij)∈P1×Q

Yij,ij + β
∑

(ij)∈P2×Q

Yij,ij +
∑

(ij),(kl)∈P1×Q,i<k

Yij,kl

+
∑

(ij),(kl)∈P2×Q,i<k

Yij,kl −
∑

(ij)∈P1×Q,(kl)∈P2×Q

Yij,kl +
β2 − β

2
≥ 0.

(4.3)

Once again these inequalities define facets of B[2] when parameters P1, P2, Q and

β satisfy certain conditions. However, we consider Q3(P1, P2, Q, β) without any of

these conditions. Note that the inequalities still define planes that support lower

dimensional faces of B[2].

Observe that if β ≥ 0, then Q3(P1, ∅, Q, β) = Q2(P1, Q, β) and if β < 0, then

Q3(∅, P2, Q, β) = Q2(P2, Q,−β+1). Let i1 ∈ P1 and i2 ∈ P2 be arbitrary indices. Let

P ′1 = P1\{i1} and P ′2 = P2\{i2}. Then we define Q3(P ′1, P
′
2, Q, β) ≺ Q3(P1, P2, Q, β).

The partial ordering will be the transitive closure of this relation. In the case of the

2-box family of inequalities, the inequalities at the lowest level in the partial ordering

correspond to one of the following: (a) a 1-box inequality, (b) Q3(∅, P2, Q, β) where

β ≥ 0, or (c) Q3(P1, ∅, Q, β) where β < 0. The cases (b) and (c) cannot be violated

by any point in P. Thus all the inequalities at the lowest level in the partial ordering

will be non-violating if all the 1-box inequalities are satisfied by the solution face

PG1G2 .

38 Non-Isomorphism Detection

4.3 Polynomiality of Algorithm 1

An important question, which influences the performance of Algorithm 1 is whether

a single minimal violated inequality exists for all points in the feasible region of

LP-GI. In this section we will assume that such an inequality exists and then we

consider three cases where the minimal violated inequality belongs to one of the

three families described in section 4.2. Subsequently in section 4.4 we will drop this

assumption and consider the general case.

4.3.1 A Minimal Violated Inequality of Type (4.1)

Lemma 4.3.1. If the feasible region of LP-GI violates Q1(k, l, A) and satisfies Q1(

k, l, A′) where A′ = A \ {(i, j)} for each (i, j) ∈ A, then Algorithm 1 detects non-

isomorphism in polynomial time.

Proof. Suppose the solution face for a non-isomorphic pair violates an inequality

defined by
∑

r∈[m] Yirjr,kl ≤ Ykl,kl +
∑

r<s∈[m] Yirjr,is,js , then each solution point will

satisfy
∑m

r=1 Yirjr,kl > Ykl,kl +
∑

r<s Yirjr,is,js . Let a be an arbitrary element of

[m] and define S = [m] \ {a}. Then we have the inequality
∑

r∈S Yirjr,kl ≤ Ykl,kl

+
∑

r<s∈S Yirjr,is,js which must be satisfied by every point in the feasible region of

LP-GI. Subtracting the second from the first we have Yiaja,kl >
∑

r∈S Yirjr,iaja ≥ 0.

The last inequality is due to the non-negativity condition in the linear program.

This implies that during a call of SearchV ar() when Yiaja,kl will be set to zero in

the algorithm, the linear program will declare it infeasible. Hence Yiaja,kl will be

set to 1. Since a is any arbitrary index, eventually Yiaja,kl will be set to 1 for each

a ∈ [m]. These will force Ykl,kl and Yirjr,isjs∀ r, s ∈ [m] to 1. Then the first inequality

will be violated since the left hand side will be m but the right hand side will be

1 +
(
m
2

)
where m ≥ 2.

4.3.2 A Minimal Violated inequality of Type (4.2)

4.3.2.1 Restriction to Facets

Similar to a minimal violated inequality we define the notion of a minimal violated

facet inequality. Here only the facet defining inequalities are considered in the partial

ordering. We consider two separate cases. In the first case the minimal violated

4.3 Polynomiality of Algorithm 1 39

facet inequality has max{|P |, |Q|} > β + 1, whereas in the second case the minimal

violated facet inequality has |P | = |Q| = β+ 1 and β > 2. The minimal inequalities

in the partial ordering correspond to the case when β = 2 and |P | = |Q| = 3. Since

we want them to be satisfied by every point in the feasible region, we add all these

inequalities to the linear program. Note that the number of these inequalities is

polynomial in the size of the graphs, hence adding them to LP-GI will not affect its

poly-time solvability.

Lemma 4.3.2. If the solution face violates Q2(P,Q, β) and satisfies Q2(P ′, Q′, β′)

such that either (i) |P | > β+1 and P ′ = P \{i} for arbitrary i ∈ P , Q′ = Q, β′ = β,

or (ii) |Q| > β + 1 and Q′ = Q \ {j} for arbitrary j ∈ Q, P ′ = P, β′ = β, then

Algorithm 1 detects non-isomorphism in polynomial time.

Proof. Suppose the inequality (β − 1)
∑

(ij)∈P×Q Yij,ij ≤
∑

(ij),(kl)∈P×Q,i<k Yij,kl +

(1/2)(β2 − β) is violated. Note that the roles of P and Q can be interchanged

without affecting the inequality. Hence it is sufficient to consider only one case,

namely, |P | > β + 1.

(β − 1)
∑

(ij)∈P×Q

Yij,ij >
∑

(ij),(kl)∈P×Q,i<k

Yij,kl + (1/2)(β2 − β) (4.4)

Let i0 ∈ P and j0 /∈ Q. Define P ′ = P \ {i0}. Suppose during a call of

SearchV ar() the algorithm forces Yi0j0,i0j0 to 1. Since P ′ and Q both have at least

β + 1 elements, the solution must satisfy the following inequality

(β − 1)
∑

(ij)∈P ′×Q

Yij,ij ≤
∑

(ij),(kl)∈P ′×Q,i<k

Yij,kl + (1/2)(β2 − β). (4.5)

(4.4) minus (4.5) gives (β − 1)
∑

j∈Q Yi0j,i0j >
∑

j∈Q
∑

(kl)∈P ′×Q Yi0j,kl.

Since Yi0j0,i0j0 = 1 where j0 /∈ Q,
∑

j∈Q Yi0j,i0j = 0. The non-negativity condition

implies that the right-hand-side is non-negative so we conclude that 0 > 0. As

Yi0j0,i0j0 = 1 renders the problem infeasible, the algorithm will set Yi0j,i0j = 0 for

all j /∈ Q. As i0 was an arbitrary element of P , eventually the algorithm will set

Yij,ij = 0 for all i ∈ P and all j /∈ Q.

Next consider an arbitrary (i0j0) ∈ P ×Q. Suppose algorithm sets Yi0j0,i0j0 = 1.

Let P ′ = P \ {i0}. Then the violated inequality (4.4) reduces to (β − 1)(1 +∑
(ij)∈P ′×Q Yij,ij) >

∑
(ij),(kl)∈P ′×Q,i<k Yij,kl +

∑
j∈Q
∑

(kl)∈P ′×Q Yi0j,kl + β2−β
2

.

40 Non-Isomorphism Detection

Subtracting (4.5) from the above inequality gives (β − 1) >
∑

j∈Q
∑

(kl)∈P ′×Q

Yi0j,kl. Since Yi0j,kl = 0 for all j 6= j0,
∑

j /∈Q
∑

(kl)∈P ′×Q Yi0j,kl = 0. Adding this

term to the right hand side of the inequality we get (β − 1) >
∑

j∈[n]

∑
(kl)∈P ′×Q

Yi0j,kl =
∑

(kl)∈P ′×Q Ykl,kl. From the first part of the proof, Ykl,kl = 0 for any k ∈ P
and l /∈ Q. So we have

∑
(kl)∈P ′×Q Ykl,kl =

∑
(kl)∈P ′×[n] Ykl,kl = |P ′| > β + 1− 1 = β.

It reduces to infeasible β − 1 > β, which leads the algorithm to set Yi0j0,i0j0 = 0.

Hence eventually Yij,ij is set to zero for all (ij) ∈ P × Q. Combining with the fact

that Yij,ij = 0 for all i ∈ P, j /∈ Q, we have 1 =
∑

j∈[n] Yij,ij = 0 for any i ∈ P . Hence

the algorithm will report an empty feasible region and conclude that the graphs are

non-isomorphic. At no stage is the algorithm required to invoke two calls, one with

x = 0 and the other with x = 1 for any variable x. So we see that the feasible region

is zero-one reducible and the algorithm requires polynomial time.

Lemma 4.3.3. If the solution face violates Q2(P,Q, β) where |P | = |Q| = β+1, β >

2 and satisfies Q2(P ′, Q′, β′) such that either (i) P ′ = P \ {i} for arbitrary i ∈ P ,

Q′ = Q, β′ = β − 1, or (ii) Q′ = Q \ {j} for arbitrary j ∈ Q, P ′ = P, β′ = β − 1,

then Algorithm 1 detects non-isomorphism in polynomial time.

Proof. The violation of (β−1)
∑

(ij)∈P×Q Yij,ij ≤
∑

(ij),(kl)∈P×Q,i<k Yij,kl+(1/2)(β2−
β) gives inequality (4.4), given in the last proof.

Let i0 ∈ P and P ′ = P \{i0}. Then the solution must satisfy the inequality with

parameters P ′, Q, β − 1. So we have

(β − 2)
∑

(ij)∈P ′×Q

Yij,ij ≤
∑

(ij),(kl)∈P ′×Q,i<k

Yij,kl + (1/2)((β − 1)2 − (β − 1)) (4.6)

(4.4) minus (4.6) gives

∑
(ij)∈P ′×Q

Yij,ij + (β − 1)
∑
j∈Q

Yi0j,i0j >
∑
j∈Q

∑
(kl)∈P ′×Q

Yi0j,kl + (β − 1). (4.7)

Since (β − 1)
∑

j∈Q Yi0j,i0j = (β − 1)− (β − 1)
∑

j /∈Q Yi0j,i0j, the inequality trans-

forms to
∑

(ij)∈P ′×Q Yij,ij > (β − 1)
∑

j /∈Q Yi0j,i0j +
∑

j∈Q
∑

(kl)∈P ′×Q Yi0j,kl = (|P ′| −
1)
∑

j /∈Q Yi0j,i0j +
∑

j∈Q
∑

k∈P ′
∑

l∈Q Yi0j,kl, because β + 1 = |P | = |P ′|+ 1.

For Y is a solution of the LP, Yi0j,i0j =
∑

l∈[n] Yi0j,kl for any k. So |P ′|∑j /∈Q

Yi0j,i0j =
∑

k∈P ′
∑

j /∈Q
∑

l∈[n] Yi0j,kl. Plugging this equation in the previous inequality

4.3 Polynomiality of Algorithm 1 41

we get
∑

(ij)∈P ′×Q Yij,ij > −
∑

j /∈Q Yi0j,i0j +
∑

k∈P ′
∑

l∈[n]

∑
j /∈Q Yi0j,kl +

∑
k∈P ′

∑
l∈Q∑

j∈Q Yi0j,kl. Combining the last two terms, ignoring l /∈ Q terms due to non-

negativity, we get
∑

(ij)∈P ′×Q Yij,ij > −
∑

j /∈Q Yi0j,i0j +
∑

(kl)∈P ′×Q
∑

j∈[n] Yi0j,kl =

−∑j /∈Q Yi0j,i0j+
∑

k∈P ′
∑

l∈Q Ykl,kl. It simplifies to
∑

j /∈Q Yi0j,i0j > 0.

If the algorithm sets Yi0j,i0j = 1 for some j ∈ Q, then the above inequality will

reduce to 0 > 0 making it infeasible. So eventually algorithm will set Yij,ij = 0 for

all (ij) ∈ P × Q. This will make (4.4) infeasible. Again we find that the feasible

region of LP-GI is zero-one reducible.

Lemmas 4.3.2 and 4.3.3 lead to the following corollary.

Corollary 4.3.4. If the solution of LP-GI for a non-isomorphic pair of graphs vi-

olates Q2(P,Q, β) and satisfies Q2(P ′, Q′, β′) such that Q2(P ′, Q′, β′) ≺ Q2(P,Q, β)

and each Q2(P,Q, β) defines a facet of B[2], then Algorithm 1 will detect non-

isomorphism in polynomial time.

4.3.2.2 General 1-box Inequality

Now we withdraw the restriction to facets and consider all the 1-box inequalities

subject to the partial ordering defined in section 4.2.

Lemma 4.3.5. If the solution face violates Q2(P,Q, β) and satisfies Q2(P ′, Q′, β′)

for all Q2(P ′, Q′, β′) ≺ Q2(P,Q, β), then Algorithm 1 detects non-isomorphism in

polynomial time.

The proof of this lemma is same as that of Lemma 4.3.2 while ignoring the

restriction min{|P |, |Q|} ≥ β + 1.

4.3.3 A Minimal Violated Inequality of Type (4.3)

In this case we directly consider the unrestricted inequality because the base case of

restricted inequality (associated with facets) may not always hold true for all points

in P and their number is not polynomial so that we cannot incorporate them into

LP-GI, forcing them to hold true. In the case of unrestricted inequality Q3 the base

cases always hold true provided the feasible region satisfies all the 1-box inequalities.

If it fails 1-box inequality, then the minimal violated inequality will be a Q2 and we

can use the previous section’s argument to prove polynomiality of the algorithm.

42 Non-Isomorphism Detection

Lemma 4.3.6. If the solution face violates Q3(P1, P2, Q, β) and satisfies Q3(P ′1, P
′
2,

Q, β) where P ′1 = P1 \ {i} for arbitrary i ∈ P1 and P ′2 = P2 \ {j} for arbitrary

j ∈ P2 and also satisfies all Q2(P,Q, β), then Algorithm 1 detects non-isomorphism

in polynomial time.

Proof. Given that a 2-box inequality (P1, P2, Q, β) is violated by the solution face,

every solution point satisfies

− (β − 1)
∑

(ij)∈P1×Q

Yij,ij + β
∑

(ij)∈P2×Q

Yij,ij +
∑

(ij),(kl)∈P1×Q,i<k

Yij,kl

+
∑

(ij),(kl)∈P2×Q,i<k

Yij,kl −
∑

(ij)∈P1×Q,(kl)∈P2×Q

Yij,kl +
β2 − β

2
< 0.

(4.8)

Let i0 ∈ P1 and i′0 ∈ P2 be two arbitrary indices. Let P ′1 = P1 \ {i0} and P ′2 =

P2 \ {i′0}. Then every solution point must also satisfy the inequality corresponding

to (P ′1, P
′
2, Q, β). We have

− (β − 1)
∑

(ij)∈P ′1×Q

Yij,ij + β
∑

(ij)∈P ′2×Q

Yij,ij +
∑

(ij),(kl)∈P ′1×Q,i<k

Yij,kl

+
∑

(ij),(kl)∈P ′2×Q,i<k

Yij,kl −
∑

(ij)∈P ′1×Q,(kl)∈P ′2×Q

Yij,kl +
β2 − β

2
≥ 0.

(4.9)

Case 1: In the algorithm when Yi0j0,i′0j′0 is set to 1, where j0, j
′
0 ∈ Q, j0 6= j′0, (4.8)

minus (4.9) gives 0 < 0 which is absurd. Hence algorithm will set Yij,i′j′ = 0 for all

i ∈ P1, i
′ ∈ P2, j, j

′ ∈ Q.

Case 2: When SearchV ar() sets Yi0j0,i′0j′0 = 1, where j0 /∈ Q, j′0 ∈ Q. Then (4.8)

minus (4.9) gives β+
∑

(i,j)∈P ′2×Q
Yij,ij < 0, where we used the result of the previous

case, i.e., Yij,kl = 0 for all ij ∈ P1 × Q and kl ∈ P2 × Q. Note that it is impossible

if β ≥ 0.

Case 3: When SearchV ar() sets Yi0j0,i′0j′0 = 1, where j0 ∈ Q, j′0 /∈ Q. Then (4.8)

minus (4.9) gives −(β − 1) +
∑

(i,j)∈P ′1×Q
Yij,ij < 0, which is impossible if β ≤ 1.

If β ≥ 0, then combining the results of cases 1 and 2 we see that the algorithm

sets Yij,kl = 0 for all i ∈ P1, k ∈ P2, j ∈ [n], l ∈ Q which is same as setting Yij,ij = 0

for all ij ∈ P2 × Q. Similarly we can see that if β < 0, then the algorithm will set

Yij.ij = 0 for all (ij) ∈ P1 ×Q.

4.3 Polynomiality of Algorithm 1 43

Plugging these values in inequality (4.8) we have following simplified cases

0 ≤ β ≤ 1 : Impossible. Recall that β ∈ Z. (4.10)

β ≤ −1 : β
∑

(ij)∈P2×Q

Yij,ij +
∑

(ij),(kl)∈P2×Q,i<k

Yij,kl +
β2 − β

2
< 0. (4.11)

β ≥ 2 : −(β − 1)
∑

(ij)∈P1×Q

Yij,ij +
∑

(ij),(kl)∈P1×Q,i<k

Yij,kl +
β2 − β

2
< 0. (4.12)

The inequality 4.12 clearly violates Q2(P1, Q, β) whereas the inequality 4.11 vio-

lates Q2(P2, Q, 1−β). But we have assumed that all the Q2 inequalities are satisfied

by the solution face. This leads to a contradiction and hence at this stage the

algorithm will find no solution and conclude that the graphs are non-isomorphic.

For the completeness sake we will prove that these inequalities cannot hold true

even if we assume that only those Q2 inequalities that are associated with facets

hold true. For this we need the following additional restrictions: (i) |P1|, |P2| ≥ 3,

(ii) if β ≥ 0 and min{|Q|, |P1|} ≥ β + 1 then |Q| + |P1| + 3 ≤ n + β, (iii) if β < 0

and min{|Q|, |P2|} ≥ 2− β then |Q|+ |P2|+ 3 ≤ n+ 1− β.

We will first consider inequality (4.12). If |P1|, |Q| ≥ β + 1, then (4.12) im-

plies that the 1-box inequality corresponding to (P1, Q, β) is violated. But that is

not possible due to the assumption that all Q2 inequalities associated with facets

hold true for the feasible region. So the only case that needs to be considered is

min{|P1|, |Q|} ≤ β.

First assume that |P1| ≤ |Q|. Consider the identity
∑

(ij),(kl)∈P1×Q,i<k Yij,kl =

|P1|(|P1|−1)/2+
∑

(ij),(kl)∈P1×Q,i<k Yij,kl−(|P1|−1)
∑

(ij)∈P1×Q Yij,ij. Plugging into the

inequality (4.12) gives −(β−1)
∑

(ij)∈P1×Q Yij,ij+|P1|(|P1|−1)/2+
∑

(ij),(kl)∈P1×Q,i<k

Yij,kl − (|P1| − 1)
∑

(ij)∈P1×Q Yij,ij + β(β − 1)/2 < 0. But the left hand side of the

inequality is greater than or equal to −(β−1)
∑

i∈P1,j∈[n] Yij,ij+(β(β−1)+|P1|(|P1|−
1))/2 = ((β − |P1|)2 − (β − |P1|))/2 ≥ 0 since

∑
i∈P1,j∈[n] Yij,ij = |P1| and β, |P1| are

both integral. Hence we find that inequality (4.12) is impossible. The case of

|Q| ≤ |P1|, is handled similarly since P1 and Q have similar role. So we conclude

that inequality (4.12) is impossible.

In case of inequality (4.11) we rewrite it by replacing β by −(γ − 1). We get

−(γ − 1)
∑

(ij)∈P2×Q Yij,ij +
∑

(ij),(kl)∈P2×Q,i<k Yij,kl + (1/2)(γ2 − γ) < 0, where γ ≥
2. We can now use the same argument as above to establish that (4.11) is also

44 Non-Isomorphism Detection

impossible.

Theorem 4.3.7. Algorithm 1 solves the Graph Isomorphism problem in polynomial

time if there exists a common minimal violated inequality of type 4.1, 4.2 or 4.3 for

all points in the feasible region of LP-GI outside B[2], namely PG1G2 \B[2].

4.4 The General Case

In the general case we consider the situation when more than one non-trivial minimal

facets are required to separate PG1G2 \ B[2] from B[2]. The assumption here is that

PG1G2\B[2] is separable from B[2] exclusively by the presently known facets (described

in Chapter 3). Let these minimal facets be F1, . . . , Fk0 and the regions separated

by them be R1, R2, . . . respectively. Clearly these regions need not be mutually

exclusive and ∪iRi = PG1G2 \B[2].

So we have the region of PG1G2 outside B[2], divided into subregions such that for

each subregion there exists a common minimal violated inequality of type 4.1, 4.2

or 4.3. In this section we describe a procedure that solves the Graph Isomorphism

problem in O(k0(2n)k0) time.

From Section 4.3 we know that each Ri as defined above, is zero-one reducible

(Section 2.4.1). Let xi1, xi2, . . . be a reduction sequence for region Ri, for each i.

Let αi1, αi2, . . . ∈ {0, 1} be the respective values. So we have Ri|xi1=αi1,xi2=αi2,... = ∅.
Also, Ri|xi1=αi1

= ∅ for all i ∈ [k]. Clearly, (PG1G2 \B[2])|x11=α11,x21=α21,...,xk1=αk1
= ∅.

Note that for isomorphic graphs, PG1G2 reduces to the convex hull of P
[2]
σ s for those

σ that correspond to the isomorphisms between G1 and G2 and are consistent with

x11 = α11, x21 = α21, . . . , xk1 = αk1. So in this case PG1G2|x11=α11,x21=α21,...,xk1=αk1
⊆

BG1G2 .

We will now use the above information to devise a procedure for the Graph

Isomorphism problem.

4.4.1 A Generalized Algorithm for GI

In this section we will describe an extended procedure for the general case. This

procedure subsumes Algorithm 1.

4.4 The General Case 45

4.4.1.1 k-SearchVar()

Recall that the procedure SearchV ar() in Algorithm 1 returns a variable x and a

0/1 value α such that x = 1−α makes the linear program infeasible. We modify this

procedure to now consider all subsets of k variables and return a subset x1, x2, . . . , xk

with the respective values α1, α2, . . . αk such that the region PG1G2 \ B[2] becomes

empty on setting xi = 1 − αi for all i ∈ [k]. For non-isomorphic graphs the lin-

ear program becomes infeasible when such an assignment is found. However, for

isomorphic graphs the feasible region of LP-GI need not become empty even if all

the subregions do become empty. The feasible region in this case is reduced to the

convex hull of a subset of the isomorphisms between the input pair that survive the

assignments to the k variables (Corollary 2.3.3). So an optimization step is included

that would optimize a random direction over this convex hull, thus detecting one of

its corners, which will be a P
[2]
σ where σ is an isomorphism. The invoking procedure

can then declare isomorphism and terminate.

The new procedure must also ensure that the assignments xi = 1 − αi are con-

sistent with the conditions 2.1c-2.1e for all i ∈ [k], i.e., the assignment must not

lead to a solution outside the plane P . We will refer to this modified procedure as

k-SearchV ar(). Clearly, SearchV ar() is same as 1-SearchV ar().

4.4.1.2 The Procedure

The number k0 of minimal violating inequalities that separate the region PG1G2\B[2],

is unknown. So we first determine the value of k0 by invoking k-SearchV ar() for

k = 1, 2, . . . , k0 until a combination of k0 variables and respective k0 values either

renders the linear program infeasible or concludes that G1 and G2 are isomorphic.

Subsequent procedure is given in Algorithm 2.

At each step (one full execution of the While loop) we reduce the given problem

on N variables with parameter k to N problems with strictly smaller parameter

(less than or equal to k − 1) because each reduced problem has at least one of the

regions Ri missing from the feasible region of LP-GI. Each iteration of the While

loop makes assignments to k variables. Figure 4.1 shows the result of the complete

run of the While loop. When the While loop terminates, each of the regions Ri

would be empty.

The following recurrence sums up the performance of Algorithm 2. Here T (1)

46 Non-Isomorphism Detection

x21 = α21 x21 = α21

xk1 = αk1

One iteration of
the While loop

xk1 = αk1

x11 = α11x11 = α11

x12 = α12

xkmk = αkmk

x12 = α12

R1, R2, . . . , Rk

R2, R3, . . . , Rk
R1, R2, . . . , Rk

R1, R2, . . . , RkR1, R3, . . . , Rk

R1, R2, . . . , Rk

R1, R2, . . . , RkR1, R2, . . . , Rk−1

R2, R3, . . . , Rk

R1, R2, . . . , Rk

R1, R2, . . . , Rk

R1, R2, . . . , Rk−1

xkmk
= αkmk

Each node depicts the non-empty

subregions inside PG1G2
\ B[2]

∅

The feasible region if non-empty

is contained inside B[2]
G1G2

Figure 4.1: Execution of Algorithm 2

is O(N) since each Ri is zero-one reducible. The value of T (k) gives the number of

times LP-GI is solved. So the final time complexity will be poly(N) · T (k).

T (k) ≤ N · T (k − 1) +

(
N

k

)
2k +

(
N − k
k

)
2k + . . .+

(
k

k

)
2k (4.13)

On solving the above recurrence, we get T (k) = O(k · (2N)k). Note that the cost

of finding the value of k can be absorbed in this. So T (k) gives the total cost of the

procedure.

The following lemma justifies that Algorithm 2 solves the GI problem in O(k ·
(2N)k) steps.

Lemma 4.4.1. Algorithm 2 decides in O(k · (2N)k) steps if the input pair of graphs

is isomorphic or not, where k is the number of subregions into which PG1G2 \B[2] is

divided such that each subregion has a common minimal violated inequality of type

4.1, 4.2 or 4.3.

Proof. First we will show that the algorithm does not wrongly declare isomorphic

graphs as non-isomorphic. Let P
[2]
σ be a point in the feasible region for a given

pair of isomorphic graphs. Note that the algorithm only assigns values to those

4.4 The General Case 47

variables that appear in the reduction sequences of the subregions of PG1G2 \ B[2].

Let γij ∈ {0, 1} be the values that these variables take in P
[2]
σ . Since the algorithm

pursues both the paths corresponding to xij = αij and xij = αij for every xij, there

must exist an assignment that corresponds to γij, and for this assignment the linear

program returns a non-empty feasible solution. Hence in this case the algorithm

cannot output non-isomorphic.

What remains to be shown now is that the algorithm outputs non-isomorphic

when the graphs are not isomorphic. In this case PG1G2 = ∪iRi. Since the algorithm

assigns the variables in the zero-one reduction sequences of each of these regions, at

the end all the final restricted regions (due to various variable assignments) will be

empty. Hence the algorithm will correctly characterize this case as non-isomorphic.

The recurrence relation 4.13 now gives the worst case number of assignments to

O(k · (2n)k).

Theorem 4.4.2. Algorithm 2 solves the graph isomorphism problem in O(k · 2k ·
Nk+c) time where N = O(n4) is the number of variables in LP-GI and k is the

number of subregions into which PG1G2 \B[2] is divided such that each subregion has

a common minimal violated inequality of type 4.1, 4.2 or 4.3. Here O(N c) denotes

the cost of running the LP solver.

Remark: There is a situation that appears to lead to a conflict in building a k-

dimensional zero-one reduction sequence for a general case. In case x11 and x21 are

same but α11 = α21, then PG1G2|x11=α11,x21=α21,...,xk1=αk1
is not well defined. However

this does not cause any difficulty. To understand consider the k = 2 case. Sup-

pose the respective sequences are x = α, y = β, . . . and x = α, z = γ, Then

PG1G2 |x=α,y=β = ∅ and PG1G2|x=α,z=γ = ∅. So we will have two k = 1 order problems

namely PG1G2|x=α and PG1G2|x=α. Therefore there is no conflict.

Finally we present a bound for k for some special cases.

4.4.1.3 A Bound for k

Suppose the region PG1G2 \ B[2] violates an inequality of type 4.1. Note that when

the left hand side of this inequality takes its maximum value of m, the right hand

side has a value of
(
m
2

)
+ 1. Clearly, less than

√
m variables Yij,kl can be assigned

a value of 1 before the violated inequality becomes infeasible. So k-SearchV ar()

cannot return a value of k larger than
√
m. Next consider the case when the portion

48 Non-Isomorphism Detection

of the feasible region outside B[2] violates an inequality of type 4.2. Using a similar

argument we get a bound of
√
mβ on the value of k. Here m = min{|P |, |Q|}.

Finally, for a violated inequality of type 4.3, we have k = O(
√
|Q||β|) where |β| is

the absolute value of β.

4.5 Conclusion

We have formulated GI as a geometric problem. We have defined a partial ordering

on the facets of B[2]. In fact the ordering is extended to some smaller dimensional

faces as well such that the minimal supporting planes are never violated by any

solution point. Then we exploited this fact to show that Algorithm 1 solves the

Graph Isomorphism problem in polynomial time as long as the feasible region of

LP-GI outside B[2] violates an inequality X belonging to any of the known classes

such that no other inequality Y ≺ X is violated by any point in that region. For the

general case where such an X does not exist, we extended Algorithm 1 with time

complexity exponential in a parameter k that depends on the supporting planes of

B[2] intersecting the feasible region of LP-GI. We believe that the value of k should

be small. We also gave an upper bound for k when there exists a single inequality

belonging to any of the three exponential families, violated by the region PG1G2\B[2].

4.5 Conclusion 49

Data: Q: set of constraints; U : set of unassigned variables

Result: true if the given pair of graphs are isomorphic; false if the given pair of

graphs are non-isomorphic

Function: k-GISolver(Q,U)

if LP (Q) is infeasible then

return false/* Graphs are non-isomorphic */

else

if LP (Q) is feasible and U = ∅ then
return true/* Graphs are isomorphic */

else

while LP (Q) is feasible do

(x,α, k) := k-SearchV ar(Q,U);

if k = −1 then

return true/* Graphs are isomorphic */

end

for i := 1 to k do

val := k-GISolver(Q ∪ {xi = αi}, U \ {xi});
if val = true then

return true/* Graphs are isomorphic */

end

Q := Q ∪ {xi = αi};
U := U \ {xi};

end

if OPT (LP (Q)) = P
[2]
σ then

return true/* Graphs are isomorphic */

end

end

return false/* Graphs are non-isomorphic */

end

end

Algorithm 2: Algorithm for GI

50 Non-Isomorphism Detection

Chapter 5

There are more Facets

5.1 Introduction

All the known facets of B[2] are instances of a general inequality

∑
i,j,k,l

nijnklYij,kl + (β − 1/2)2 ≥ (2β − 1)
∑
ij

nijYij,ij + 1/4 (5.1)

where nab, β ∈ Z ∀ a, b.
It is possible that there are more instances of this inequality which are also facets.

Could there be facets of this polytope which are not instances of this inequality? The

answer to this question is in the affirmative. In this chapter we will show that there

must exist facets which are not instances of the above inequality. Further we derive

an inequality that captures all the supporting planes of B[2] with the expectation

that such an inequality may be helpful in identifying those unknown facets.

5.2 Insufficiency of inequality (5.1)

If we substitute P
[2]
σ for Y in the inequality (5.1) then it simplifies to (

∑
i niσ(i) −

(β−1/2))2 ≥ 1/4. Since all nab and β are integers, every P
[2]
σ satisfies this inequality.

Therefore every point in B[2] also satisfies it. Let R denote that part of the polytope

P which satisfies (5.1) for all integral values of nab and β. Clearly B[2] ⊆ R. However,

R ⊆ B[2] would imply that R = B[2] which will hold if and only if every facet of B[2]

is an instance of (5.1). Following lemma gives an alternative characterization of this

52 There are more Facets

equality.

Lemma 5.2.1. Let Pσ denote the row-major vectorization of the corresponding per-

mutation matrix. Following statements are equivalent.

1. Region of P, satisfying conditions
∑

ijkl xijxkl Yij,kl −(2z − 1)
∑

ij xijYij,ij

+z2 − z ≥ 0 for all xij, z ∈ Z is exactly equal to B[2].

2. Given any set of permutations I such that {P [2]
σ |σ ∈ I} is linearly independent,

then
∑

σ∈I ασ((P T
σ · x)2− (2z− 1)(P T

σ · x)) + z2− z ≥ 0 for all x ∈ Zn2
, z ∈ Z if and

only if ασ ≥ 0 ∀ σ ∈ I and
∑

σ∈I ασ = 1.

Proof. Assume (2).

Let Y ∈ P . From Lemma 2.2.2 there exists a set I of permutations σ such

that P
[2]
σ for σ ∈ I form a linearly independent set and Y =

∑
σ∈I ασP

[2]
σ and∑

σ∈I ασ = 1. Then Y ∈ B[2] if and only if ασ ≥ 0 ∀ σ ∈ I if and only if∑
σ∈I ασ((P T

σ · x)2 − (2z − 1)(P T
σ · x)) + z2 − z ≥ 0 for all x ∈ Zn2

, z ∈ Z if and

only if
∑

σ∈I ασ(
∑

ijkl P
[2]
σ (ij, kl)xijxkl − (2z − 1)

∑
ij P

[2]
σ (ij, ij)xij + z2 − z ≥ 0 for

all x ∈ Zn2
, z ∈ Z if and only if

∑
ijkl Yij,klxijxkl − (2z − 1)

∑
ij Yij,ijxij + z2 − z ≥ 0

for all x ∈ Zn2
, z ∈ Z.

Assume (1).

ασ ≥ 0 for all σ ∈ I and
∑

σ∈I ασ = 1 if and only if Y =
∑

σ∈I ασP
[2]
σ ,∈ B[2] if

and only if
∑

ijkl xijxkl Yij,kl −(2z − 1)
∑

ij xijYij,ij +z2 − z ≥ 0 for all xij, z ∈ Z if

and only if
∑

σ∈I ασ((P T
σ ·x)2−(2z−1)(P T

σ ·x))+z2−z ≥ 0 for all x ∈ Zn2
, z ∈ Z.

We first prove a useful lemma. In the following let z − P T
σ · x = z −∑n

i=1 xi,σ(i)

be denoted by yσ.

Lemma 5.2.2.
∑

σ ασ(y2
σ−yσ) = 0 for all x ∈ Zn2

, z ∈ Z if and only if
∑

σ ασy
2
σ = 0

for all x ∈ Zn2
, z ∈ Z.

Proof. (If) Let S(x, z) =
∑

σ ασy
2
σ. We have S(x, z) = 0 for all x ∈ Zn2

and z ∈ Z.

Select arbitrary a ∈ Zn2
, b ∈ Z and indices i, j. Define a′ as a′i′j′ = ai′j′ if i′ 6= i

or j′ 6= j and a′ij = aij + 1. So S(a′, b) = S(a, b) −∑σ:σ(i)=j ασ(2yσ(a, b) − 1).

Define a′′ in the similar way as a′ is defined, except here a′′ij = aij − 1. Then

we get S(a′′, b) = S(a, b) +
∑

σ:σ(i)=j ασ(2yσ(a, b) + 1). So (S(a′′, b) − S(a′, b))/4 =∑
σ:σ(i)=j ασyσ(a, b). Setting S(a′, b) = S(a′′, b) = 0 we have

∑
σ:σ(i)=j ασyσ(a, b) = 0.

So
∑

σ ασyσ(a, b) =
∑

j

∑
σ:σ(i)=j ασyσ(a, b) = 0. As a, b, i, j is arbitrarily chosen we

have
∑

σ ασyσ = 0 for all x ∈ Zn2
and all z ∈ Z.

5.2 Insufficiency of inequality (5.1) 53

(Only if) This part is trivial because S(x, z) = 0.5(T (x, z) +T (−x,−z)) where

T (x, z) =
∑

σ ασ (y2
σ − yσ).

Let P̃σ be the (n2 + 1)-dimensional vector in which the first n2 entries are the

vectorized Pσ and the last entry is 1. Define P̃
[2]
σ = P̃σ · P̃ T

σ .

Lemma 5.2.3. {P [2]
σ |σ ∈ I} is linearly independent if and only if {P̃ [2]

σ |σ ∈ I} is

linearly independent.

Proof. (If) Suppose {P [2]
σ |σ ∈ I} is linearly dependent. So there exist coefficients

ασ ∈ R, not all zero, such that
∑

σ∈I ασP
[2]
σ (ij, kl) = 0 for all i, j, k, l. Since

P̃
[2]
σ (ij, n2 + 1) = P̃

[2]
σ (n2 + 1, ij) = P

[2]
σ (ij, ij), we have from the above equa-

tion
∑

σ∈I ασP̃
[2]
σ (ij, n2 + 1) =

∑
σ∈I ασP̃

[2]
σ (n2 + 1, ij) = 0 for all i, j. Finally,∑

σ∈I ασP̃
[2]
σ (n2 + 1, n2 + 1) =

∑
σ∈I ασ(1) =

∑
σ∈I ασ(

∑
j P

[2]
σ (ij, ij)) = 0 where i in

the last expression is arbitrary.

(Only if) Follows trivially from the fact that the n2×n2 matrix P
[2]
σ is a submatrix

of P̃
[2]
σ .

Lemma 5.2.4.
∑

σ∈I ασP̃
[2]
σ = 0 if and only if

∑
σ∈I ασq

T P̃
[2]
σ q = 0 ∀ q ∈ Qn2+1.

Proof. (If) Let f(q) =
∑

σ∈I ασq
T P̃

[2]
σ q. So we are given that f(q) = 0 ∀ q ∈

Qn2+1. We can rewrite f(q) as f(q) =
∑

σ∈I ασ(vec(P̃
[2]
σ)Tvec(qqT)) which is same

as f(q) =
∑

σ∈I ασ(
∑

σ(i)=j,σ(k)=l qijqkl + q2
n2+1). Consider a vector q′ with q′n2+1 = 1

and remaining entries zero. Since f(q′) = 0, we have
∑

σ∈I ασ = 0. Next consider a

vector q′′ with q′′ij = 1/q′′kl for some i, j, k, l such that σ(i) = j and σ(k) = l for σ ∈ I.

The remaining entries of q′′ are all zero. So f(q′′) = 0 leads to
∑

σ∈I,σ(i)=j,σ(k)=l ασ =

0. The above argument can be repeated for all i, j, k, l such that σ(i) = j and

σ(k) = l for σ ∈ I. Thus,
∑

σ∈I ασP̃
[2]
σ = 0.

(Only if) Consider an arbitrary vector q ∈ Qn2+1. We have f(q) =
∑

σ∈I ασ

(
∑

σ(i)=j,σ(k)=l qijqkl + q2
n2+1) which reduces to f(q) =

∑
σ∈I ασ(

∑
σ(i)=j,σ(k)=l qijqkl)

since we are given that
∑

σ∈I ασ = 0. The reduced expression can be rewritten

as f(q) =
∑

i,j,k,l

∑
σ∈I,σ(i)=j,σ(k)=l ασqijqkl, which is same as f(q) =

∑
i,j,k,l qijqkl∑

σ∈I,σ(i)=j,σ(k)=l ασ. But from
∑

σ∈I ασP̃
[2]
σ = 0 we know that

∑
σ∈I,σ(i)=j,σ(k)=l ασ =

0 for all i, j, k, l. Hence f(q) = 0.

Lemma 5.2.5. {P̃ [2]
σ |σ ∈ I} is linearly independent if and only if {y2

σ − yσ|σ ∈ I}
is linearly independent.

54 There are more Facets

Proof. Consider f(q) where first n2 components of q is −x and the last component

is z. It can be rewritten as
∑

σ∈I ασ(z − P T
σ · x)2 = 0 ∀x ∈ Qn2

, ∀z ∈ Q. Writing in

terms of yσ, the above statement is equivalent to
∑

σ∈I ασy
2
σ = 0 ∀x ∈ Qn2 ∀z ∈ Q.

From lemma 5.2.2, this is equivalent to
∑

σ∈I ασ(y2
σ−yσ) = 0 ∀x ∈ Qn2

, ∀z ∈ Q.

Corollary 5.2.6. {P [2]
σ |σ ∈ I} is linearly independent if and only if {y2

σ−yσ|σ ∈ I}
is linearly independent.

Consider the polynomial ring A = Q[{xij|1 ≤ i, j ≤ n} ∪ {z}]. The subspace

of A generated by {xij|1 ≤ i, j ≤ n} ∪ {z} ∪ {xijxkl|1 ≤ i, j, k, l ≤ n} ∪ {zxij|1 ≤
i, j ≤ n} is the direct sum of components of degree 1 and 2. Its dimension is

d = 1 + (n2 + 1) + (n4 + n2)/2 + n2. For n > 6, d ≤ n!. So the set {y2
σ − yσ|σ ∈ Sn}

is linearly dependent for all n > 6.

Let J be a minimal set of permutations such that {y2
σ − yσ|σ ∈ J} is linearly

dependent. So there exist ασ such that
∑

σ∈J ασ(y2
σ − yσ) = 0. Since no set of two

P
[2]
σ is linearly dependent, the same holds for any pair of y2

σ − yσ. Hence at least

three coefficients are non-zero. Assume that ασ1 , ασ2 , ασ3 are non-zero. Let the sign

of the first two be same. We may assume that ασ1 and ασ2 are negative. If not, then

invert the sign of every coefficient. Note that (−ασ1)(y2
σ1
− yσ1) is non-negative for

all x ∈ Zn2
, z ∈ Z. So

∑
σ∈J ασ(y2

σ − yσ) + (−ασ1)(y2
σ1
− yσ1) is non-negative for all

x ∈ Zn2
, z ∈ Z. This simplifies to

∑
σ∈J\{σ1} ασ(y2

σ − yσ) which is non-negative for

all x ∈ Zn2
, z ∈ Z and {y2

σ − yσ|σ ∈ J \ {σ1}} is linearly independent. But ασ2 is

negative. Hence we have established that the second statement of lemma 5.2.1 does

not hold.

Theorem 5.2.7. Region of P satisfying conditions (5.1), properly contains B[2].

Corollary 5.2.8. There exists at least one facet of B[2] which is not an instance of

(5.1).

5.3 Towards a general inequality for all facets of

B[2]

Lemma 5.3.1. For any pair of distinct vertices of B[2], there exists a hyperplane that

contains only these vertices and the entire polytope is on one side of this hyperplane.

5.3 Towards a general inequality for all facets of B[2] 55

Proof. Let P
[2]
σ1 ,P

[2]
σ2 be a distinct pair of vertices of B[2]. Next consider the hyperplane∑

σ1(i)=j,σ1(k)=l or σ2(i)=j,σ2(k)=l Y (ij, kl) = n2. Clearly both P
[2]
σ1 ,P

[2]
σ2 satisfy this equa-

tion. Note that for any point X in B[2],
∑

σ1(i)=j,σ1(k)=l or σ2(i)=j,σ2(k)=lX(ij, kl) ≤ n2.

So the entire polytope B[2] lies in the corresponding halfspace. All we need to show

now is that no other vertex of B[2] can lie on this hyperplane. Let us assume that

such a vertex exists. Let us call it P
[2]
σ3 . So we have at least one of σ1(i) = j, σ1(k) = l

and σ2(i) = j, σ2(k) = l true whenever σ3(i) = j, σ3(k) = l. However, since σ1 and

σ2 are distinct, there must exist some i0, j0, k0, l0 such that σ3(i0) = j0, σ3(k0) = l0

and exactly one of σ1(i0) = j0, σ1(k0) = l0 and σ2(i0) = j0, σ2(k0) = l0 is true.

W.l.o.g. let P
[2]
σ1(i0j0, k0l0) = 0 and P

[2]
σ2(i0j0, k0l0) = 1.

Recall that a P
[2]
σ matrix is defined as P

[2]
σ (ij, kl) = Pσ(i, j) ·Pσ(k, l), where Pσ is

the corresponding permutation matrix. So if P
[2]
σ (ij, kl) = 0, it implies that at least

one of Pσ(i, j) = 0 and Pσ(k, l) = 0 is true. If Pσ(i, j) = 0 it means the (ij)-th row

of P
[2]
σ must be zero. Similarly, a value of P

[2]
σ (ij, kl) = 1 implies that Pσ(i, j) = 1

and Pσ(k, l) = 1. Which implies that P
[2]
σ (ij, rs) = Pσ(r, s) for all r, s. Similarly,

P
[2]
σ (kl, rs) = Pσ(r, s) for all r, s.

From the above we have the (i0j0)-th row of P
[2]
σ1 zero and P

[2]
σ2(i0j0, rs) = Pσ2(r, s)

for all r, s. So we can conclude from the above that P
[2]
σ3(i0j0, rs) = Pσ2(r, s) for all

r, s. But this implies that σ2 and σ3 must be identical.

Hence, we cannot have a vertex different from P
[2]
σ1 ,P

[2]
σ2 on the hyperplane defined

above.

Corollary 5.3.2. For any pair of distinct permutations σ1, σ2, the line segment

(P
[2]
σ1 , P

[2]
σ2) is an edge (1-D face) of B[2].

Notation: For any face, F , of B[2], YF will denote the projection of the origin on

the affine plane of F . In particular Y0 will denote the projection of the origin on

plane P , the affine plane of B[2].

Lemma 5.3.3. The projection of the origin on any edge (1-D face) F = {P [2]
σ1 , P

[2]
σ2 }

is YF = (P
[2]
σ1 + P

[2]
σ2)/2.

Proof. ((P
[2]
σ1 +P

[2]
σ2)/2−0) ·(P [2]

σ1 −P [2]
σ2) = (P

[2]
σ1 ·P [2]

σ1 −P [2]
σ2 ·P [2]

σ2)/2 = (n2−n2)/2 = 0.

Here the product operator is the Frobenius inner product.

Lemma 5.3.4. Y0 =
∑

σ P
[2]
σ /n!.

56 There are more Facets

Proof. By the definition Y0 is the projection of the origin on the affine space of B[2],

namely, P . Clearly
∑

σ P
[2]
σ /n! is a convex combination of P

[2]
σ s hence it is in the

plane P . Now we only need to show that for any arbitrary σ1, σ2, P
[2]
σ1 −P [2]

σ2 is normal

to Y0. Since P
[2]
σ′ ·
∑

σ P
[2]
σ /n! is independent of σ′, (P

[2]
σ1 −P [2]

σ2) ·∑σ P
[2]
σ /n! = 0.

Observation 5.3.5. Let F1 and F2 be faces of B[2] where F2 is contained in F1.

Then YF2 is the projection of YF1 on the affine plane of F2.

Proof. If F2 is zero dimensional, then the claim is trivially true. So assume that F2 is

at least one dimensional. Since F2 is a face of F1, F1 is also at least one dimensional.

Let z be any arbitrary point in F2. So (YF2 − z).(YF2 − 0) = 0. Besides, YF2 and z

belong to F1 so (YF2 − z).(YF1 − 0) = 0. Hence (YF2 − z).(YF2 − YF1) = 0.

Corollary 5.3.6. For any face F of B[2], YF is the projection of Y0 on the affine

plane of F .

Lemma 5.3.7. For any facet F of B[2], there exists a half space H given by
∑

p∑
ijkl n

p
ijn

p
klYij,kl ≤ c where nij and c are non-negative reals, such that the half space

H ∩ P in P defines F , i.e., the bounding plane of H ∩ P is the plane of F .

Proof. YF − Y0 is the normal to F in the affine plane P . Hence the inequality for

the half space HF , in P , associated with F is (Y − YF) · (YF − Y0) ≤ 0. Let Y ′F be

a point in B[2] such that (YF − Y0) = c(Y ′F − Y0) for some constant c. So we have

HF : (Y − YF) · c(Y ′F − Y0) ≤ 0. Note that inside the plane P , (Y − YF) · Y0 = 0.

Consider the halfspace H : c(Y − YF) · Y ′F ≤ 0 or Y · Y ′F ≤ YF · Y ′F where Y is no

longer constrained to lie in plane P . Clearly, HF = H ∩P . We will show in chapter

6 that every point in B[2] is a completely positive matrix. So (Y ′F)ij,kl =
∑

p n
p
ijn

p
kl

where each nprs is a non-negative real. So we can rewrite the equation of H as∑
p

∑
ijkl n

p
ijn

p
klYij,kl ≤ cF , where cF = YF · Y ′F is a constant dependent on F .

Let us denote the inequality
∑

p

∑
ijkl n

p
ijn

p
klYij,kl ≤ cF by f(Y) ≤ cF . To ensure

that the corresponding equation is a supporting plane for B[2], at least one P
[2]
σ must

satisfy it with equality. f(P
[2]
σ) ≤ cF simplifies to

∑
p

∑
i,k n

p
iσ(i)n

p
k,σ(k) ≤ cF . So we

have cF = maxσ
∑

p

∑
i,k n

p
iσ(i)n

p
k,σ(k). In section 6.4 we will revisit this topic.

5.4 Conclusion 57

5.4 Conclusion

In the first part of this chapter we showed that the facets described in chapter 3

are only a subset of the facets of B[2]. So finding the remaining facets remains an

open problem. In the second part we gave a general inequality that defines every

supporting plane for B[2].

58 There are more Facets

Chapter 6

A Semidefinite Formulation

6.1 Introduction

An m × m symmetric real matrix M is said to be positive semidefinite if it can

be expressed as QQT for some m × k real matrix Q. If the row vectors of Q are

vT1 , . . . , v
T
m, then we will call this set a vector-realization of M in k-dimensional

space. It is easy to see that there is always a vector realization in k = rank(M)

dimensional space.

If matrix M has a vector realization in which each vi ∈ Rk
≥0, then it is called a

completely positive(CP) matrix. cp-rank of a completely positive matrix M is the

smallest integer k such that M has a non-negative vector realization in k dimensional

space. Following result gives a useful bound for cp-rank(M).

Theorem 6.1.1. (HL83) For any completely positive matrix M of rank r, cp-rank

(M) ≤ r(r + 1)/2.

A CP formulation is a program with linear constraints and a linear objective

function, where the variable matrix is confined to the cone of CP matrices. In this

chapter we give a CP formulation of GI and study its feasible region. We also study

the Semidefinite (SDP) relaxation of the formulation and prove certain results about

its feasible region.

60 A Semidefinite Formulation

6.2 CP Formulation of GI

Let us recall the definition of the product of two graphs dicussed in the definition of

integer linear program for GI. Let G1 = ([n], E1) and G2 = ([n], E2) be simple graphs

on n vertices each. Define a graph G = (V,E), where V = [n]× [n] and {ij, kl} ∈ E
if either {i, k} ∈ E1 and {j, l} ∈ E2 or {i, k} /∈ E1 and {j, l} /∈ E2, provided i 6= k

and j 6= l. It follows from a result in (Koz78) that G1 and G2 are isomorphic if and

only if G contains a clique of size n. G is an n-partite graph so the largest clique in

G cannot be of size more than n. Therefore G1 and G2 are isomorphic if and only if

G has clique number n. Moreover there is a 1-1 correspondence between n-cliques

of G and the isomorphisms between G1 and G2.

It is shown in (dKP02) that by replacing the positive semidefinite condition in

a SDP formulation of the Lovász Theta number of a graph by completely positive

condition, the optimal value of the resulting program is the stability number (in-

dependence number) of that graph. So the following completely-positive program

(CP-LT)

CP-LT: maximize
∑
i,j∈[n]

Ỹij,ij

subject to Ỹ ∈ C∗ (6.1a)

Ỹij,ik = 0 , 1 ≤ i, j, k ≤ n, j 6= k (6.1b)

Ỹji,ki = 0 , 1 ≤ i, j, k ≤ n, j 6= k (6.1c)

Ỹω,ω = 1 (6.1d)

Ỹij,ω = Ỹij,ij ,1 ≤ i, j ≤ n (6.1e)

Ỹij,kl = 0 , {ij, kl} /∈ E (6.1f)

returns value n if and only if the stability number of G or equivalently, the clique

number of G is n. Here Ỹ is a (n2 + 1) × (n2 + 1) matrix of variables with index

set (([n] × [n]) ∪ {ω}) × (([n] × [n]) ∪ {ω}) and C∗ denotes the cone of completely

positive matrices. The optimum value of CP-LT will be denoted by cpϑ.

Combining the two observations we deduce that this program returns n if and

only if G1 and G2 are isomorphic. And it returns n − 1 or less if the graphs are

non-isomorphic.

Let X be an N × N completely positive matrix or, more generally, a positive

semidefinite matrix. Then there exists a set of vectors {ui|1 ≤ i ≤ N} such that

6.2 CP Formulation of GI 61

Xij = ui ·uj for all i, j. We will refer to {ui|1 ≤ i ≤ N} as a vector realization of X.

Given a vector realization of a solution of CP-LT, {uij|1 ≤ i, j ≤ n}, a subset

{uiji |i ∈ I} of non-zero vectors will be called a consistent set if upjp · uqjq > 0 for

all p, q ∈ I. If I = {1, . . . , n}, then it will be called a complete consistent set. Let

{uiji |1 ≤ i ≤ n} be a complete consistent set. Define a function f as f(i) = ji for

1 ≤ i ≤ n. From 6.1c we see that f is a permutation. From the graph conditions

6.1f we see that f is an isomorphism between G1 and G2.

Observation 6.2.1. If {uij|1 ≤ i, j ≤ n} is the vector realization of a solution Y

of CP-LT which contains a complete consistent set {u1σ(1), . . . , unσ(n)}, then σ is an

isomorphism between G1 and G2. This is true also when Y is a positive semidefinite

matrix.

6.2.1 United Vectors

We take a short diversion.

Let w be any fixed unit vector. Then for every unit vector v, we call u = (w+v)/2

a united vector with respect to w.

Observation 6.2.2. With respect to a fixed unit vector w,

(i) a vector u is united if and only if u · w = u2.

(ii) if u1 and u2 are mutually orthogonal united vectors, then u1 +u2 is also a united

vector.

(iii) let u1, . . . , uk be a set of pairwise orthogonal united vectors. This set is maximal

(i.e., no new united vector can be added to it while preserving pairwise orthogonality)

if and only if w belongs to the subspace spanned by these vectors.

(iv) let u1, . . . , uk be a set of pairwise orthogonal united vectors. w belongs to the

subspace spanned by these vectors if and only if
∑

i ui = w.

(v) let u1, . . . , uk be a set of pairwise orthogonal united vectors.
∑

i ui = w if and

only if
∑

i u
2
i = 1.

Let Ỹ be a solution of CP-LT. Since it is a completely positive matrix, there

exist vectors uij for 1 ≤ i, j ≤ n and a unit vector w such that Ỹij,kl = uij · ukl
and Ỹij,w = Ỹw,ij = uij · w. Note that the same would be true if Ỹ was any positive

semidefinite matrix. From conditions 6.1d and 6.1e we see that uij are united vectors

with respect to w. From conditions 6.1b and 6.1c we see that {ui1, . . . , uin} is a set

62 A Semidefinite Formulation

of mutually orthogonal united vectors, for each i. Same is true for {u1i, . . . , uni}.
The objective function

∑
ij Ỹij,ij can achieve its maximum value n if and only if

each of the sets, {ui1, . . . , uin}, (equivalently, {u1i, . . . , uni}) is a maximal pairwise

orthogonal set of united vectors.

Observe that Ỹ is a (n2 + 1) × (n2 + 1) matrix having its last row and the

last column equal to its diagonal, see condition 6.1e. Hence the n2 × n2 principal

submatrix contains complete information of Ỹ . We will refer to it as Y . So Yij,kl =

uij · ukl for all i, j, k, l. Clearly Ỹ can be obtained from Y by setting Ỹij,n2+1 =

Ỹn2+1,ij = Yij,ij and Ỹn2+1,n2+1 = 1. The remaining entries of Ỹ are same as those of

Y .

6.2.2 Difference in cpϑ values for Isomorphic and Non-

Isomorphic Graphs

From the result of (dKP02) discussed at the start of the chapter we know that the

value of cpϑ is n if the graphs are isomorphic. Otherwise it is n− 1 or less. Hence

it has a gap of at least 1 between isomorphic and non-isomorphic cases. Here we

present a geometric argument to establish a much smaller gap between the two cases.

Although this is not significant in the light of the above, nonetheless the approach

is different and basically shows that if we are too close to the optimum value of cpϑ

then the graphs must be isomorphic.

Theorem 6.2.3. Let Y be a solution of CP-LT. If
∑

j Yij,ij ≥ 1− 1/(4n4) for each

i, then G1 and G2 are isomorphic.

Proof. Let N denote the cp-rank of Y . So we have a non-negative vector realization

of Y , {uij|i, j ∈ [n]} ∪ {w} in an N -dimensional space. So we have uij · ukl = Yij,kl

for all i, j, k, l and there is an orthonormal basis of this space, B = {ep|p ∈ [N]},
such that every uij belongs to the closed positive orthant of this basis.

From Theorem 6.1.1 N < n4 because the rank of Y is at most n2. Hence from

the statement of this theorem w ·∑j uij =
∑

j u
2
ij =

∑
j Yij,ij ≥ 1− 1/(4N) for each

i. Let Si = {ui1, . . . , uin} for each i. Since it is a set of orthogonal united vectors

with respect to w, w.
∑

j uij =
∑

j u
2
ij ≤ 1.

Without loss of generality assume that w · e1 ≥ w · ej for all j. So w · e1 ≥ 1/
√
N

because w is a unit vector. If every vector in Si is orthogonal to e1, then w ·∑j uij

6.2 CP Formulation of GI 63

can be at most |w− (w · e1)e1|, which is at most (1− (w · e1)2)1/2 ≤ (1− 1/N)1/2 <

1 − 1/(2N), contradicting the earlier inequality for w ·∑j uij. So there exists a

vector uiji ∈ Si such that uiji · e1 > 0. Let there be a k 6= ji such that uik · e1 > 0.

As all vectors are in the closed positive orthant, uiji · uik ≥ (uiji · e1)(uik · e1) > 0.

This contradicts the fact that the vectors of Si are pairwise orthogonal. Hence we

conclude that for each i there exists a unique vector uiji ∈ Si such that uiji · e1 > 0.

Thus
∑n

j=1 uij · e1 = uiji · e1.

Next we will show that uiji · ukjk ≥ 1/(16N2) for all i, k ∈ [n]. For any i,

from the given facts 1 − 1/(4N) ≤ w ·∑j uij = (w · e1)(
∑

j uij · e1) + (w − (w ·
e1)e1) · (∑j uij − (

∑
j uij · e1)e1). Since (

∑
j uij)

2 ≤ 1, (w − (w · e1)e1) · (∑j uij −
(
∑

j uij · e1)e1) ≤ |w − (w · e1)e1| ≤ 1 − 1/(2N). The last inequality has been

established in the previous paragraph. So (w · e1)(
∑

j uij · e1) ≥ 1/(4N) for all i.

Hence uiji · e1 =
∑

j uij · e1 ≥ 1/(4N).

All vectors of each Si are in the closed positive orthant hence uiji · ukjk ≥ (uiji ·
e1)(ukjk · e1) ≥ 1/(16N2) for all i, k ∈ [n]. Thus the set {u1j1 , . . . , unjn} is pairwise

non-orthogonal, and hence a complete consistent set. From Observation 6.2.1 we

know that the permutation, σ(i) = ji for all i, is an isomorphism between G1 and

G2.

Corollary 6.2.4. If G1 and G2 are non-isomorphic, then the value of cpϑ must be

less than n− 1/(4n4). Hence the gap between isomorphic and non-isomorphic cases

is at least 1/4n4.

6.2.3 The Second-order Birkhoff Polytope

In (PR09) a completely positive formulation of Quadratic Assignment Problem

(QAP) is given. It is established there that the optimum feasible region (where

cpϑ = n) of CP-LT without (6.1f) is B[2], see theorem 3 in (PR09). Here we will

refine that result by showing that the optimum feasible region of CP-LT is B
[2]
G1G2

.

Lemma 6.2.5. The optimal feasible region of CP-LT (i.e., where
∑

i,j∈[n] Yij,ij = n)

is B
[2]
G1G2

.

Proof. P
[2]
σ is a completely positive rank-1 matrix because it is the outer product of

the vectorized Pσ with itself. If σ is an isomorphism between G1 and G2 then P
[2]
σ is

feasible for CP-LT since it satisfies all the linear conditions. Conversely, if P
[2]
σ , for

64 A Semidefinite Formulation

some σ, is feasible for CP-LT, then it implies that the product graph G has a clique

of size n (i.e., the program returns the optimal value n) and hence G1 and G2 are

isomorphic with σ as the isomorphism.

From the above, B
[2]
G1G2

is contained in the feasible region of CP-LT with objective

function equal to n. Consider a non-negative vector realization {uij|i, j ∈ [n]}∪{w}
for a CP-LT solution Y with the objective function cpϑ = n. Let W denote an

n × n matrix with (i, j)-th entry being uij. Conditions 6.1b and 6.1c ensure that

vectors in any row or any column of W are pairwise orthogonal. Since objective

function attains value n, from Observation 6.2.2 vectors of each row/column form a

maximal set of pairwise orthogonal united vectors. Also from the same observation

each row and each column adds up to w. Assume that the vector realization is

in an N -dimensional space. Consider the r-th component of the matrix, i.e., the

matrix formed by the r-th component of each vector. Let us denote it by Dr. Each

element of Dr is non-negative and each row and each column adds up to wr, the

r-th component of w. Hence Dr is wr times a doubly-stochastic matrix. But the

vectors of the same row (resp. column) are pairwise orthogonal so exactly one entry

is non-zero in each row (resp. column) of Dr if wr > 0. So Dr = wrPσr for some

permutation σr. We can express W by
∑

r wrPσrer where er denotes the unit vector

along the r-th axis. Yij,kl is the inner product of the vectors uij and ukl which is

(
∑

r wr(Pσr)ijer) · (
∑

sws(Pσs)kles) =
∑

r w
2
r(Pσr)ij.(Pσr)kl =

∑
r w

2
r(P

[2]
σr)ij,kl. Thus

Y =
∑

r w
2
rP

[2]
σr . Since

∑
r w

2
r = w2 = 1, Y is a convex combination of some of

the P
[2]
σ ’s. Each σr, where wr > 0, is an isomorphism between G1 and G2. Hence

Y ∈ B
[2]
G1G2

. So the feasible region is contained in B
[2]
G1G2

.

In these sections we have seen that the Graph Isomorphism problem can be solved

via a Completely Positive formulation. However, it is NP-Hard to optimize over the

cone of completely positive matrices. But the same is not true of a Semidefinite

formulation. So a natural question arises. Can a semidefinite relaxation of CP-LT

be used to solve GI? In the next section we attempt to answer this question.

6.3 SDP Relaxation - Lovász Theta Function

Consider the semidefinite relaxation SDP-LT, given below. The optimum value of

SDP-LT is ϑ(G), where G is the symmetric tensor product of G1 and G2 defined

6.3 SDP Relaxation - Lovász Theta Function 65

earlier.

Let {uij|1 ≤ i, j ≤ n} be a vector realization of a solution Y of this SDP.

Equations 6.1d and 6.1e imply that uij are united vectors, as in CP-LT. Equations

6.1b to 6.1e imply that {ui1, . . . , uin} are orthogonal sets and so are {u1i, . . . , uni}.
From Observation 6.2.2 we know that each of these sets add up to a vector of length

at most 1. The objective function is
∑

ij Yij,ij =
∑

ij u
2
ij =

∑
iw ·

∑
j uij ≤

∑
i 1 = n.

The objective function reaches its maximum value n if and only if
∑

i uij = w =∑
j uij ∀i, j.

SDP-LT: maximize
∑
i,j∈[n]

Yij,ij

subject to Y � 0 (6.2a)

6.1b-6.1f from CP-LT

Yij,kl ≥ 0 (6.2b)

The program can be stated as a feasibility program by adding the optimality

condition
∑

ij Yij,ij = n to its set of conditions. The feasible region of the feasibility

version of SDP-LT (let’s say SDP-LT-OPT) will be denoted by FG1G2 . It will be

denoted by F if G1 = G2 = (V, ∅) or G1 = G2 = Kn.

Lemma 6.3.1. P
[2]
σ is in the feasible region of the above SDP if and only if σ is an

isomorphism between G1 and G2.

Proof. Let Y be a solution of SDP-LT.

Y = P
[2]
σ iff (Yij,kl = 1 if and only if j = σ(i) and l = σ(k) else Yij,kl = 0). Hence

from condition (6.1f) Y = P
[2]
σ implies ((i, k) ∈ E1 iff (σ(i), σ(k)) ∈ E2), i.e., σ is an

isomorphism between G1 and G2.

Conversely, let σ be an isomorphism, then (i, k) ∈ E1 iff (σ(i), σ(k)) ∈ E2. It

can be verified that P
[2]
σ satisfies (6.1f). All other conditions of SDP-LT are satisfied

by P
[2]
σ′ for every σ′. Hence P

[2]
σ is a solution of SDP-LT.

Lemma 6.3.2. P
[2]
σ are the only rank-1 points in F. Also, these constitute some of

the extreme points of F.

Proof. If Y is a rank-1 point in F, then there exists a vector v = {vij|1 ≤ i, j ≤
n} ∈ Rn2

such that Yij,kl = vij.vkl (scalar product). Since Yij,il = 0 for j 6= l, for any

66 A Semidefinite Formulation

given i, vij must be zero for at least n− 1 values of j. Similarly for a given j, vij is

zero for at least n− 1 values of i.

If vij = 0 for all j, then for any arbitrary k, l, Ykl,kl =
∑

j Yij,kl = 0. Hence∑
kl Ykl,kl = 0. This is absurd because

∑
kl Ykl,kl must be n as Y is a point in F. So

we see that for each i there exists a unique ji such that viji 6= 0 and vij = 0 for all

j 6= ji. Y belongs to F so
∑

j Yij,ij = 1 for each i. So 1 =
∑

j Yij,ij =
∑

j v
2
ij = v2

iji
.

Hence viji is either 1 or −1. But viji .vkjk ≥ 0 for all i, k. So either all viji are 1 or

all are −1. Let V denote the n × n matrix with Vij = vij for all i, j. We see that

each row of V has one 1 (or −1) and the rest of the entries are 0. Similarly we can

show that each column has one 1 (respectively, −1). So V is a permutation matrix,

say Pσ or its negation, and Y = P
[2]
σ . Since rank-1 points lie on extreme rays of the

PSD cone they form some of the extreme points of F.

It follows from lemma 6.3.2 that following SDP would solve GI,

SDP-GI: minimize Rank Y

subject to Y ∈ FG1G2

by observing that the optimum solution of SDP-GI is P
[2]
σ if and only if the graphs

have an isomorphism σ. However, this test too is NP-Hard.

Lemma 6.3.3. Consider a point Y in F of rank r ≤ n. If it has a vector realization

{uij|1 ≤ i, j ≤ n} such that there exist i, j1, . . . , jr with u2
ij1

> 0, u2
ij2

> 0, . . .

, u2
ijr > 0, then it belongs to the CP-feasible region, B

[2]
G1G2

.

Proof. Vectors uij1 , uij2 , . . . , uijr are mutually orthogonal vectors so they can be

taken as a basis of the r-dimensional space in which all the vectors lie. Now since

the remaining vectors make non-negative dot products with these r vectors, all the

vectors lie in the positive orthant of this basis. Thus the given matrix Y is completely

positive and hence belongs to the CP-feasible region.

Lemma 6.3.4. All rank-2 points of F belong to the CP-feasible region, B
[2]
G1G2

.

Proof. Let Y be a rank-2 point in F with vector realization {uij|1 ≤ i, j ≤ n}. The

vectors must be in 2-dimensional space so for each i there are at most two values

of j such that uij is non-zero. If for some i there is only one such index, j = j1,

such that uij is non-zero, then
∑n

j=1 uij = w (this must be true since
∑

ij Yij,ij = n)

6.3 SDP Relaxation - Lovász Theta Function 67

implies that uij1 = w. If uij is non-zero for only one value of j for all i, then Y will

be a rank-1 matrix, i.e., P
[2]
σ for some σ. But Y is a rank-2 matrix so there exists

an i such that uij1 and uij2 are non-zero for some j1 6= j2. From lemma 6.3.3 Y is a

completely positive matrix.

Lemma 6.3.5. Let {uj1, uj2} be a pair of orthogonal united vectors with uj1 +

uj2 = w, for j = 1, 2, . . . , r. Then there exists a consistent set of vectors {vj ∈
{uj1, uj2}|j = 1, . . . , r}.

Proof. Suppose {uj1, uj2} = {uk1, uk2} for some j, k. In that case we take vj = vk.

Since uj1 · uj2 = 0 and uj1 + uj2 = w, u2
j1 + u2

j2 = 1 for each j. Without loss of

generality assume that for each j, u2
j1 ≥ u2

j2. Let vj = uj1. So v2
j ≥ 1/2 ∀j. For

arbitrary p, q, we will show that up1 · uq1 > 0 where (up1, up2) 6= (uq1, uq2). Contrary

to the claim, assume that up1 · uq1 = 0 where {up1, up2} 6= {uq1, uq2}.
u2
p1 = up1 ·w = up1 · uq1 + up1 · uq2 = up1 · uq2. Similarly u2

q1 = up2 · uq1. So using

these equations we have 1 = w2 = (up1 + up2) · (uq1 + uq2) = u2
p1 + u2

q1 + up2 · uq2.

First consider the case that u2
p1 > 1/2 or u2

q1 > 1/2. In this case 1 = u2
p1 + u2

q1 +

up2 · uq2 > 1, which is absurd.

Now we consider the remaining case that u2
p1 = u2

q1 = 1/2. From the above,

up1 · uq2 = 1/2 and up2 · uq1 = 1/2. From the last para 1 = 1 + up2 · uq2. So

up2 ·uq2 = 0. So (up1−uq2)2 = 1/2 + 1/2−2up1 ·uq2 = 0, giving up1 = uq2. Similarly

we can show that up2 = uq1. This gives {up1, up2} = {uq1, uq2}, which is absurd.

Lemma 6.3.6. The vector realization {uij|1 ≤ i, j ≤ n} of any rank-3 point in F

contains at least one complete consistent set.

Proof. If there exist i, j1, j2, j3 such that u2
ij1
> 0, u2

ij2
> 0, u2

ij3
> 0, then the claim

holds from lemma 6.3.3.

Next suppose the only non-zero vectors are {uiji , uiki |1 ≤ i ≤ r}∪{uiji |i > r}. So

uiji = w for i > r. From lemma 6.3.5 there exist vi ∈ {uiji , uiki} for 1 ≤ i ≤ r such

vi′ ·vi′′ > 0 for all 1 ≤ i′, i′′ ≤ r. The desired complete consistent set is {xi|1 ≤ i ≤ n}
where xi = vi for i ≤ r and xi = w for i > r. Observe that vi · w = v2

i > 0.

Corollary 6.3.7. If SDP-LT with additional
∑

ij Yij.ij = n condition has a solution

of rank at most 3, then G1 and G2 are isomorphic.

Lemma 6.3.8. For any point Y ∈ F, rank(Y) ≤ n2 − 2n+ 2.

68 A Semidefinite Formulation

Proof. Consider the vector realization {uij|1 ≤ i, j ≤ n} of Y . The rank of Y is equal

to the largest number of linearly independent vectors among the uijs. We know that∑
i uij = w for all j and

∑
j uij = w for all i. These equations allow us to express

uni and uin for all 1 ≤ i ≤ n in terms of {uij|1 ≤ i, j ≤ n− 1} ∪ {w}. Therefore the

number of linearly independent vectors are at most (n− 1)2 + 1 = n2 − 2n+ 2. So

the rank of Y is at most n2 − 2n+ 2.

Lemma 6.3.9. There exists a point within B[2] having rank n2 − 2n+ 2.

Proof. Let A = 1
n!

∑
σ P

[2]
σ which is in B[2]. The diagonal entries of A are 1/n and

the non-zero off-diagonal entries 1/(n(n − 1)). Observe that vector 1 (all 1s) is an

eigenvector of A with eigenvalue 1.

Now we will show that A also has eigenvalue 1/(n − 1) and its multiplicity

is (n − 1)2. Let B = A − 1
n−1

I. Let Rij denote the (ij)-th row of B. Then

Rij = Ri1 + R1j − R11 ∀i, j. So R22, . . . , R2n, R32, . . . , R3n, . . . , Rn2, . . . , Rnn can be

expressed as linear combinations of the remaining rows. So rank(B) ≤ n2−(n−1)2.

Then the null space of B has dimension at least (n − 1)2. Since B = A − 1
n−1

I, A

has eigenvalue 1/(n− 1) with multiplicity at least (n− 1)2.

These two facts imply that rank(A) ≥ 1 + (n− 1)2 = n2 − 2n+ 2.

Corollary 6.3.10. The ranks of points in B[2] range from 1 to n2 − 2n+ 2.

6.3.1 Null space lemma

While working on this problem, we got the following interesting result, although it

finds no use in this thesis.

Let matrices A,B belong to the cone of positive semidefinite matrices. The

following lemma gives a necessary and sufficient condition for A − εB, for some

ε > 0, to continue to belong to the same cone.

Lemma 6.3.11. Given positive semidefinite matrices A,B, there exists some ε > 0

such that A− εB � 0 if and only if N(A) ⊆ N(B).

Proof. (Only if) We are given that A − εB is positive semidefinite for some ε > 0.

Assume that N(A) \N(B) is non-empty. Let x ∈ N(A) \N(B). So xT (A− εB)x =

−εxTBx < 0.

6.4 A unified equation for the known Facets of B[2] 69

(If) Let x1, x2, . . . , xk be eigenvectors of B which are mutually orthogonal and

span all the eigenspaces of B. Let their respective eigenvalues be λ1, . . . , λk. Let

span(x1, . . . , xk) denote the space spanned by the eigenvectors, i.e., the subspace

orthogonal to the nullspace of B. Similarly let y1, . . . , ym be an orthogal set of eigen-

vectors of A spanning its eigenspaces. Let their respective eigenvalues be α1, . . . , αm.

Hence N(A) ⊆ N(B) implies that span(x1, . . . , xk) ⊆ span(y1, . . . , ym). Without

loss of generality we assume that λ1 ≥ λi for all i and α1 ≤ αj for all j.

Let u be a vector orthogonal to the N(A), i.e., in span(y1, . . . , ym). Then u =∑
i ciyi and uTAu =

∑
i ciy

T
i A
∑

l clyl =
∑

i αic
2
i y

2
i ≥ α1u

2. Similarly, let v be a

vector orthogonal to the N(B), i.e., in span(x1, . . . , xk). Then v =
∑

j djxj and

vTBv =
∑

j djx
T
j B
∑

r drxr =
∑

j λjd
2
jx

2
j ≤ λ1v

2.

Let z be any arbitrary vector. Let the projection of z on the null space of A be z1

and that on the null space of B be z2. The fact N(A) ⊆ N(B) implies that z2
1 ≤ z2

2

or (z− z1)2 ≥ (z− z2)2. So zT (A− εB)z = (z− z1)TA(z− z1)− ε(z− z2)TB(z− z2).

Observe that z − z1 ∈ span(y1, . . . , ym) and z − z2 ∈ span(x1, . . . , xk).

Since uTAu ≥ α1u
2 for u ∈ span(y1, . . . , ym) we have (z−z1)TA(z−z1) ≥ α1(z−

z1)2 and since vTBv ≤ λ1v
2 for v ∈ span(x1, . . . , xk) we have (z − z2)TB(z − z2) ≤

λ1(z − z2)2. Then zT (A− εB)z ≥ α1(z − z1)2 − ελ1(z − z2)2 ≥ (z − z2)2(α1 − ελ1)

where the last inequality is due to the fact that (z − z1)2 ≥ (z − z2)2. By taking

ε0 = α1/λ1 we see that zT (A− ε0B)z ≥ 0.

6.4 A unified equation for the known Facets of

B[2]

Let {w} ∪ {uij|1 ≤ i, j ≤ n} represent a (united) vector realization of any point

Y ∈ B[2]. Define a vector A =
∑

ij nijuij for some choice of nij ∈ Z and let β ∈ Z.

Consider the following inequality.

(A− (β − 0.5)w)2 ≥ 0.25. (6.4)

The above inequality defines the half space∑
i,j,k,l

nijnklYij,kl + β2 − β ≥ (2β − 1)
∑
ij

nijYij,ij

which is the same as inequality 5.1.

70 A Semidefinite Formulation

The united vector realization of P
[2]
σ is uij = w if σ(i) = j, else uij = 0. It is

easy to see that every P
[2]
σ , hence every point of B[2], satisfies the inequality (6.4).

If there exists a permutation σ such that
∑

(ij):σ(i)=j nij is either equal to β or

β−1, then P
[2]
σ satisfies (6.4) with equality. In this case the plane (A−(β−0.5)w)2 =

0.25 is a supporting plane of B[2] and hence defines a face.

It may be pointed out that another inequality, which can define faces, is (A −
βw)2 ≥ 0. But no known facet corresponds to this inequality.

All the sets of facets discussed in Chapter 3 can be restated in terms of united

vectors. So the facets given by non-negativity conditions 3.2.2 are equivalent to

(uij + ukl − 0.5w)2 ≥ 0.25, for every i, j, k, l such that i 6= k and j 6= l, the set of

facets given by 3.2.3 are equivalent to (up1q1 + up2q2 + up1q2 − ukl − 0.5w)2 ≥ 0.25,

where p1, p2, k are distinct and q1, q2, l are also distinct and n ≥ 6, and those given

by 3.2.4 are equivalent to (ui1j1 + · · ·+uimjm−ukl−0.5w)2 ≥ 0.25 where i1, . . . , im, k

are all distinct, j1, . . . , jm, l are also distinct and n ≥ 6,m ≥ 3.

Let P1, P2 be disjoint subsets of [n]. Similarly Q1, Q2 are also disjoint subsets

of [n]. Then the 4-box inequality discussed in (JK97; Kai97) is (−∑i∈P1,j∈Q1
uij −∑

i∈P2,j∈Q2
uij +

∑
i∈P1,j∈Q2

uij +
∑

i∈P2,j∈Q1
uij −(β − 0.5)ω)2 ≥ 0.25. The 1-box

inequality is equivalent to (
∑

i∈P1,j∈Q2
uij− (β − 0.5)ω)2 ≥ 0.25 and is obtained by

setting P2 = Q1 = ∅ in the 4-box inequality, whereas the 2-box inequality corre-

sponds to (−∑i∈P2,j∈Q2
uij +

∑
i∈P1,j∈Q2

uij −(β − 0.5)ω)2 ≥ 0.25 and is obtained

by setting Q1 = ∅ in the 4-box inequality. All the facets listed in (JK97; Kai97) are

special instances of either the 1-box or the 2-box inequality.

6.4.1 Geometry of the Feasible region

The linear conditions of SDP-LT-OPT (the feasible region of SDP-LT where the

objective function takes value n) are same as those of LP-GI. This follows from the

following argument.

Consider a solution Y in SDP-LT-OPT having a vector realization {uij|1 ≤ i, j ≤
n}. Since the objective function achieves its maximum value, namely, n for Y , each

set {ui1, . . . , uin} is a maximal orthogonal set. Similarly each set {u1i, . . . , uni} is

also a maximal orthogonal set. In that case from united vector property
∑

i uij =∑
j uij = w. We then have 1 = wT · w =

∑
i u

T
ij · w =

∑
i Yij,ω =

∑
i Yij,ij. Similarly∑

j Yij,ij = 1. We also have
∑

k Yij,kl = uTij · (
∑

k ukl) = uTij · w = Yij,ij. Similarly

6.5 Conclusion 71

∑
l Yij,kl = Yij,ij. Note that these conditions are same as those in 2.1c-2.1e.

Since SDP-LT solutions are also positive semidefinite, we can deduce that B
[2]
G1G2

⊆
FG1G2 ⊆ PG1G2 . Thus the performance of Algorithm 1 can only improve when the

linear program is replaced by semidefinite program.

6.5 Conclusion

In this chapter we gave a CP formulation of GI and later studied its SDP relaxation.

We showed that the optimal feasible region of CP-LT is equal to the convex hull of

all isomorphisms between the given pair of graphs, i.e., B
[2]
G1G2

. We also showed that

for a small set of special cases we can solve GI using SDP-LT. Finally we arrived at

the general inequality 5.1 using a different approach.

72 A Semidefinite Formulation

Chapter 7

Experiments

7.1 Introduction

We present the results of the experiments we conducted to test non-isomorphism

using Algorithm 1 on two families of graphs. We run two variants of Algorithm 1:

one using LP-GI and the other using LP-GI-2 which is described in section 7.2. The

two graph families are (i) strongly regular graphs and (ii) CFI-graphs. A d-regular n

vertex graph is said to be (n, d, λ, µ)-strongly regular if all adjacent pairs of vertices

have λ common neighbors and all non-adjecent pairs of vertices have µ common

neighbors. CFI is short for Cai-Fürer-Immerman and these graphs are named so

since they use a construction given by Cai, Fürer and Immerman in (CFI92).

We also experiment with the SDP-formulation of GI described in chapter 6. For

these experiments we replace LP-GI in Algorithm 1 with SDP-LT.

The purpose of these experiments is to show the polynomiality of our algorithm

on instances taken from the above mentioned classes of graphs, rather than com-

pare its running time with softwares like nauty. As it stands, our running time is

prohibitive and is not comparable to any practical software.

7.2 LP-GI-2: An Alternate Linear Program

Two graphs have an isomorphism σ if and only if APσ = PσB where Pσ is the

permutation matrix corresponding to σ and A,B are the adjacency matrices of the

two graphs. LP-GI-2 is obtained by replacing the edge/non-edge condition 2.2b by

74 Experiments

7.1b-7.1c. Each row of P
[2]
σ is either vectorized Pσ matrix or a zero vector. Also the

diagonal of P
[2]
σ is the vectorized Pσ matrix. Therefore applying the commutation

relation to these gives
∑

pAkp · P
[2]
σ (pl, pl) =

∑
p P

[2]
σ (kp, kp) · Bpl and

∑
pAkp ·

P
[2]
σ (ij, pl) =

∑
p P

[2]
σ (ij, kp) · Bpl for all i, j, k, l. Replacing P

[2]
σ with variable Y we

get a new set of graph conditions 7.1b-7.1c. The feasible region of LP-GI-2 is the

polytope obtained by applying one Shirali-Adams lift step to the Tinhofer polytope,

see(Mal14).

LP-GI-2: Find a point Y

subject to 2.1a-2.1e (7.1a)∑
p

Akp · Ypl,pl =
∑
p

Ykp,kp ·Bpl , ∀ k, l (7.1b)∑
p

Akp · Yij,pl =
∑
p

Yij,kp ·Bpl , ∀ i, j, k, l (7.1c)

Yij,kl ≥ 0 , ∀ i, j, k, l (7.1d)

In the following lemma we show that the feasible region of LP-GI-2 is contained

in that of LP-GI. We basically re-prove (Mal14, Lemma 3.2) for the case of k = 2.

Lemma 7.2.1. Feasible region of LP-GI-2 is contained in the feasible region of

LP-GI for a given pair of graphs.

Proof. We will show that the edge/non-edge conditions given by 2.2b in LP-GI are

implied by the conditions 7.1c in LP-GI-2. This will prove the statement of the

lemma since the remaining conditions in LP-GI are also present in LP-GI-2.

Consider 7.1c with l = j and Aik = 0. The left hand side of the equation reduces

to 0 since Yij,pj = 0 for all p 6= i. That leads to
∑

p Yij,kp · Bpj = 0. This combined

with 7.1d results in Yij,kp = 0 for any k such that Aik = 0 and for all p such that

Bjp = 1.

Next consider a value of l such that Bjl = 0. Also let k = i. So the right hand

side of 7.1c reduces to zero. That gives
∑

pAip · Yij,pl = 0 which implies from 7.1d

that Yij,pl = 0 for all p such that Aip = 1 and any l such that Bjl = 0.

Here is an interesting evidence of this fact. Point Yc defined below for d-regular

n-vertex graphs G1 = (V,E1), G2 = (V,E2) belongs to the feasible region of LP-GI

7.3 Strongly Regular Graphs 75

but it belongs to the feasible region of LP-GI-2 only when the graphs are strongly

regular.

Yc(ij, kl) =



1
n

if i = k and j = l
1
nd

if {i, k} ∈ E1 and {j, l} ∈ E2

0 if {i, k} ∈ E1 and {j, l} /∈ E2

0 if {i, k} /∈ E1 and {j, l} ∈ E2

1
n(n−1−d)

if {i, k} /∈ E1 and {j, l} /∈ E2

Lemma 7.2.2. Yc belongs to LP-GI-2 if and only if G1, G2 are strongly regular.

Proof. Consider the case when Aik = Bjl = 1. Here the left hand side of 7.1c reduces

to λAik/(nd) where λAik is the number of common neighbors of vertices i, k ∈ G1.

Similarly the right hand side reduces to λBjl/(nd). Since 7.1c is true for all i, j, k, l,

we can conclude that λAik = λBjl for all i, j, k, l or there is a common λ value for all

pairs of adjacent vertices in the two graphs.

Next we consider the case when Aik = Bjl = 0. Here the left hand side of 7.1c

reduces to (d−µAik)/n(n−1−d) and the right hand side to (d−µBjl)/n(n−1−d). µAik
is the number of common neighbors of vertices i, k ∈ G1 whereas µBjl is the number

of common neighbors of vertices j, l ∈ G2. So we have µAik = µBjl for all i, j, k, l or

there is a common µ value for all pairs of non-adjacent vertices in the two graphs.

From the above and the definition of a strongly regular graph, we can conclude

that for 7.1c to hold for Yc, G1, G2 must be strongly regular with the same set of

parameters.

Corollary 7.2.3. Given a pair of d-regular n-vertex graphs G1, G2 that are not

strongly regular, the point Yc is feasible for LP-GI but infeasible for LP-GI-2.

7.3 Strongly Regular Graphs

In any solution of LP-GI (hence also LP-GI-2) a vertex of degree d in G1 is never

mapped to a vertex of degree d′ in G2, for d 6= d′, as shown by the following lemma.

Lemma 7.3.1. Yij,ij = 0 if deg(i) 6= deg(j) for i ∈ V (G1), j ∈ V (G2).

76 Experiments

Proof. Let d1 = degG1(i) and d2 = degG2(j). So d1 6= d2. Let N1(i) denote the open

neighborhood of a vertex i in G1 and N2(j) denote the open neighborhood of vertex

j in G2. So
∑

k∈N1(i)

∑
l∈N2(j) Yij,kl =

∑
k∈N1(i) Yij,ij = d1Yij,ij. But rewriting the

left hand side expression as
∑

l∈N2(j)

∑
k∈N1(i) Yij,kl leads to

∑
l∈N2(j) Yij,ij = d2Yij,ij.

Since d1 6= d2, Yij,ij = 0.

Lemma 7.3.1 suggests that the real difficulty lies in distinguishing between ver-

tices that have the same degree. Moreover, from lemma 7.2.2 we know that both LP-

GI and LP-GI-2 fail to establish non-isomorphism if the given non-isomorphic pair

is strongly regular with the same parameters. The following quote from (Bab14),

sums up the relevance of strongly regular graphs in the graph isomorphism problem.

”Strongly regular graphs, while not believed to be Graph Isomorphism

(GI) complete, have long been recognized as hard cases for GI, and, in

this author’s view, present some of the core difficulties of the general GI

problem.”

The best known graph isomorphism algorithm for strongly regular graphs runs

in time that is slightly better than that for general graphs. In (Spi96), Spielman had

given an algorithm with time exponential in Õ(n1/3). This was recently improved by

Babai et. al. to exp(Õ(n1/5)) (BCS+13). Recall that the best algorithm for general

graphs runs in exp(Õ(n1/2)) time.

7.4 The Cai-Fürer-Immerman construction

CFI graphs are formed by replacing each vertex of degree k in some base graph

with the CFI gadget Fk. We will refer to the instance of Fk used for a vertex u by

u-gadget. We experiment with CFI graphs having 3-regular graphs as base graphs.

Figure 7.1(a) shows the gadget F3 where x1, y1, x2, y2, x3, y3 are the interface vertices

and the remaining vertices are internal vertices. Figure 7.1(b) shows the same gadget

by suppressing the internal vertices. An edge, {u, v} in the base graph is replaced by

a bond. Figure 7.2(a) shows a regular-bond between the u-gadget and the v-gadget

as a pair of edges {x′i, x′′j} and {y′i, y′′j } for some i, j. Here x′i, y
′
i are i-th interface

vertices of the u-gadget and x′′j , y
′′
j are j-th interface vertices of the v-gadget. Figure

7.2(b) shows a twisted bond. Here the edges are {x′i, y′′j } and {x′′j , y′i}.

7.4 The Cai-Fürer-Immerman construction 77

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

x1y1y1 x1

(a) (b)

y2x2 x3 y3

x2

y2 x3

y3

Figure 7.1: (a) CFI Gadget F3, (b) Symbolic F3

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��
�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
��
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

yj

xj

yj

xj

xi

yi yi

xi

(a) (b)

Figure 7.2: (a) A Regular Bond, (b) A Twisted Bond

Figure 7.3(a) shows the CFI graph with K4 as base graph. Figure 7.3(b) shows

the same graph with one of the bonds replaced by a twisted bond. Such pairs are

non-isomorphic. We use such pairs for experiments.

The linear program LP-GI (also LP-GI-2) have θ(n4) variables. Hence we are

required to keep n low in our experiments. We consider two variants of CFI graphs

having fewer vertices than the standard construction but with the inherent difficulty

preserved. Whenever the standard CFI graph turns out to be too large for our

experiments, we use these variants. These variants are formed by contracting edges

in the bonds as shown in figures 7.4(b) and 7.4(c). Observe that a p-vertex 3-regular

base graph results in a 10p-vertex standard CFI graph whereas these variants give

7p and 4p vertex graphs respectively.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
� �

�
�
�

��
��
��

��
��
�� ��

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
� �

�
�
�

��
��
��

��
��
�� ��

��
��

��
��
��

y

xy

x

y x

y

x

y

x

x

y

x

y

x

y x

x

y

x

y x

y
y

y

xy

x

y x

y

x

y

x

x

y

x

y

x

y x

x

y

x

y x

y
y

Twisted Bond

Figure 7.3: (a) CFI Graph based on K4, (b) Same graph but with one Twisted Bond

78 Experiments

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

(a) (b) (c)

Figure 7.4: Bonds: (a) Standard, (b) After one level of contraction, (c) After two

levels of contractions

7.5 Experiments with the Linear Program

In this section we give details of the software used and the settings under which the

experiments were carried out. Finally we present our results.

7.5.1 Experimental setup

We use the GNU Linear Programming Kit (GLPK) version 4.52 to solve LP-GI/LP-

GI-2 in our algorithm on graphs taken from the two families described above. The

linear program is specified using the GNU MathProg Modeling Language (GMPL).

The model file takes its data from a separate file. So for every pair of non-isomorphic

graphs we have a separate data file whereas the model file is common. The algorithm

is implemented in C language making use of the appropriate GLPK APIs. The

experiments are run on a desktop computer running ubuntu 14.04 and having 16

GiB RAM with Intel Core i7-4770 CPU @ 3.40GHz × 8 processors. However, no

parallelization is done. For the linear program, the default primal simplex algorithm

is used and maximum 100000 iterations are allowed. If a program fails to converge

in these many iterations, then it is taken to have a feasible solution.

The strongly regular graphs are taken from the collection available at (Spe). We

take 10 distinct pairs of non-isomorphic graphs for each (n, d, λ, µ). Wherever that

many are not available, all possible distinct pairs are taken. The largest graph used

has 50 vertices.

For CFI graphs used in the experiments, the base graph is always a three regular

graph. Apart from one graph, which is the 3-dimensional cube, all other base

graphs are 2k-cycles with chords. The vertices are labeled from 1 . . . 2k and an

edge is present between two vertices having labels u, v iff u − v ≡ ±1 (mod 2k) or

7.5 Experiments with the Linear Program 79

u− v ≡ k (mod 2k). We select those values of k for which the number of vertices in

at least one of the three variants stays within 56.

7.5.2 Results

Results of experiments with non-isomorphic pairs of strongly regular graphs appear

in table 7.1 whereas the results of experiments with non-isomorphic pairs of CFI

graphs are presented in table 7.2. In all the cases of strongly regular graphs we

observe that the feasible region is always zero-one reducible and in most cases Algo-

rithm 1 is faster with LP-GI-2 than with LP-GI in terms of the number of times the

respective linear program is solved. In the case of CFI graphs, only 3 out of 10 cases

were zero-one reducible (τ = 0)for LP-GI, but all the cases were zero-one reducible

for LP-GI-2. Note that the algorithm remains poly-time as long as τ = O(logn).

Table 7.1

Class Pair

No. of

iterations

of LP-GI

No. of

iterations

of LP-GI-2

Class Pair

No. of

iterations

of LP-GI

No. of

iterations

of LP-GI-2

(16,6,2,2) 1-2 96 96 (36,14,4,6) 1-4 504 504

(25,12,5,6) 1-2 408 300 (36,14,4,6) 1-5 504 504

(25,12,5,6) 1-3 408 300 (36,14,4,6) 2-3 504 504

(25,12,5,6) 1-4 408 300 (36,14,4,6) 2-4 504 504

(25,12,5,6) 1-5 516 300 (36,14,4,6) 2-5 504 504

(25,12,5,6) 2-3 408 300 (36,14,4,6) 3-4 504 504

(25,12,5,6) 2-4 408 300 (36,14,4,6) 3-5 504 504

(25,12,5,6) 2-5 516 300 (36,14,4,6) 4-5 504 504

(25,12,5,6) 3-4 408 300 (37,18,8,9) 1-2 666 666

(25,12,5,6) 3-5 516 300 (37,18,8,9) 1-3 666 666

(25,12,5,6) 4-5 516 300 (37,18,8,9) 1-4 666 666

(26,10,3,4) 1-2 260 260 (37,18,8,9) 1-5 666 666

(26,10,3,4) 1-3 260 260 (37,18,8,9) 2-3 666 666

(26,10,3,4) 1-4 260 260 (37,18,8,9) 2-4 666 666

(26,10,3,4) 1-5 260 260 (37,18,8,9) 2-5 666 666

(26,10,3,4) 2-3 260 260 (37,18,8,9) 3-4 666 666

(26,10,3,4) 2-4 260 260 (37,18,8,9) 3-5 666 666

(26,10,3,4) 2-5 260 260 (37,18,8,9) 4-5 666 666

(26,10,3,4) 3-4 260 260 (40,12,2,4) 1-2 480 480

(26,10,3,4) 3-5 260 260 (40,12,2,4) 1-3 480 480

(26,10,3,4) 4-5 270 260 (40,12,2,4) 1-4 480 480

(28,12,6,4) 1-2 336 336 (40,12,2,4) 1-5 480 480

(28,12,6,4) 1-3 336 336 (40,12,2,4) 2-3 516 480

(28,12,6,4) 1-4 336 336 (40,12,2,4) 2-4 552 480

(28,12,6,4) 2-3 336 336 (40,12,2,4) 2-5 552 480

(28,12,6,4) 2-4 336 336 (40,12,2,4) 3-4 552 480

Continued on next page

80 Experiments

Table 7.1 – continued from previous page

Class Pair

No. of

iterations

of LP-GI

No. of

iterations

of LP-GI-2

Class Pair

No. of

iterations

of LP-GI

No. of

iterations

of LP-GI-2

(28,12,6,4) 3-4 336 336 (40,12,2,4) 3-5 552 480

(29,14,6,7) 1-2 406 406 (40,12,2,4) 4-5 552 480

(29,14,6,7) 1-3 406 406 (45,12,3,3) 1-2 ∗ 540

(29,14,6,7) 1-4 406 406 (45,12,3,3) 1-3 ∗ 540

(29,14,6,7) 1-5 406 406 (45,12,3,3) 1-4 ∗ 540

(29,14,6,7) 2-3 406 406 (45,12,3,3) 1-5 ∗ 540

(29,14,6,7) 2-4 406 406 (45,12,3,3) 2-3 ∗ 540

(29,14,6,7) 2-5 406 406 (45,12,3,3) 2-4 ∗ 540

(29,14,6,7) 3-4 406 406 (45,12,3,3) 2-5 ∗ 540

(29,14,6,7) 3-5 406 406 (45,12,3,3) 3-4 ∗ 540

(29,14,6,7) 4-5 406 406 (45,12,3,3) 3-5 ∗ 540

(35,18,9,9) 1-2 630 630 (45,12,3,3) 4-5 ∗ 540

(35,18,9,9) 1-3 630 630 (50,21,8,9) 1-2 2331 1050

(35,18,9,9) 1-4 630 630 (50,21,8,9) 1-3 2331 1050

(35,18,9,9) 1-5 630 630 (50,21,8,9) 1-4 2331 1050

(35,18,9,9) 2-3 630 630 (50,21,8,9) 1-5 2331 1050

(35,18,9,9) 2-4 630 630 (50,21,8,9) 2-3 2331 1050

(35,18,9,9) 2-5 630 630 (50,21,8,9) 2-4 2331 1050

(35,18,9,9) 3-4 630 630 (50,21,8,9) 2-5 2331 1050

(35,18,9,9) 3-5 630 630 (50,21,8,9) 3-4 2331 1050

(35,18,9,9) 4-5 630 630 (50,21,8,9) 3-5 2331 1050

(36,14,4,6) 1-2 504 504 (50,21,8,9) 4-5 2331 1050

(36,14,4,6) 1-3 504 504

Table 7.1: Results of experiments with non-isomorphic strongly regular graphs from (Spe). In

LP-GI experiments 86 cases had zero-one reduction and 10 cases did not converge. In LP-GI-2 all

cases converged and all had zero-one reduction.

7.6 Experiments with the Lovász Theta function

7.6.1 Experimental setup

We use a public domain software (MPRW11; MPRW09) based on Matlab to solve

the semidefinite program for the Lovász Theta function. The experiments are run on

a shared Intel(R) Xeon(R) CPU E7450 @2.40GHz × 24 machine that runs Matlab

R2013a (8.1.0.604) on GNU/Linux OS.

We replace LP-GI in Algorithm 1 with SDP-LT but without the non-negativity

conditions 6.2b. This is so because the SDP solver does not allow the linear con-

7.6 Experiments with the Lovász Theta function 81

Base Graph
CFI

Construction
n

No. of

iterations

of LP-GI

No. of

iterations

of LP-GI-2

τ

(LP-GI)

τ

(LP-GI-2)

2× 2 cycle factor-4 16 528 144 0 0

2× 3 cycle factor-4 24 2736 408 0 0

2× 4 cycle factor-4 32 NA 2592 > 0 0

3-dim cube factor-4 32 NA 2592 > 0 0

2× 5 cycle factor-4 40 NA 8400 > 0 0

2× 2 cycle factor-10 40 9360 1440 0 0

2× 3 cycle factor-7 42 NA 1650 > 0 0

2× 6 cycle factor-4 48 NA 20256 > 0 0

2× 4 cycle factor-7 56 NA 13752 > 0 0

3-dim cube factor-7 56 NA 19184 > 0 0

Table 7.2: Results of experiments with non-isomorphic graph pairs that use the CFI construction.

In this case only three cases were zero-one reducible for LP-GI but in LP-GI-2 all cases were

zero-one reducible.

ditions to be specified as inequalities. However, since the diagonal vector of a PSD

matrix is always non-negative, we can create a larger matrix with the original matrix

as a principal sub-matrix, and with condition that all the diagonal entries outside

the principal sub-matrix are equal to the off-diagonal entries of the original matrix.

This would result in a variable matrix of dimension (N +
(
N
2

)
) × (N +

(
N
2

)
) if the

original matrix was of dimension N × N . This is not practical since our original

matrix is n2×n2 where n is the number of vertices in the input graphs. So for even

ten vertex graphs, the variable matrix of the SDP would blow up to 5050 × 5050.

Hence, we run the solver on the original variable matrix without the non-negativity

conditions and it turns out that we can still differentiate non-isomorphic strongly

regular graphs in polynomial time as summarized in table 7.3. However, the same

is not true for CFI graphs. Here, we do get an optimal solution but with the solu-

tion matrix having negative entries. Thus our experiments with the Lovász theta

function on CFI graphs are not interesting.

In these experiments we only set the diagonal entries of the first block to 1 one

at a time and run the SDP solver. In all the cases we found that ϑ was less than n

in all the n runs leading to the conclusion that the graphs are non-isomorphic.

82 Experiments

7.6.2 Results

Since SDP-LT is an optimization program, we treat a solution having value less

than n (its optimum value) as an infeasible solution. We observe than n iterations

of SDP-LT suffice in all the cases. The variables examined by algorithm 1 are

Y1j1j ∀j ∈ [n]. Moreover, each of these variables when set to 1 independently, also

leads to an infeasible solution. So the value that we report in column four of table 7.3

is maxj{ϑ|Y1j1j = 1}. First column of Table 7.3 identifies the strongly regular graph

family by giving its parameters. Graphs of each family are indexed as 1, 2, 3,

The second column identifies the two graphs on which the experiment was run.

7.7 Conclusion

In this chapter we presented our experience with a limited set of experimentation.

Due to the large sizes of the linear and semidefinite programs, we could only ex-

periment with graphs of modest sizes. However, the results are encouraging if not

conclusive. We found that for most of the graphs the feasible region of LP-GI for

non-isomorphic graphs is zero-one reducible while the feasible region of LP-GI-2 is

zero-one reducible for all the graphs that we experimented with. In cases where the

feasible region is zero-one reducible for both LP-GI and LP-GI-2, it turns out that

the number of iterations is less for LP-GI-2. This calls for a closer look at the fea-

sible region of LP-GI-2, which is contained inside that of LP-GI. In the case of CFI

graphs obtained by a factor-4 construction, observe that these graphs are regular

but not strongly regular. Hence from lemma 7.2.2 the feasible region of LP-GI-2

for such graphs is strictly contained inside that of LP-GI. This may account for the

better performance of LP-GI-2 for these cases as shown in table 7.2.

It must be noted here that the results of chapter 4 are independent of which of the

two linear programs we use. Moreover, for cases where the feasible region of LP-GI

is not zero-one reducible, either some of the supporting planes corresponding to the

minimal violated inequalities intersect the feasible region or none of the inequalities

described in section 4.2 are violated and the unknown facet planes of B[2] are not as

”nice”. But since the feasible region of LP-GI-2 for the same pair of graphs turns

out to be zero-one reducible, an alternative approach is desired that in addition to

looking at the violated inequalities also looks at the geometry of the feasible region.

7.7 Conclusion 83

Class Pair n ϑ Class Pair n ϑ Class Pair n ϑ

(16,6,2,2) 1-2 16 12.0 (29,14,6,7) 2-5 29 21.1 (37,18,8,9) 3-5 37 26.5

(25,12,5,6) 1-2 25 21.1 (29,14,6,7) 3-4 29 22.3 (37,18,8,9) 4-5 37 26.3

(25,12,5,6) 1-3 25 20.9 (29,14,6,7) 3-5 29 20.9 (40,12,2,4) 1-2 40 33.3

(25,12,5,6) 1-4 25 21.0 (29,14,6,7) 4-5 29 20.9 (40,12,2,4) 1-3 40 35.8

(25,12,5,6) 1-5 25 19.0 (35,18,9,9) 1-2 35 26.0 (40,12,2,4) 1-4 40 33.1

(25,12,5,6) 2-3 25 20.9 (35,18,9,9) 1-3 35 26.0 (40,12,2,4) 1-5 40 36.2

(25,12,5,6) 2-4 25 21.0 (35,18,9,9) 1-4 35 25.8 (40,12,2,4) 2-3 40 35.9

(25,12,5,6) 2-5 25 19.0 (35,18,9,9) 1-5 35 25.8 (40,12,2,4) 2-4 40 33.5

(25,12,5,6) 3-4 25 21.0 (35,18,9,9) 2-3 35 26.3 (40,12,2,4) 2-5 40 36.0

(25,12,5,6) 3-5 25 18.7 (35,18,9,9) 2-4 35 28.5 (40,12,2,4) 3-4 40 34.1

(25,12,5,6) 4-5 25 21.0 (35,18,9,9) 2-5 35 27.2 (40,12,2,4) 3-5 40 34.8

(26,10,3,4) 1-2 26 21.9 (35,18,9,9) 3-4 35 28.5 (40,12,2,4) 4-5 40 33.1

(26,10,3,4) 1-3 26 19.5 (35,18,9,9) 3-5 35 26.9 (45,12,3,3) 1-2 45 41.0

(26,10,3,4) 1-4 26 19.2 (35,18,9,9) 4-5 35 26.1 (45,12,3,3) 1-3 45 40.1

(26,10,3,4) 1-5 26 19.2 (36,14,4,6) 1-2 36 31.0 (45,12,3,3) 1-4 45 40.2

(26,10,3,4) 2-3 26 19.4 (36,14,4,6) 1-3 36 31.0 (45,12,3,3) 1-5 45 40.4

(26,10,3,4) 2-4 26 19.2 (36,14,4,6) 1-4 36 29.3 (45,12,3,3) 2-3 45 40.2

(26,10,3,4) 2-5 26 19.2 (36,14,4,6) 1-5 36 31.8 (45,12,3,3) 2-4 45 40.6

(26,10,3,4) 3-4 26 19.8 (36,14,4,6) 2-3 36 30.1 (45,12,3,3) 2-5 45 40.4

(26,10,3,4) 3-5 26 19.9 (36,14,4,6) 2-4 36 30.9 (45,12,3,3) 3-4 45 36.2

(26,10,3,4) 4-5 26 21.9 (36,14,4,6) 2-5 36 29.0 (45,12,3,3) 3-5 45 40.4

(28,12,6,4) 1-2 28 20.2 (36,14,4,6) 3-4 36 30.0 (45,12,3,3) 4-5 45 40.4

(28,12,6,4) 1-3 28 22.6 (36,14,4,6) 3-5 36 29.7 (50,21,8,9) 1-2 50 36.5

(28,12,6,4) 1-4 28 24.0 (36,14,4,6) 4-5 36 30.9 (50,21,8,9) 1-3 50 36.4

(28,12,6,4) 2-3 28 24.0 (37,18,8,9) 1-2 37 26.6 (50,21,8,9) 1-4 50 36.4

(28,12,6,4) 2-4 28 20.7 (37,18,8,9) 1-3 37 26.6 (50,21,8,9) 1-5 50 36.4

(28,12,6,4) 3-4 28 24.0 (37,18,8,9) 1-4 37 26.7 (50,21,8,9) 2-3 50 36.3

(29,14,6,7) 1-2 29 21.3 (37,18,8,9) 1-5 37 27.0 (50,21,8,9) 2-4 50 36.3

(29,14,6,7) 1-3 29 21.0 (37,18,8,9) 2-3 37 26.4 (50,21,8,9) 2-5 50 36.3

(29,14,6,7) 1-4 29 21.0 (37,18,8,9) 2-4 37 26.4 (50,21,8,9) 3-4 50 36.4

(29,14,6,7) 1-5 29 21.1 (37,18,8,9) 2-5 37 26.4 (50,21,8,9) 3-5 50 36.4

(29,14,6,7) 2-3 29 21.2 (37,18,8,9) 3-4 37 26.5 (50,21,8,9) 4-5 50 36.4

(29,14,6,7) 2-4 29 21.1

Table 7.3: Results of experiments with non-isomorphic strongly regular graphs from (Spe)

84 Experiments

Chapter 8

Conclusions

If an optimization problem can be modeled as an integer linear program (IP), then

our objective is to compute an optimal integer point solution. In general solution

of an IP requires exponentially large computation time. If the progam is relaxed to

the corresponding linear program (i.e., variables are allowed to be any real number

in the range [0, 1], then the feasible region, call it polyhedron P0, contains all the

integer solutions but all its extreme points may not be integer points. If the variables

in the IP are restricted to {0, 1}, then there is a way to tackle this problem. Let

Q denote the convex hull of all the integer points in P0. Sherali-Adams and some

other lift-and-project techniques allow us to iteratively enhance the constraints of

the linear program such that the polytopes of the successive iterations progressively

shrink to finally match Q. Actually, these successive linear programs are in larger

and larger dimensional spaces. Let P1, P2, . . . be the projections of the polytopes

of the feasible regions of the successive programs, into the original space. Then

P0 ⊇ P1 ⊇ P2 · · · ⊇ Pn = Q. Here n denotes the number of variables in the original

program. In this series, the complexity of optimizing a linear function over the k-th

program is O(nk).

This iterative refinement technique always requires more than a constant number

of iterations for NP-hard problems. But since GI is not known to be NP-hard,

researchers investigated this technique for GI hoping that it may take only a constant

number of iterations, say c, to get Pc = Q. That would have solved the GI problem

in nc time. Unfortunately it turns out that there are graph pairs for which the series

requires Ω(n) iterations.

In present work we studied the polytope, in the higher space, after one iteration

86 Conclusions

of Sherali-Adams series to find out if there are such features of this polytope which

may allow us to deduce isomorphism directly. We observed that for non-isomorphic

graphs G1, G2, the Tinhofer polytope is contained inside the Birkhoff polytope (the

convex hull of all possible integer solutions), whereas our polytope in the extended

space, PG1G2 , lies completely outside B[2] (the convex hull of all possible integer

solutions) and sandwiched between two polytopes, one of them being B[2]. The other

polytope, referred to as P in the thesis, can be thought of as the superset of PG1G2

for all G1, G2 for a given n. So we have for non-isomorphic G1, G2, PG1G2 ⊆ P\B[2].

The highlights of the thesis are essentially Chapters 3 and 4. In Chapter 3 we

identified two new classes of facets of the QAP polytope (referred to as B[2] in the

thesis) and gave a general inequality that includes all the known facets of B[2]. In

chapter 4 we defined a partial ordering on the exponential sized families of facets,

such that the minimal faces in the ordering are never violated by any point in

PG1G2 . This allowed us to introduce the concept of a minimal violated inequality, an

inequality X violated by some point p in PG1G2 such that all inequalities less than

X in the partial ordering, are satisified by p. Then we showed that if PG1G2 \ B[2]

is separated from B[2] by a single such inequality, then it is easy (means poly-time)

to determine if the given pair of graphs are isomorphic or not. Later in the same

chapter, we studied the general case when the region PG1G2 \B[2] is separated from

B[2] by k such inequalities. For this case, we gave an algorithm that takes roughly

O(nk) time to determine if the given pair of graphs are isomorphic or not. This shows

that the complexity of the graph isomorphism problem depends on the number of

facet planes of B[2] that separate PG1G2 \B[2] from B[2].

We conclude by describing a couple of open problems that we feel are worth

pursuing.

8.1 Open Problems

8.1.1 GI belongs to co-NP?

It is easy to see that GI belongs to the class NP. To verify that two graphs are iso-

morphic, all we need is a permutation σ and verification takes O(n2) time. However,

does a certificate exist that can be used to verify quickly (i.e., in poly-time) that the

8.1 Open Problems 87

given graphs are non-isomorphic, remains an open problem.

In this thesis we have seen that the feasible region of LP-GI, PG1G2 , is sandwiched

between the polytopes P and B[2], for non-isomorphic graphs. So there exists a

minimal set of facet defining inequalities of B[2] that separates PG1G2 from B[2].

Adding these to LP-GI would make it infeasible. So our certificate for a given pair

of non-isomorphic graphs G1, G2, is a description of these inequalities. Clearly, if we

can show that the resulting linear program can be solved in polynomial time by the

ellipsoid method, then we can establish that GI also belongs to the class co-NP.

8.1.2 Geometry of the Feasible Region

Consider the polytope P for a given n. In the thesis we have established that the

feasible region of LP-GI for graphs G1, G2 corresponds to a unique face of P (upto

taking complements of G1 and G2). So we can view our linear program as a function

mapping a pair of graphs to some face of P. So for any pair of graphs on n vertices

each, the problem of detecting if they are isomorphic reduces to that of identifying

if the corresponding face of P has an integral vertex. The question we are asking

is that does the geometry of a face of P having one or more integral vertices, differ

significantly from that of a face having only fractional vertices. More importantly

can we provide a characterization that can be efficiently checked. In the case of

rigid graphs, the geometry looks interesting. Here we need to determine if the

feasible face touches the polytope B[2] at exactly one point which is the vertex of

B[2] corresponding to the identity permutation.

88 Conclusions

Appendix A

Dimension of B[2]

A.1 Introduction

Symmetric vectorization is the row-major vectorization of a r×r symmetric matrix,

ignoring the lower triangular entries, resulting in a (r2 + r)/2 dimensional vector.

Define an (n4 + n2)/2× n! matrix A in which each column is the symmetric vector-

ization of a P
[2]
σ for all σ ∈ Sn.

We will consider the space R(n4+n2)/2 in which the axes of a basis are indexed

as (ab)(xy) where a, b, x, y ∈ [n], (ab) is an unordered pair, and (xy) is an ordered

pair if a 6= b otherwise it is also unordered. In case of unordered pairs we adopt the

convention that the first element is smaller. Therefore there are
(
n
2

)
.n2+n.(

(
n
2

)
+n) =

(n4 + n2)/2 axes. If v denotes the symmetric vectorization of some P
[2]
σ , then an

element in the upper triangular P
[2]
σ matrix, (P

[2]
σ)ax,by will be denoted by v(ab, xy)

in R(n4+n2)/2.

Define the n4+n2

2
× n4+n2

2
positive semidefinite matrix B = AAT . It is easy

to see that B(ij)(kl),(ab)(xy) is equal to the number of permutations, σ, such that

σ(min{i, j}) = k, σ(max{i, j}) = l,σ(min{a, b}) = x, σ(max{a, b}) = y. Clearly

possible values of entries in B are (n− 1)!, (n− 2)!, (n− 3)!, (n− 4)!, and 0.

In section A.2 we identify four eigenvalues of B, namely, (3/2)n!, n(n − 3)!,

(n−1)!/(n−3), 2n(n−2)!. We also determine 1,
(
n−1

2

)2
, (
(
n−1

2

)
−1)2, (n−1)2 linearly

independent eigenvectors for these eigenvalues respectively. Therefore rank(A) =

90 Dimension of B[2]

rank(B) ≥1+
(
n−1

2

)2
+ (
(
n−1

2

)
− 1)2 + (n− 1)2 = n!/(2(n− 4)!) + (n− 1)2 + 2.

The dimension of the linear space spanned by P
[2]
σ s is equal to the rank of A

which, in turn, is equal to the rank of B. So the dimension of the affine plane

spanned by P
[2]
σ s is rank(B)− 1.

In order to compute rank(B) we will first establish that B has no other eigenval-

ues and the dimensions of the eigenspaces are equal to (not greater than) 1,
(
n−1

2

)2
,

(
(
n−1

2

)
− 1)2, (n− 1)2 respectively.

Let D denote the diagonalized B matrix. Then the contribution of these eigen-

vectors to the trace of D is (3/2)n! × 1 + n(n − 3)! ×
(
n−1

2

)2
+ (n − 1)!/(n − 3) ×

(
(
n−1

2

)
− 1)2 + 2n(n − 2)! × (n − 1)2 =

(
n+1

2

)
n!. If the rank of D is larger than

n!/(2(n − 4)!) + (n − 1)2 + 2, then the trace must be strictly greater than
(
n+1

2

)
n!

because B is a positive semidefinite matrix.

Now we compute the trace of B, which is equal to that of D. The rank of

D is same as that of B so we can directly compute it. Let us define a notation

X(i1 → j1, i2 → j2, . . . , ik → jk) which denotes the total number of permutations in

which i1 maps to j1, i2 maps to j2, . . . , ik maps to jk. To determine the trace of B,

recall that B(ij)(kl),(ab)(xy) is equal to X(i→ k, j → l, a→ x, b→ y) where we assume

that i ≤ j and a ≤ b. Then the trace of B is equal to
∑

(ab)(xy) B(ab)(xy),(ab)(xy) =∑
a,xX(a→ x) +

∑
a<b,x 6=yX(a→ x, b→ y) = n2(n− 1)! + 2

(
n
2

)2
(n− 2)! =

(
n+1

2

)
n!.

This implies that rank(B) and hence the dimension of the linear space spanned by

P
[2]
σ s is n!/(2(n−4)!)+(n−1)2 +2. So the dimension of the affine space spanned by

P
[2]
σ s is one less, i.e., n!/(2(n−4)!)+(n−1)2 +1, which is nothing but the dimension

of B[2].

A.2 Eigenvalues and eigenvectors of the matrix of

permutation counts

A.2.1 First Eigenvalue

The first eigenvalue has only one eigenvector v which is given by v(aa)(xx) = n−1 for

all a, x and v(ab)(xy) = 1 for all a 6= b and all x 6= y. All other entries of v are zero.

Let B(ij)(kl) denote the row of B with index (ij)(kl). From the definition of B it is

A.2 Eigenvalues and eigenvectors of the matrix of permutation counts91

obvious that row vectors B(ij)(kl) are non-zero only if either i = j and k = l or i 6= j

and k 6= l. We will consider the inner product of B(ij)(kl) and v for these two cases.

Case (1): the details of various terms in B(ii)(kk) · v are as follows:

term index term value no. of terms total contribution

(ii)(kk) (n− 1)(n− 1)! 1 (n− 1)(n− 1)!

(ib)(ky) 1(n− 2)! (n− 1)2 (n− 1)2(n− 2)!

(aa)(xx) (n− 1)(n− 2)! (n− 1)2 (n− 1)2(n− 1)!

(ab)(xy) 1(n− 3)! 2
(
n−1

2

)2
2(n− 3)!

(
n−1

2

)2

So the inner product is the sum total of all the contributions which turns out to be

(n− 1)3n!/2 or v(ii)(kk)3n!/2.

Case (2): same details in B(ij)(kl) · v are as follows:

term index term value no. of terms total contribution

(ij)(kl) 1(n− 2)! 1 (n− 2)!

(ii)(kk) (n− 1)(n− 2)! 1 (n− 1)(n− 2)!

(jj)(ll) (n− 1)(n− 2)! 1 (n− 1)(n− 2)!

(ib)(ky) 1(n− 3)! (n− 2)2 (n− 2)2(n− 3)!

(jb)(ly) 1(n− 3)! (n− 2)2 (n− 2)2(n− 3)!

(aa)(xx) (n− 1)(n− 3)! (n− 2)2 (n− 1)(n− 2)2(n− 3)!

(ab)(xy) 1(n− 4)! 2
(
n−2

2

)2
2(n− 4)!

(
n−2

2

)2

In this case the inner product reduces to 3n!/2 which is same as v(ij)(kl)3n!/2. Hence

v is an eigenvector with eigenvalue 3n!/2.

A.2.2 Second Eigenvalue

Let G1 = (V1, E1, w1) be an undirected and G2 = (V2, E2, w2) be a directed edge-

weighted graphs, where V1 and V2 are subsets of [n]. Neither graph has loop-edges

and (x, y) ∈ E2 if and only if (y, x) ∈ E2. For each e1 = (ab) ∈ E1 and e2 = (xy) ∈
E2 we associate (e1, e2) with axis (ab, xy). Note (ab, xy) is different from (ab, yx).

We define a vector v(G1, G2) or simply v as follows: if (ab) ∈ E1 and (xy) ∈ E2

then v(ab)(xy) = w1(ab).w2(xy), otherwise v(ab)(xy) = 0. In this subsection and in

the following subsection we will show that v(G1, G2) are eigenvectors for various

instances of G1 and G2.

We will use following notations regarding G1 and G2. δ(a) will denote the edges

incident on vertex a ∈ V1 and N(a) will denote the neighbors of vertex a ∈ V1. N [a]

92 Dimension of B[2]

βα

1

a −a

a

1

γ δ

b

−b −b

−b

b

b

G1 G2

a = 1 or −1 b = 1 or −1

Figure A.1: Index Graphs for the Eigenvectors for Second Eigenvalue

will denote the closed neighborhood of a which is N(a)∪{a}. Graph G2 is directed,

so δ→(x) denotes the set of outgoing edges and δ←(x) denotes the incoming edges

incident on x ∈ V2. Similarly neighborhoods will be denoted by N→(x) and N←(x)

respectively.

In this subsection we assume following properties of the weight functions: (i)

all weights are 1 or −1; (ii)
∑

b∈N(a),a<bw1(a, b) −∑b∈N(a),a>bw1(a, b) = 0; (iii) w2

be such that w2(x, y) = −w2(y, x) for all (x, y) ∈ E2, and (iv)
∑

y∈N→[x] w2(x, y) =∑
y∈N←[x] w2(y, x) = 0 for each x ∈ V2.

Lemma A.2.1. The inner product B(ij)(kl) · v(G1, G2) is zero unless i, j ∈ V1 and

k, l ∈ V2.

Proof. If k, l both are out of V2 then for each (a, b) we will get contributions from

(x, y) and (y, x) which will cancel each other.

Next suppose k ∈ V2 and l /∈ V2. Here we consider two cases: i, j /∈ V1 and

i ∈ V1, j /∈ V1. In the first case for every non-zero term with index (a, b)(x, y), both

x and y will be different from k because k is the image of i so neither x nor y can

be image of i. Hence contributions from (x, y) and (y, x) will cancel each other. If

i ∈ V1 and a and b are different from i, then the situation will be same as above. On

the other hand if a = i, then we will get a total sum as
∑

y∈N→(k) w1(a, b)w2(x, y) if

a < b. In case a > b, then the total will be
∑

y∈N→(k) w1(a, b)w2(y, x). In both cases

the sum is zero.

A.2 Eigenvalues and eigenvectors of the matrix of permutation counts93

Next consider the case when i ∈ V1, j /∈ V1, k ∈ V2, l ∈ V2. If a, b are both

different from i, then contribution of (x, y) and of (y, x) will cancel each other. Now,

let a = i. In this case also we consider two sub-cases: (kl) /∈ E2 and (k, l) ∈ E2.

In the first sub case the contribution will be (n − 3)!
∑

y∈N→(k) w1(i, b)w2(k, y) or

(n − 3)!
∑

y∈N→(k) w1(i, b)w2(y, k) depending on i < b or i > b. In both cases the

sum is zero. In the second sub case case, assume i < b. Then the sum of the

contributions is
∑

y∈N→(k)\{l}w1(i, b)w2(k, y). This simplifies to −w1(i, b)w2(k, l). If

i > b, then we get −w1(i, b)w2(l, k) = w1(i, b)w2(k, l). In this case if we add up

the contributions for all b ∈ N(i), then we get (n− 3)!(
∑

b∈N(i):b<iw1(i, b)w2(k, l)−∑
b∈N(i):b>iw1(i, b)w2(k, l)). This reduces to zero because it is given that

∑
b∈N(i):b<i

w1(i, b) −∑b∈N(i):b>iw1(i, b) = 0.

Finally let i ∈ V1, j ∈ V1, k ∈ V2, l /∈ V2. If a 6= i, then contribution of

(x, y) will cancel that of (y, x). If a = i, then the contribution will be (n −

3)!
∑

y∈N→(k) w1(i, b)w2(k, y) or (n−3)!
∑

y∈N→(k) w1(i, b)w2(y, k) depending on i < b

or i > b. As observed earlier, in both cases the sum is zero.

Theorem A.2.2. For graphs G1 and G2 given in figure A.1 where α < β and γ < δ,

v(G1, G2) is an eigenvector with eigenvalue n(n− 3)!.

Proof. We have seen from Lemma A.2.1 that in the inner product B(ij)(kl) ·v the only

terms, (ab)(xy), that have non-zero value are those in which a, b ∈ V1 and x, y ∈ V2.

Without loss of generality assume that i < j. Denote the third vertex in V1 apart

from i, j by p and the third vertex in V2 apart from k, l by q.

The non-zero contribution is possible for three terms: (i) (ab)(xy) = (ij)(kl), (ii)

(ab)(xy) = (ip)(kq), (iii) (ab)(xy) = (jp)(lq). The values of these terms, whose sum

is the inner product, are as follows:

94 Dimension of B[2]

(i) (n− 2)!w1(ij)w2(kl);

(ii) if i < p, then (n− 3)!w1(ip)w2(kq), else (n− 3)!w1(ip)w2(qk);

(iii) if j < p, then (n− 3)!w1(jp)w2(lq), else (n− 3)!w1(jp)w2(ql).

Next, we consider the three cases one by one.

Case p < i < j: Recall that for V1 = {L,M,H} with L < M < H, properties

of w1 implies w1(LM) − w1(MH) = 0, w1(LM) + w1(LH) = 0, and w1(LH) +

w1(MH) = 0. So the total is (n − 2)!w1(ij)w2(kl) + (n − 3)!(w1(ip)w2(qk) −

w1(jp)w2(ql)). The w1-equations given above simplifies the expression to (n −

2)!w1(ij)w2(kl) + (n− 3)!(w1(ij)w2(kl)−w1(jp)(−w2(kl))). This expression simpli-

fies to n(n− 3)!w1(ij)w2(kl).

Case i < p < j: Here the total is (n − 2)!w1(ij)w2(kl) + (n − 3)!(w1(ip)w2(kq) +

w1(jp)w2(ql)) which is equal to (n− 2)!w1(ij)w2(kl) + (n− 3)!((−w1(ij))(−w2(kl))

+ (−w1(jp))(−w2(kl))). This also simplifies to n(n− 3)!w1(ij)w2(kl).

Case i < j < p: In this case total is (n− 2)!w1(ij)w2(kl) + (n− 3)!(w1(ip)w2(kq) +

w1(jp)w2(lq)) which is equal to (n−2)!w1(ij)w2(kl)+(n−3)!((−w1(ij))(−w2(kl))+

w1(jp)w2(kl)). This too simplifies to n(n− 3)!w1(ij)w2(kl).

Hence in each the inner-product is n(n − 3)!v[(ij)(kl)]. So B · v = n(n − 3)!v,

i.e., v is an eigenvector with eigenvalue n(n− 3)!.

Theorem A.2.3. The eigenspace of B corresponding to eigenvalue n(n − 3)! has

dimension at least
(
n−1

2

)2
.

Proof. We can define one vector v(G1, G2) for each choice of (α, β) and each choice

of (γ, δ) from 2, . . . , n. Let v and v′ be such a vector due to (α, β, γ, δ). Then

v(α,β),(γ,δ) is non-zero but the same component of all other eigenvectors of this type

is zero. Hence these vectors are independent.

A.2 Eigenvalues and eigenvectors of the matrix of permutation counts95

A.2.3 Third Eigenvalue

The eigenvectors are defined in the same way as in the previous section. In this

subsection we assume following properties of the weight-functions associated with

G1 and G2: (i) all weights are 1 or −1; (ii)
∑

b∈N(a) w1(a, b) = 0 for all a ∈ V1;

(iii) w2(x, y) = w2(y, x) for all (xy) ∈ E2; and (iv) for all x,
∑

y∈N→(x)w2(x, y) =∑
y∈N←(x)w2(y, x) = 0.

Lemma A.2.4. The inner product B(ij)(kl) · v(G1, G2) is non-zero only if (ij) ∈ E1

and (kl) ∈ E2.

Proof. Case k /∈ V2, l /∈ V2

Clearly if a ∈ {i, j} or b ∈ {i, j}, then B(ij)(kl)[(ab)(xy)] = 0. Otherwise
∑

(xy)∈E2

B(ij)(kl)[(ab)(xy)].v[(ab)(xy)] = (n−4)!
∑

x∈V2
∑

y∈N→(x) v[(ab)(xy)] = 0. So B(ij)(kl) ·

v = 0.

Case i /∈ V1, j /∈ V1

As in the above case B(ij)(kl) · v = 0.

Case i ∈ V1, j /∈ V1

Assume that i < j.

Sub-case x 6= k

First let a /∈ N [i].∑
b∈N [a]B(ij)(kl)[(ab)(xy)].v[(ab)(xy)] = (n− 4)!

∑
b∈N [a] v[(ab)(xy)] = 0.

Next a ∈ N(i).∑
a∈N(i)

∑
b∈N(a) B(ij)(kl)[(ab)(xy)].v[(ab)(xy)]

= (n− 4)!
∑

a∈N(i)(−v[(ai)(xy)]) = 0.

Sub-case x = k

∑
b∈N(i) B(ij)(kl)[(ab)(xy)].v[(ab)(ky)] = (n− 3)!

∑
b∈N(i) v[(ab)(ky)] = 0.

96 Dimension of B[2]

Similar argument works for j < i.

Case k ∈ V2, l /∈ V2 or k /∈ V2, l ∈ V2

This case is similar to the previous case.

At this stage in the proof we have shown that the inner product can be non-zero

only if i ∈ V1, j ∈ V1, k ∈ V2 and l ∈ V2. Now we will show that even in these cases

the inner product will be zero if (ij) /∈ E1 or (kl) ∈ E2.

For the remainder of the proof i ∈ V1, j ∈ V1, k ∈ V2 and l ∈ V2. For the

remaining three cases we assume that (i, j) /∈ E1.

Case a /∈ N [i] ∪N [j]

Let i < j.∑
b∈N(a) B(ij)(kl)[(ab)(xy)].v[(ab)(xy)] = (n− 4)!

∑
b∈N(a) v[(ab)(xy)] = 0.

Case a ∈ (N(i) ∪N(j)) \ {i, j}

Recall that i and j are not adjacent.∑
b∈N(a)\{i}B(ij)(kl)[(ab)(xy)].v[(ab)(xy)] is equal to (n− 4)!(−v[(ai)(xy)]) if a ∈

N(i) \N(j); (n− 4)!(−v[(aj)(xy)]) if a ∈ N(j) \N(i); and (n− 4)!(−v[(ai)(xy)]−

v[(aj)(xy)]) if a ∈ N(i) ∩N(j);

So
∑

a∈(N(i)∪N(j))\{i,j}
∑

b∈N(a)\{i}B(ij)(kl)[(ab)(xy)].v[(ab)(xy)] is equal to |N(i)∩

N(j)|(n− 4)!
∑

a∈N(i)(−v[(ai)(xy)]) + (n− 4)!
∑

a∈N(j)(−v[(aj)(xy)]) = 0.

Case a = i or a = j∑
b∈N(i) B(ij)(kl)[(ab)(xy)]v[(ab)(xy)] = (n− 3)!

∑
b∈N(i) v[(ib)(xy)] = 0. Similarly for

a = j.

From the last three cases we conclude that if (ij) is not an edge in G1 then

B(ij)(kl) · v(G1, G2) = 0. Similarly we can show that B(ij)(kl) · v(G1, G2) = 0 if (kl) is

not an edge in G2.

A.2 Eigenvalues and eigenvectors of the matrix of permutation counts97

+1

−1+1

−1

−1+1

−1 +1 −1 +1

−1+1

+1

+1

−1

−1

−1 +1

−1+1

−1 +1

−1−1 +1+1

−1 +1

1

1

2

3

β β

1 2

3 β

α23

1

β

2

1 3

3

1 2

β

2 α

β3

G’2 G’’2 G’’’2

G’’1G’1 G’’’1

Figure A.2: Index Graphs for the Eigenvectors for Third Eigenvalue

In this case G1 is any graph among G′1, G
′′
1, and G′′′1 and G2 is any graph among

G′2, G
′′
2, and G′′′2 . These graphs are given in figure A.2.

Theorem A.2.5. v(G1, G2) is an eigenvector of B for each G1 ∈ {G′1, G′′1, G′′′1 } and

G2 ∈ {G′2, G′′2, G′′′2 } with eigenvalue (n− 1)!/(n− 3).

Proof. From lemma A.2.4 we have seen that B(ij)(kl) · v(G1, G2) is zero if (ij) /∈ E1

or (kl) /∈ E2. For (ij) ∈ E1 and (kl) ∈ E2 there are 2 × 14 × 14 cases. Each of

these cases is equivalent to one of the following 15 cases: (1) B(12)(12) · v(G′1, G
′
2), (2)

B(12)(23) · v(G′1, G
′
2), (3) B(12)(12) · v(G′1, G

′′′
2), (4) B(12)(21) · v(G′1, G

′′′
2), (5) B(12)(23) ·

v(G′1, G
′′′
2), (6) B(12)(12) · v(G′′′1 , G

′
2), (7) B(12)(23) · v(G′′′1 , G

′
2), (8) B(12)(12) · v(G′′′1 , G

′′′
2),

(9) B(12)(21) · v(G′′′1 , G
′′′
2), (10) B(12)(23) · v(G′′′1 , G

′′′
2), (11) B(23)(12) · v(G′′′1 , G

′
2), (12)

B(23)(23) ·v(G′′′1 , G
′
2), (13) B(23)(12) ·v(G′′′1 , G

′′′
2), (14) B(23)(21) ·v(G′′′1 , G

′′′
2). (15) B(23)(23) ·

v(G′′′1 , G
′′′
2).

The theorem can be established by showingB(ij)(kl)·v = ((n−1)!/(n−3))v[(ij)(kl)]

for each of the cases enumerated above. We illustrate the same for cases 1 and 13.

Case (1): B(12)(12) · v[G′1, G
′
2] is equal to B(12)(12)[(12)(12)]v[(12)(12)] +B(12)(12)

98 Dimension of B[2]

[(1β)(1δ)]v[(1β)(1δ)] +B(12)(12)[(23)(23)]v[(23)(23)] +B(12)(12)[(3β)(3δ)]v[(3β)(3δ)]+

B(12)(12)[(3β)(δ3)]. This is equal to (n−2)!+2(n−3)!+2(n−4)! = (n−1)!/(n−3).

Since v[(12)(12) = 1, it is also equal to ((n− 1)!/(n− 3))v[(12)(12)].

Case (10): B(12)(23) · v(G′′′1 , G
′′′
2) is equal to B(12),(23)[(12), (23)]v[(12), (23)] +

B(12),(23)[(13), (21)]v[(13), (21)] +B(12),(23)[(1α), (21)]v[(1α), (21)]

+B(12),(23)[(1β), (21)]v[(1β), (21)] +B(12),(23)[(23), (31)]v[(23), (31)]

+B(12),(23)[(αβ), (1γ)]v[(αβ), (1γ)] +B(12),(23)[(αβ), (γ1)]v[(αβ), (γ1)]

+B(12),(23)[(αβ), (1δ)]v[(αβ), (1δ)] +B(12),(23)[(αβ), (δ1)]v[(αβ), (δ1)]

+B(12),(23)[(αβ), (γδ)]v[(αβ), (γδ)]+B(12),(23)[(αβ), (δγ)]v[(αβ), (δγ)] This expression

is equal to −(n − 2)! − 2(n − 3)! − 2(n − 4)! which is equal to −(n − 1)!/(n − 3).

Since v[(12)(23)] = −1, B(12)(23) · v(G′′′1 , G
′′′
2) = ((n− 1)!/(n− 3))v[(12)(23)].

Theorem A.2.6. The dimension of the eigenspace of eigenvalue (n − 1)!/(n − 3)

is (
(
n−1

2

)
− 1)2.

Proof. Each vector described above has an entry which is non-zero while the same

entry is zero among the other vectors. In v[G′1(β), G′2(δ)] such an entry is (3β)(3δ);

in v[G′1(β), G′′2(δ)] such an entry is (3β)(2δ);in v[G′1(β), G′′′2 (γδ)] such an entry is

(3β)(γδ) so on. Hence all these vectors are linearly independent. Therefore the

dimension of this eigenspace is at least equal to the number of these vectors. The

number of instances G′1 are n − 3, that of G′′1 is n − 3 and that of G′′′1 is
(
n−3

2

)
. So

the total number of instances of G1 is
(
n−1

2

)
− 1. The number of instances of G2 is

the same. Hence the total number of vectors is (
(
n−1

2

)
− 1)2.

A.2 Eigenvalues and eigenvectors of the matrix of permutation counts99

A.2.4 Fourth Eigenvalue

To define the eigenvectors for this eigenvalue consider three n×nmatrices: A1, A2, A3,

given below. The symmetric vectorization v(E) of block-matrix E will be shown to

an eigenvector of B with eigenvalue 2n(n− 2)!.

A1 =


1− (n− 1)(n− 2) 0 . . . 0 0 0

0 n− 1 . . . 0 0 0

.

0 0 . . . 0 n− 1 0

0 0 . . . 0 0 −1



A2 =



0 −n+ 2 + 1
n−2

−n+ 2 + 1
n−2

. . . −n+ 2 + 1
n−2

−n+ 2
1

n−2
0 n−1

n−2
. . . n−1

n−2
1

1
n−2

n−1
n−2

0 . . . n−1
n−2

1

.
1

n−2
n−1
n−2

n−1
n−2

. . . 0 1

−1 −1 −1 . . . −1 0



A3 =



0 −n+ 2 −n+ 2 −n+ 2 . . . −n+ 2 −n+ 3

n− 2 0 0 0 . . . 0 1

n− 2 0 0 0 . . . 0 1

. .

n− 2 0 0 0 . . . 0 1

n− 3 −1 −1 −1 . . . −1 0



E =


A1 A3 A2 . . . A2

AT3 −A1 −A2 . . . −A2

AT2 −AT2 0 . . . 0

.

AT2 −AT2 0 . . . 0


Let X(a1 → a′1, a2 → a′2, a3 → a′3, a4 → a′4) denote the number of permutations

in which ai maps to a′i for i = 1, 2, 3, 4. Since matrix A1 is diagonal, (B · v)ik,jl

can be expressed as operations on the n × n blocks as follows: (B · v)ik,jl =∑
pr,qsBik,jl(pr, qs)v(pr, qs) =

∑
q,sA1(q, s).X(i → j, k → l, 1 → q, 1 → s) −

100 Dimension of B[2]

∑
q,sA1(q, s).X(i → j, k → l, 2 → q, 2 → s) +

∑
q,sA3(q, s).X(i → j, k → l, 1 → q,

2 → s) +
∑

r>2

∑
q,sA2(q, s).X(i → j, k → l, 1 → q, r → s) −∑r>2

∑
q,sA2(q, s).

X(i → j, k → l, 2 → q, r → s). Denote this expression by C(ik)jl. Now we will

evaluate the value of this expression for various values of (ik, jl).

Case: ik = 11. In this case we need to show that C(11) = 2n(n− 2)!A1.

For jl = 11 we have C(11)11 = (n− 1)!(1− (n− 1)(n− 2))− (−1 + (n− 1)(n−
2))(n− 2)! + (−(n− 2)2− (n− 3))(n− 2)!(n− 2)((n− 2)((−n+ 2 + (1/(n− 2))))−
(n − 2))(n − 2)! − (n − 2)2(1 + (n − 3)(n − 1)/(n − 2))(n − 3)!. This expression

simplifies to 2n(n− 2)!(1− (n− 1)(n− 2)) = 2n(n− 2)!A1(1, 1).

For jl = 22 we have C(11)22 = (n−1)(n−1)!−((1−(n−1)(n−2))+(n−1)(n−
3)−1)(n−2)!+((n−2)+1)(n−2)!+(n−2)(1/(n−2)+(n−3)(n−1)/(n−2)+1)(n−
2)!−(n−2)((n−3)(−n+2−1/(n−2))−(n−2)+(1/(n−2)+(n−4)(n−1)/(n−2)+

1)(n− 3)− 1)(n− 3)!. It simplifies to 2n! = (n− 1).2n(n− 2)! = 2n(n− 2)!.A1(2, 2).

For jl = tt where 2 ≤ t ≤ n − 1 we get the similar expression, i.e., 2n(n −
2)!.A1(t, t).

In case jl = nn, C(11)nn = −(n−1)!−(1−(n−1)(n−2)+(n−1)(n−2))(n−2)!+

((n−3)−(n−2))(n−2)!−(n−2)(n−2)!−(n−2)((−n+2+(1/(n−2))(n−2)+((1/(n−
2)) + ((n− 3)(n− 1)/(n− 2))(n− 2))(n− 3)! = −2n(n− 2)! = 2n(n− 2)!A1(n, n).

In every case where j 6= l, X(1→ j, 1→ l, ∗, ∗) = 0. So C(11)jl = 0 for all j 6= l.

Thus C(11) = 2n(n− 2)!A1.

Case: ik = 22. In this case we have to show that C(22) = 2n(n− 2)!(−A1).

We observe following equalities. A1(q, s).X(2 → j, 2 → l, 2 → q, 2 → s) =

A1(q, s).X(1 → j, 1 → l, 1 → q, 1 → s), A1(q, s).X(2 → j, 2 → l, 1 → q, 1 → s) =

A1(q, s).X(1 → j, 1 → l, 2 → q, 2 → s), A2(q, s).X(2 → j, 2 → l, 1 → q, r → s) =

A2(q, s).X(1 → j, 1 → l, 2 → q, r → s), A2(q, s).X(2 → j, 2 → l, 2 → q, r → s) =

A2(q, s).X(1 → j, 1 → l, 1 → q, r → s). Further, A3(q, s).X(2 → j, 2 → l, 1 →
q, 2 → s) = A3(q, s).X(1 → j, 1 → l, 2 → q, 1 → s) = A3(s, q).X(1 → j, 1 → l, 1 →
q, 2→ s) = −A3(q, s).X(1→ j, 1→ l, 1→ q, 2→ s).

Substituting these values in the expression of C(22) we get C(22) = −C(11) =

2n(n− 2)!(−A1).

Case ik = 12. In this case we have to show that C(12) = 2n(n− 2)!A3.

For jl = 12, C(12)12 = (1−(n−1)(n−2))(n−2)!−(n−1)(n−2)!+((n−3)(−n+

2+(1/(n−2)))−(n−2))(n−2)(n−3)!−(1+(n−1)(n−3)/(n−2))(n−2)(n−3)! =

−2(n− 2)n(n− 2)! = 2n(n− 2)!A3(1, 2).

A.2 Eigenvalues and eigenvectors of the matrix of permutation counts101

For jl = 21, C(12)21 = (n− 1)(n− 2)!− (1− (n− 1)(n− 2)) + (n− 2)(n− 2)! +

(n− 2)(1 + (n− 3)(n− 1)/(n− 2))(n− 3)!− (n− 2)((n− 3)(−n+ 2 + 1/(n− 2))−
(n− 2))(n− 3)! = (n− 2)!(2n2 − 4n) = 2n(n− 2)!A3(2, 1).

Next for jl = 1n, C(12)1n = (1− (n− 1)(n− 2))(n− 2)! + (n− 2)!− (n− 3)(n−
2)!− (n−2)2(n−2− (1/(n−2)))(n−3)! = −2n(n−3)(n−2)! = 2n(n−2)!A3(1, n).

Expression for jl = n1, C(12)n1 = −1.(n−2)!−(1−(n−1)−(n−2))(n−2)!+(n−
3)(n−2)!+0+(n−2)2(n−2−1/(n−2))(n−3)! = 2n(n−3)(n−2)! = 2n(n−2)!A3(n, 1).

Expression for jl = 2n, C(12)2n = (n−1)(n−2)!+(n−2)!+(n−2)!+((n−1)(n−
3)/(n−2)+1/(n−2))(n−2)(n−3)!+(n−2)(n−3)! = 2n(n−2)! = 2n(n−2)!A3(2, n).

Similarly it can be seen that C(12)rn = 2n(n− 2)!A3(r, n) for every 2 < r < n− 1.

Expression for jl = n2, C(12)n2 = −(n − 2)! − (n − 1)(n − 2)! − (n − 2)! +

(−1)(n− 2)(n− 3)!− (n− 2)(1/(n− 2) + (n− 3)(n− 1)/(n− 2))(n− 3)! = −2n(n−
2)! = (−1)A3(n, 2). Similarly it can be shown that C(12)n,r = (−1)A3(n, r) for

1 < r < n− 1.

For j ∈ {2, 3, . . . , n − 1} and l ∈ {2, 3, . . . , n − 1}, C(12)jl = (n − 1)(n − 2)! −
(n− 1)(n− 2)! + 0 + (1 + 1/(n− 2) + (n− 1)(n− 4)/(n− 2))(n− 2)(n− 3)!− (1 +

1/(n− 2) + (n− 1)(n− 4)/(n− 2))(n− 2)(n− 3)! = 0.

Putting these together we see that C(12) = 2n(n− 2)!A3.

Case ik = 1k with k ≥ 3: Next we will show that C(1k) = 2n(n − 2)!A2, for

k ≥ 3. We will show the details of the computation of C(1, 3).

For jl = 12, C(13)12 = (1−(n−1)(n−2))(n−2)!−((n−3)(n−1)−1)(n−3)!−((n−
3)(n−2)+(n−3))(n−3)!−(n−2−1/(n−2))(n−2)!+(n−3)(−(n−2−1/(n−2))(n−
3)−(n−2))(n−3)!−((n−3)(n−1)/(n−2))(n−3)!−(n−3)((n−3)(n−4)(n−1)/(n−
2)+(n−3))(n−4)!. It simplifies to −(n−2)!(2n2−7n+5)−(n−3)!(3n2−13n+10)

which is equal to −(n− 2− 1/(n− 2))2n(n− 2)! = 2n(n− 2)!A2(1, 2). Similarly we

can show C(13)1l = 2n(n− 2)!A2(1, l), for all 2 ≤ l ≤ n− 1.

For jl = 21, C(13)21 = (n− 1)(n− 2)!− ((n− 3)(n− 1)− 1)(n− 3)! + (n− 3)! +

(1/(n−2))(n−2)!+(n−3)(1+(n−3)(n−1)/(n−2))(n−3)!−((n−3)/(n−2)−1)(n−
3)!− (n−3)(n−3+(n−3)(n−4)(n−1)/(n−2))(n−4)! = (1/(n−2)).2n(n−2)! =

2n(n − 2)!A2(2, 1). Similarly we can show C(13)j1 = 2n(n − 2)!A2(j, 1), for all

2 ≤ j ≤ n− 1.

For jl = 1n, C(13)1n = (n− 2)!− (n− 2)(n− 1)!− (n− 1)!− 2(n− 2)(n− 2)!−
(n− 2)(n− 3)(n− 2)! + (n− 3)(n− 3)!− (n− 2)(n− 3)!− (n− 1)(n− 3)(n− 3)! =

−2(n− 2)n(n− 2)! = 2n(n− 2)!A2(1, n).

102 Dimension of B[2]

For jl = n1, C(13)n1 = −(n−2)!− (n−2)(n−1)(n−3)!− (n−2)(n−3)!− (n−
2)! + 0− 1.(n− 3)!− (n− 3)(n− 2)((n− 3)((n− 1)/(n− 2))(n− 4)! = −2n(n− 2)! =

2n(n− 2)!A2(n, 1).

For jl = 2n, C(13)2n = (n−1)(n−2)!− (1− (n−1)(n−2) + (n−3)(n−1))(n−
3)! + (n − 2)(n − 3)! + (n − 2)! + (n − 3)(1/(n − 2) + (n − 3)(n − 1)/(n − 2))(n −
3)! − ((−1)(n − 3)! − (n − 3)((n − 3)/(n − 2) − (n − 3)(n − 2 − 1/(n − 2)) + (n −
3)(n− 4)(n− 1)/(n− 2))(n− 3)! = 1.2n(n− 2)! = A2(2n).2n(n− 2)!. Similarly we

can show C(13)jn = 2n(n− 2)!A2(j, n), for all 2 ≤ j ≤ n− 1.

For jl = n2, C(13)n2 = −(n− 2)!− (−1− (n− 1)(n− 2) + (n− 1(n− 3)))(n−
3)! + (n− 3− (n− 3))(n− 3)! + 0− (n− 3)(n− 3)!− (−(n− 2) + 1/(n− 2) + (n−
3)(n− 1)/(n− 2))(n− 3)! = 0 = 2n(n− 2)!.A2(n, 2). Similarly it can be shown that

C(13)nl = 0 = 2n(n− 2)!.A2(n, l) for all 2 ≤ l ≤ n− 1.

For jl = 23, C(13)23 = (n− 1)(n− 2)!− (1− (n− 1)(n− 2)− 1 + (n− 1)(n−
4))(n− 3)!− (n− 2 + 1)(n− 3)! + ((n− 1)/(n− 2))(n− 2)! + (n− 3)((n− 3)(n−
1)/(n− 2))(n− 3)!− ((n− 4)(n− 1)/(n− 2)− (n− 2) + 1/(n− 2))(n− 3)!− ((n−
4)/(n− 2)− 1 + (n− 4)− (n− 2)− (n− 4)(n− 2− 1/(n− 2)) + (n− 4)(n− 5)(n−
1)/(n− 2))(n− 3)! = 2n(n− 1)(n− 2)!/(n− 2) = A2(2, 3).2n(n− 2)!. Similarly we

can show that C(13)jl = 2n(n− 2)!A2(j, l), for all 2 ≤ j, l ≤ n− 1 and j 6= l.

For jl = n2, C(13)n2 = (−1)(n−2)!−((n−1)(n−3)−(n−1)(n−2)+1)(n−3)!+

0+0−(n−3).(n−3)!−((n−3)(n−1)/(n−2)−(n−2)+1/(n−2))(n−3)!−(−(n−
3)(n− 2− 1/(n− 2)) + (n− 3)/(n− 2) + (n− 3)(n− 4)(n− 1)/(n− 2))(n− 3)! = 0.

Similarly we can show C(13)nl = 2n(n− 2)!A2(n, l), for all 2 ≤ l ≤ n− 1.

For jl = jj, trivially C(13)jj = 0. Hence C(13)jj = 2n(n− 2)!.A2(j, j).

These observations conclude that C(13) = 2n(n−2)!A2. Similarly it can be seen

that C(1, k) = 2n(n− 2)!A2 for all k ≥ 3.

Case ik = 2k for k ≥ 3: Now we will show that C(2, k) = 2n(n − 2)!(−A2) for

all k ≥ 3. We will show the details of the computation of C(2, 3).

C(2, 3)jl =
∑

q,sA1(q, s).X(2 → j, 3 → l, 1 → q, 1 → s) −∑q,sA1(q, s).X(2 →
j, 3 → l, 2 → q, 2 → s) +

∑
q,sA3(q, s).X(2 → j, 3 → l, 1 → q, 2 → s) +

∑
r>2

∑
q,s

A2(q, s).X(2 → j, 3 → l, 1 → q, r → s) −∑r>2

∑
q,sA2(q, s).X(2 → j, 3 → l, 2 →

q, r → s).

We will show that the right hand side is equal to −C(2, 3)jl. We state the

following facts.

A1(q, s).X(2 → j, 3 → l, 1 → q, 1 → s) = A1(q, s).X(1 → j, 3 → l, 2 → q, 2 →

A.2 Eigenvalues and eigenvectors of the matrix of permutation counts103

s). A1(q, s).X(2 → j, 3 → l, 2 → q, 2 → s) = A1(q, s).X(1 → j, 3 → l, 1 →
q, 1 → s)a. A3(q, s).X(2 → j, 3 → l, 1 → q, 2 → s)A3(q, s).X(1 → j, 3 → l, 2 →
q, 1 → s) = A3(s, q).X(1 → j, 3 → l, 1 → q, 2 → s) = −A3(q, s).X(1 → j, 3 →
l, 1 → q, 2 → s). The last equation is due to the fact that A3 is anti-symmetric.

A2(q, s).X(2→ j, 3→ l, 1→ q, r → s) = A2(q, s).X(1→ j, 3→ l, 2→ q, r → s) for

all r > 2. A2(q, s).X(2 → j, 3 → l, 2 → q, r → s) = A2(q, s).X(1 → j, 3 → l, 1 →
q, r → s) for all r > 2.

Plugging the right hand side expressions into the expression of C(2, 3)jl we get

C(2, 3)jl = −C(1, 3)jl. Hence C(2, 3) = −A2.2.n.(n − 2)!. Similarly we can show

that C(2, k) = −A2.2n(n− 2)! for all k ≥ 3.

Case i > 2, k > 2: Finally we have to show that C(ik) = 0 for 2 < i and 2 < k.

If i and k are both greater than 2, we have A1(q, s).X(i→ j, k → l, 1→ q, 1→
s) = A1(q, s).X(i → j, k → 2, 1 → q, 2 → s) and A2(q, s).X(i → j, k → l, 1 →
q, r → s) = A2(q, s).X(i → j, k → l, 2 → q, r → s). Further, A3 is anti-symmetric

so
∑

q,sA3(q, s).X(i → j, k → l, 1 → q, 2 → s) =
∑

q<s(A3(q, s) + A3(s, q)).X(i →
j, k → l, 1→ q, 2→ s) = 0. Thus C(i, k) = 0 = 0.2n(n− 2)! for all i > 2, k > 2.

All these results combine to show that v(E) is an eigenvector of B with eigenvalue

2n(n− 2)!.

To see that there are several linearly independent vectors which are eigen vectors

for the same eigenvalue consider the following modifications in E. Begin with the

observation that in blocks A1, A2, and A3 indices 1 and n have special role, while

all other indices are equivalent. That is, for each k ∈ {1, 2, 3}, Ak(q, s) = Ak(q
′, s′)

where q′ = q if q ∈ {1, n} otherwise q′ is any member of {2, . . . , n − 1} and s′ = s

if s ∈ {1, n} otherwise s′ is any member of {2, . . . , n − 1}. So defining A′1, A
′
2

and A′3 by exchanging the role of n by any other index α in {2, . . . , n} we again

get an eigenvector with the same eigenvalue. These n − 1 eigenvectors are linearly

independent because in each vector the entry B3(2, n′) is non-zero in exactly one

vector, for each n′ ∈ {2, . . . , n}.

There are additional n− 2 similar sets of eigenvectors. Exchange the role of 2 in

E by any index β in the range 2, 3, . . . , n−1, see matrix E ′. Once again we get a set

of n− 1 eigenvectors. Observe that among the diagonal blocks 22 to nn exactly one

block is non-zero in each set. Hence these (n− 1)2 vectors are linearly independent.

104 Dimension of B[2]

E ′ =



A1 A2 . . . A2 A3 A2 . . . A2

AT2 0 . . . 0 −AT2 0 . . . 0

. .

AT2 0 . . . 0 −AT2 0 . . . 0

AT3 −A2 . . . −A2 −A1 −A2 . . . −A2

AT2 0 . . . 0 −AT2 0 . . . 0

. .

AT2 0 . . . 0 −AT2 0 . . . 0


Theorem A.2.7. The dimension of the eigenspace of B corresponding to eigenvalue

2n(n− 2)! is at least (n− 1)2.

References

[ABB+73] A. P. Ambler, H. G. Barrow, C. M. Brown, R. H. Burstall, and R. J.

Popplestone. A versatile computer-controlled assembly system. In Pro-

ceedings of the 3rd international joint conference on Artificial intelli-

gence, pages 298–307, 1973. 1

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design

and Analysis of Computer Algorithms. Addison-Wesley, 1974. 1, 5

[AM12] Albert Atserias and Elitza N. Maneva. Sherali-adams relaxations and

indistinguishability in counting logics. In Innovations in Theoretical

Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012,

pages 367–379, 2012. 9, 10

[AT05] Vikraman Arvind and Jacobo Torán. Isomorphism testing: Perspective

and open problems. Bulletin of the EATCS, 86:66–84, 2005. 1

[Bab79] László Babai. Monte-carlo algorithms in graph isomorphism testing.

1979. 6

[Bab80] László Babai. On the complexity of canonical labeling of strongly reg-

ular graphs. SIAM J. Comput., 9(1):212–216, 1980. 6

[Bab81] László Babai. Moderately exponential bound for graph isomorphism.

In Fundamentals of Computation Theory, FCT’81, Proceedings of the

1981 International FCT-Conference, Szeged, Hungary, August 24-28,

1981, pages 34–50, 1981. 1, 7

106 REFERENCES

[Bab14] László Babai. On the automorphism groups of strongly regular graphs I.

In Innovations in Theoretical Computer Science, ITCS’14, Princeton,

NJ, USA, January 12-14, 2014, pages 359–368, 2014. 76

[BCS+13] László Babai, Xi Chen, Xiaorui Sun, Shang-Hua Teng, and John

Wilmes. Faster canonical forms for strongly regular graphs. In 54th

Annual IEEE Symposium on Foundations of Computer Science, FOCS

2013, 26-29 October, 2013, Berkeley, CA, USA, pages 157–166, 2013.

6, 76

[BGM82] László Babai, D. Yu. Grigoryev, and David M. Mount. Isomorphism of

graphs with bounded eigenvalue multiplicity. In STOC, pages 310–324,

1982. 2, 7

[BHZ87] Ravi B. Boppana, Johan H̊astad, and Stathis Zachos. Does co-np have

short interactive proofs? Inf. Process. Lett., 25(2):127–132, 1987. 1

[BK79] László Babai and Ludek Kucera. Canonical labelling of graphs in linear

average time. In FOCS, pages 39–46, 1979. 3

[BL83] László Babai and Eugene M. Luks. Canonical labeling of graphs. In

STOC, pages 171–183, 1983. 1, 7

[Bod90] Hans L. Bodlaender. Polynomial algorithms for graph isomorphism and

chromatic index on partial k-trees. J. Algorithms, 11(4):631–643, 1990.

2

[Bol82] Béla Bollobás. Distinguishing vertices of random graphs. Annals of

Discrete Mathematics, 13:33–50, 1982. 4

[CB81] Charles J. Colbourn and Kellogg S. Booth. Linear time automorphism

algorithms for trees, interval graphs, and planar graphs. SIAM J. Com-

put., 10(1):203–225, 1981. 1

[CFI92] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound

on the number of variables for graph identifications. Combinatorica,

12(4):389–410, 1992. 4, 73

REFERENCES 107

[CM78] D.G. Corneil and R.A. Mathon. Algorithmic techniques for the gener-

ation and analysis of strongly regular graphs and other combinatorial

configurations. Annals of Discrete Mathematics, 2:1–32, 1978. 1

[dKP02] E. de Klerk and D. V. Pasechnik. Approximation of the stability number

of a graph via copositive programming. SIAM Journal on Optimization,

12(4):875–892, 2002. 60, 62

[FHL80] Merrick L. Furst, John E. Hopcroft, and Eugene M. Luks. Polynomial-

time algorithms for permutation groups. In 21st Annual Symposium on

Foundations of Computer Science, Syracuse, New York, USA, 13-15

October 1980, pages 36–41, 1980. 6

[FM80] I. S. Filotti and Jack N. Mayer. A polynomial-time algorithm for deter-

mining the isomorphism of graphs of fixed genus (working paper). In

STOC, pages 236–243, 1980. 2, 5

[FMR79] I. S. Filotti, Gary L. Miller, and John H. Reif. On determining the

genus of a graph in o(vˆo(g)) steps. In Proceedings of the 11h Annual

ACM Symposium on Theory of Computing, April 30 - May 2, 1979,

Atlanta, Georgia, USA, pages 27–37, 1979. 5

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. 1

[GM12] Martin Grohe and Dániel Marx. Structure theorem and isomorphism

test for graphs with excluded topological subgraphs. In Proceedings of

the 44th Symposium on Theory of Computing Conference, STOC 2012,

New York, NY, USA, May 19 - 22, 2012, pages 173–192, 2012. 2

[GO12] Martin Grohe and Martin Otto. Pebble games and linear equations. In

Computer Science Logic (CSL’12) - 26th International Workshop/21st

Annual Conference of the EACSL, CSL 2012, September 3-6, 2012,

Fontainebleau, France, pages 289–304, 2012. 10

[Gro98] Martin Grohe. Fixed-point logics on planar graphs. In Thirteenth An-

nual IEEE Symposium on Logic in Computer Science, Indianapolis,

Indiana, USA, June 21-24, 1998, pages 6–15, 1998. 4

108 REFERENCES

[Gro11] Martin Grohe. From polynomial time queries to graph structure theory.

Commun. ACM, 54(6):104–112, 2011. 4

[HL83] John Hannah and Thomas J. Laffey. Nonnegative factorization of com-

pletely positive matrices. Linear Algebra and its Applications, 55(0):1

– 9, 1983. 59

[HT72] John E. Hopcroft and Robert Endre Tarjan. Isomorphism of planar

graphs. In Proceedings of a symposium on the Complexity of Computer

Computations, held March 20-22, 1972, at the IBM Thomas J. Watson

Research Center, Yorktown Heights, New York., pages 131–152, 1972.

1, 4

[HW74] John E. Hopcroft and J. K. Wong. Linear time algorithm for isomor-

phism of planar graphs (preliminary report). In STOC, pages 172–184,

1974. 1, 5

[IL90] Neil Immerman and Eric Lander. Describing graphs: a first-order ap-

proach to graph canonization. Complexity theory retrospective, pages

59–81, 1990. 3

[JK97] Michael Jünger and Volker Kaibel. Box-inequalities for quadratic as-

signment polytopes. In Mathematical Programming, pages 175–197,

1997. 23, 70

[Jr.65] E. H. Sussenguth Jr. A graph-theoretic algorithm for matching chemical

structures. J. Chem. Doc., 5:36–43, 1965. 1

[Kai97] V. Kaibel. Polyhedral Combinatorics of the Quadratic Assignment Prob-

lem. PhD thesis, Faculty of Mathematics and Natural Sciences, Uni-

versity of Cologne, 1997. 11, 15, 23, 24, 25, 70

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Pro-

ceedings of a symposium on the Complexity of Computer Computations,

held March 20-22, 1972, at the IBM Thomas J. Watson Research Cen-

ter, Yorktown Heights, New York., pages 85–103, 1972. 1

REFERENCES 109

[KKLV10] Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Ver-

bitsky. Interval graphs: Canonical representation in logspace. In Au-

tomata, Languages and Programming, 37th International Colloquium,

ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part I,

pages 384–395, 2010. 2

[Kle96] Philip N. Klein. Efficient parallel algorithms for chordal graphs. SIAM

J. Comput., 25(4):797–827, 1996. 2

[Koz78] Dexter Kozen. A clique problem equivalent to graph isomorphism.

SIGACT News, 10(2):50–52, July 1978. 60

[Kuc87] Ludek Kucera. Canonical labeling of regular graphs in linear average

time. In 28th Annual Symposium on Foundations of Computer Sci-

ence, Los Angeles, California, USA, 27-29 October 1987, pages 271–

279, 1987. 4

[Las01] Jean B. Lasserre. Global optimization with polynomials and the prob-

lem of moments. SIAM Journal on Optimization, 11(3):796–817, 2001.

10

[Lau10] Bastian Laubner. Capturing polynomial time on interval graphs. In

Proceedings of the 25th Annual IEEE Symposium on Logic in Com-

puter Science, LICS 2010, 11-14 July 2010, Edinburgh, United King-

dom, pages 199–208, 2010. 4

[LB79] George S. Lueker and Kellogg S. Booth. A linear time algorithm for

deciding interval graph isomorphism. J. ACM, 26(2):183–195, April

1979. 2, 5

[Luk82] Eugene M. Luks. Isomorphism of graphs of bounded valence can be

tested in polynomial time. J. Comput. Syst. Sci., 25(1):42–65, 1982. 2,

7

[Mal14] Peter N. Malkin. Sherali-adams relaxations of graph isomorphism poly-

topes. Discrete Optimization, 12:73–97, 2014. 3, 4, 9, 10, 17, 74

[Mat79] Rudolf Mathon. A note on the graph isomorphism counting problem.

Inf. Process. Lett., 8(3):131–132, 1979. 1, 6

110 REFERENCES

[Mil80] Gary L. Miller. Isomorphism testing for graphs of bounded genus. In

STOC, pages 225–235, 1980. 2, 5

[Mil83] Gary L. Miller. Isomorphism of k-contractible graphs. A generaliza-

tion of bounded valence and bounded genus. Information and Control,

56(1/2):1–20, 1983. 7

[MP14] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism,

II. J. Symb. Comput., 60:94–112, 2014. 2

[MPRW09] Jérôme Malick, Janez Povh, Franz Rendl, and Angelika Wiegele. Reg-

ularization methods for semidefinite programming. SIAM Journal on

Optimization, 20(1):336–356, 2009. 80

[MPRW11] Jérôme Malick, Janez Povh, Franz Rendl, and Angelika Wiegele. Sdp

solver mprw2.m. https://www.math.aau.at/or/Software/, 2011. 80

[OWWZ14] Ryan O’Donnell, John Wright, Chenggang Wu, and Yuan Zhou. Hard-

ness of robust graph isomorphism, lasserre gaps, and asymmetry of ran-

dom graphs. In Proceedings of the Twenty-Fifth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,

USA, January 5-7, 2014, pages 1659–1677, 2014. 10

[Pon88] Ilia Nikolaevich Ponomarenko. Isomorphism problem for classes of

graphs closed under contractions. Zapiski Nauchnykh Seminarov POMI,

174:147–177, 1988. 2, 7

[PR09] Janez Povh and Franz Rendl. Copositive and semidefinite relaxations

of the quadratic assignment problem. Discrete Optimization, 6(3):231–

241, 2009. 14, 23, 63

[SA90] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations

between the continuous and convex hull representations for zero-one

programming problems. SIAM J. Discrete Math., 3(3):411–430, 1990.

8, 9, 17

[Sch88] Uwe Schöning. Graph isomorphism is in the low hierarchy. J. Comput.

Syst. Sci., 37(3):312–323, 1988. 1

https://www.math.aau.at/or/Software/

REFERENCES 111

[Spe] E Spence. Strongly regular graphs. http://www.maths.gla.ac.uk/

~es/srgraphs.php. Accessed: 17/06/2015. 78, 80, 83

[Spi96] Daniel A. Spielman. Faster isomorphism testing of strongly regular

graphs. In Proceedings of the Twenty-Eighth Annual ACM Symposium

on the Theory of Computing, Philadelphia, Pennsylvania, USA, May

22-24, 1996, pages 576–584, 1996. 6, 76

[SSC14] Aaron Snook, Grant Schoenebeck, and Paolo Codenotti. Graph isomor-

phism and the lasserre hierarchy. CoRR, abs/1401.0758, 2014. 10

[Tin91] Gottfried Tinhofer. A note on compact graphs. Discrete Applied Math-

ematics, 30(2-3):253–264, 1991. 9

[Ueh08] Ryuhei Uehara. Simple geometrical intersection graphs. In WAL-

COM: Algorithms and Computation, Second International Workshop,

WALCOM 2008, Dhaka, Bangladesh, February 7-8, 2008., pages 25–33,

2008. 2

[WL68] B. Weisfeiler and A. A. Lehman. A reduction of a graph to a canonical

form and an algebra arising during this reduction (in russian). Nauchno-

Technicheskaya Informatsia, Seriya, 2(9):12–16, 1968. 3

[ZKT82] VN Zeml’ahenko, NM Korneyenko, and Regina Iosifovna Tyshkevich.

Graph isomorphism problem. Zapiski Nauchnykh Seminarov POMI,

118:83–158, 1982. 1, 7

http://www.maths.gla.ac.uk/~es/srgraphs.php
http://www.maths.gla.ac.uk/~es/srgraphs.php

	List of Figures
	1 Introduction
	1.1 The Graph Isomorphism Problem
	1.1.1 Combinatorial Approach to Graph Isomorphism
	1.1.2 Graph Theoretic Approach to Graph Isomorphism
	1.1.3 Group Theoretic Approach to Graph Isomorphism
	1.1.4 Polyhedral Approach to Graph Isomorphism

	1.2 Our Contributions
	1.3 Organization

	2 A Linear Programming Approach to Graph Isomorphism
	2.1 Introduction
	2.2 Integer Linear Program for GI
	2.2.1 Affine Plane of B[2]

	2.3 Linear Programming Relaxation
	2.4 Using the LP to Solve GI
	2.4.1 Zero-One Reducibility
	2.4.2 The Search Algorithm

	2.5 Conclusion

	3 Facial Structure of B[2]
	3.1 Introduction
	3.2 Some Facets of B[2]
	3.2.1 A Useful Identity
	3.2.2 Facets Due to the Non-negativity Constraint
	3.2.3 The Connection Lemma
	3.2.4 A Polynomial Sized Family of Facets
	3.2.5 An Exponential Sized Family of Facets

	3.3 Conclusion

	4 Non-Isomorphism Detection
	4.1 Introduction
	4.2 Partial Ordering on Supporting Planes of B[2]
	4.3 Polynomiality of Algorithm 1
	4.3.1 A Minimal Violated Inequality of Type (4.1)
	4.3.2 A Minimal Violated inequality of Type (4.2)
	4.3.2.1 Restriction to Facets
	4.3.2.2 General 1-box Inequality

	4.3.3 A Minimal Violated Inequality of Type (4.3)

	4.4 The General Case
	4.4.1 A Generalized Algorithm for GI
	4.4.1.1 k-SearchVar()
	4.4.1.2 The Procedure
	4.4.1.3 A Bound for k

	4.5 Conclusion

	5 There are more Facets
	5.1 Introduction
	5.2 Insufficiency of inequality (5.1)
	5.3 Towards a general inequality for all facets of B[2]
	5.4 Conclusion

	6 A Semidefinite Formulation
	6.1 Introduction
	6.2 CP Formulation of GI
	6.2.1 United Vectors
	6.2.2 Difference in cp values for Isomorphic and Non-Isomorphic Graphs
	6.2.3 The Second-order Birkhoff Polytope

	6.3 SDP Relaxation - Lovász Theta Function
	6.3.1 Null space lemma

	6.4 A unified equation for the known Facets of B[2]
	6.4.1 Geometry of the Feasible region

	6.5 Conclusion

	7 Experiments
	7.1 Introduction
	7.2 LP-GI-2: An Alternate Linear Program
	7.3 Strongly Regular Graphs
	7.4 The Cai-Fürer-Immerman construction
	7.5 Experiments with the Linear Program
	7.5.1 Experimental setup
	7.5.2 Results

	7.6 Experiments with the Lovász Theta function
	7.6.1 Experimental setup
	7.6.2 Results

	7.7 Conclusion

	8 Conclusions
	8.1 Open Problems
	8.1.1 GI belongs to co-NP?
	8.1.2 Geometry of the Feasible Region

	A Dimension of B[2]
	A.1 Introduction
	A.2 Eigenvalues and eigenvectors of the matrix of permutation counts
	A.2.1 First Eigenvalue
	A.2.2 Second Eigenvalue
	A.2.3 Third Eigenvalue
	A.2.4 Fourth Eigenvalue

	References

