Second-order Birkhoff Polytope and the Problem of Graph Isomorphism Detection

Pawan Aurora Supervisor: Prof. Shashank K. Mehta

Department of Computer Science and Engineering Indian Institute of Technology, Kanpur

December 21, 2015

• Given graphs $G = (V_1, E_1), H = (V_2, E_2)$

- Given graphs $G = (V_1, E_1), H = (V_2, E_2)$
- ▶ Does there exist a bijection $f: V_1 \rightarrow V_2$ s.t. $\{u, v\} \in E_1$ iff $\{f(u), f(v)\} \in E_2$?

- Given graphs $G = (V_1, E_1), H = (V_2, E_2)$
- ▶ Does there exist a bijection $f: V_1 \rightarrow V_2$ s.t. $\{u,v\} \in E_1$ iff $\{f(u),f(v)\} \in E_2$?
- ▶ Not known to be either in P or NP-Complete

- Given graphs $G = (V_1, E_1)$, $H = (V_2, E_2)$
- ▶ Does there exist a bijection $f: V_1 \rightarrow V_2$ s.t. $\{u, v\} \in E_1$ iff $\{f(u), f(v)\} \in E_2$?
- Not known to be either in P or NP-Complete
- ▶ Best known theoretical algorithm runs in $2^{O(\sqrt{n \log n})}$ time [Babai, Luks, Zemlyachenko 1983]

- Given graphs $G = (V_1, E_1)$, $H = (V_2, E_2)$
- ▶ Does there exist a bijection $f: V_1 \rightarrow V_2$ s.t. $\{u,v\} \in E_1$ iff $\{f(u),f(v)\} \in E_2$?
- ▶ Not known to be either in P or NP-Complete
- ▶ Best known theoretical algorithm runs in $2^{O(\sqrt{n \log n})}$ time [Babai, Luks, Zemlyachenko 1983]
- A $2^{O(\log^c n)}$ time algorithm is recently proposed [Babai 2015] (being peer-reviewed)

- Given graphs $G = (V_1, E_1), H = (V_2, E_2)$
- ▶ Does there exist a bijection $f: V_1 \rightarrow V_2$ s.t. $\{u, v\} \in E_1$ iff $\{f(u), f(v)\} \in E_2$?
- ▶ Not known to be either in P or NP-Complete
- ▶ Best known theoretical algorithm runs in $2^{O(\sqrt{n \log n})}$ time [Babai, Luks, Zemlyachenko 1983]
- ► A 2^{O(log^c n)} time algorithm is recently proposed [Babai 2015] (being peer-reviewed)
- ► Several heuristics that perform very well in practice, for e.g., nauty, bliss, traces etc.

2 / 44

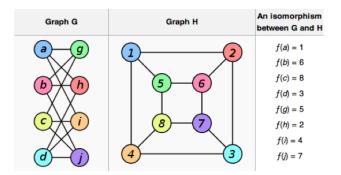


Figure: Isomorphic Graphs

figure taken from http://www.andrew.cmu.edu/user/hgl/2.png

▶ W.l.o.g. $V_1 = V_2 = \{1, ..., n\}$, hence bijection will be a permutation

- ightharpoonup W.l.o.g. $V_1=V_2=\{1,\ldots,n\}$, hence bijection will be a permutation
- ► Can some re-ordering of the vertices of one graph make it identical to the other?

- \triangleright W.l.o.g. $V_1 = V_2 = \{1, \dots, n\}$, hence bijection will be a permutation
- Can some re-ordering of the vertices of one graph make it identical to the other?
- ▶ Naive algorithm: try all n! permutations

4 / 44

Various Approaches to GI

Graph theoretic

Polynomial time algorithms for planar graphs, graphs of bounded genus, bounded tree width etc.

Group theoretic

Polynomial time algorithms for graphs of bounded degree, graphs with bounded eigenvalue multiplicities etc.; $2^{O(\sqrt{n\log n})}$ time algorithm for general graphs

Combinatorial

General heuristics that are polynomial time for certain classes like interval graphs, graphs with excluded minors etc.; most practical tools use this approach

Linear Programming Approach [Tinhofer 1991]

IP-GI: Find a point $X \in \{0,1\}^{n \times n}$ subject to the following:

$$\sum_{k} (A_{ik} X_{kj} - X_{ik} B_{kj}) = 0 , \forall i, j$$
 (1a)

$$\sum_{j} X_{ij} = 1 \; , \; \forall \; i \tag{1b}$$

$$\sum_{j} X_{ji} = 1 \; , \; \forall \; i \tag{1c}$$

where, A, B are the adjacency matrices of G, H

Linear Programming Approach [Tinhofer 1991]

IP-GI: Find a point $X \in \{0,1\}^{n \times n}$ subject to the following:

$$\sum_{k} (A_{ik} X_{kj} - X_{ik} B_{kj}) = 0 , \forall i,j$$
 (1a)

$$\sum_{j} X_{ij} = 1 \; , \; \forall \; i \tag{1b}$$

$$\sum_{i} X_{ji} = 1 , \forall i$$
 (1c)

where, A, B are the adjacency matrices of G, H

▶ (1b) and (1c) along with integrality force X to P_{σ}

Linear Programming Approach [Tinhofer 1991]

IP-GI: Find a point $X \in \{0,1\}^{n \times n}$ subject to the following:

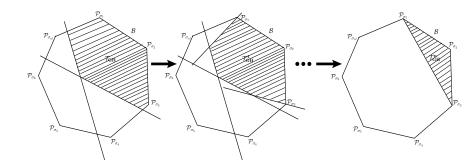
$$\sum_{k} (A_{ik} X_{kj} - X_{ik} B_{kj}) = 0 , \forall i,j$$
 (1a)

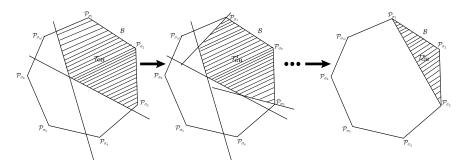
$$\sum_{i} X_{ij} = 1 \; , \; \forall \; i \tag{1b}$$

$$\sum_{i} X_{ji} = 1 , \forall i$$
 (1c)

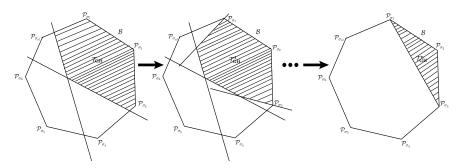
where, A, B are the adjacency matrices of G, H

- ▶ (1b) and (1c) along with integrality force X to P_{σ}
- (1a) corresponds to $P_{\sigma}^{T}AP_{\sigma}=B$

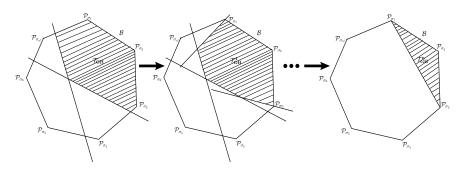




Lift-and-project methods: Sherali-Adams, Lovász-Schrijver, Lasserre



- Lift-and-project methods: Sherali-Adams, Lovász-Schrijver, Lasserre
- ▶ Time complexity: $O(n^k)$ for k rounds



- Lift-and-project methods: Sherali-Adams, Lovász-Schrijver, Lasserre
- ▶ Time complexity: $O(n^k)$ for k rounds
- ▶ $\Omega(n)$ rounds of SA required for some graphs [Atserias, Maneva 2012; Malkin 2014]

A Second Integer Program

IP-GI: Find a $Y \in \{0,1\}^{n^2 \times n^2}$ that satisfies the following constraints:

$$Y_{ij,kl} - Y_{kl,ij} = 0 \; , \; \forall \; i,j,k,l$$
 (2a)

$$Y_{ij,il} = Y_{ji,li} = 0 , \forall i, \forall j \neq l$$
 (2b)

$$\sum_{k} Y_{ij,kl} = \sum_{k} Y_{ij,lk} = Y_{ij,ij} , \forall i,j,l$$
 (2c)

$$\sum_{j} Y_{ij,ij} = \sum_{j} Y_{ji,ji} = 1 , \forall i$$
 (2d)

$$\sum_{p} A_{kp} \cdot Y_{pl,pl} = \sum_{p} Y_{kp,kp} \cdot B_{pl} , \forall k,l$$
 (2e)

$$\sum_{p} A_{kp} \cdot Y_{ij,pl} = \sum_{p} Y_{ij,kp} \cdot B_{pl} , \forall i,j,k,l$$
 (2f)

A Second Integer Program

IP-GI: Find a $Y \in \{0,1\}^{n^2 \times n^2}$ that satisfies the following constraints:

$$Y_{ij,kl} - Y_{kl,ij} = 0 , \forall i,j,k,l$$
 (2a)

$$Y_{ij,il} = Y_{ji,li} = 0 , \forall i, \forall j \neq l$$
 (2b)

$$\sum_{k} Y_{ij,kl} = \sum_{k} Y_{ij,lk} = Y_{ij,ij} , \forall i,j,l$$
 (2c)

$$\sum_{j} Y_{ij,ij} = \sum_{j} Y_{ji,ji} = 1 , \forall i$$
 (2d)

$$\sum_{p} A_{kp} \cdot Y_{pl,pl} = \sum_{p} Y_{kp,kp} \cdot B_{pl} , \forall k,l$$
 (2e)

$$\sum_{p} A_{kp} \cdot Y_{ij,pl} = \sum_{p} Y_{ij,kp} \cdot B_{pl} , \forall i,j,k,l$$
 (2f)

Theorem

Graphs G, H are isomorphic iff IP-GI has a feasible solution

Integer Solutions

▶ The $n^2 \times n^2$ symmetric matrix $P_{\sigma}^{[2]}$, with $(P_{\sigma}^{[2]})_{ij,kl} = (P_{\sigma})_{ij}(P_{\sigma})_{kl}$

9 / 44

Integer Solutions

- ▶ The $n^2 \times n^2$ symmetric matrix $P_{\sigma}^{[2]}$, with $(P_{\sigma}^{[2]})_{ij,kl} = (P_{\sigma})_{ij}(P_{\sigma})_{kl}$
- ▶ We call it the Second-order Permutation Matrix

9 / 44

Integer Solutions

- ▶ The $n^2 \times n^2$ symmetric matrix $P_{\sigma}^{[2]}$, with $(P_{\sigma}^{[2]})_{ij,kl} = (P_{\sigma})_{ij}(P_{\sigma})_{kl}$
- ▶ We call it the Second-order Permutation Matrix

Theorem

 $Y=\mathcal{P}_{\sigma}^{[2]}$ is a solution of IP-GI iff σ is an isomorphism between G,H

LP-GI: Find a point
$$Y$$
 subject to $2a-2f$
$$Y_{ij,kl} \geq 0 \ , \ \forall \ i,j,k,l \eqno(3a)$$

LP-GI: Find a point
$$Y$$
 subject to $2a-2f$
$$Y_{ij,kl} \geq 0 \;,\; \forall\; i,j,k,l \tag{3a}$$

Note

 $Y_{ij,kl} \leq 1$ is implied

LP-GI: Find a point
$$Y$$
 subject to $2a-2f$
$$Y_{ij,kl} \geq 0 \;,\; \forall \; i,j,k,l \tag{3a}$$

Note

 $Y_{ij,kl} \leq 1$ is implied

Observation

The feasible region of LP-GI, \mathcal{P}_{GH} corresponds to one lift step of Sherali-Adams starting with the Tinhofer polytope

LP-GI: Find a point
$$Y$$
 subject to $2a\text{-}2f$
$$Y_{ij,kl} \geq 0 \ , \ \forall \ i,j,k,l \eqno(3a)$$

Note

 $Y_{ij,kl} \leq 1$ is implied

Observation

The feasible region of LP-GI, \mathcal{P}_{GH} corresponds to one lift step of Sherali-Adams starting with the Tinhofer polytope

Definition

Define $\mathcal{B}_{GH}^{[2]}$ as the integer hull of \mathcal{P}_{GH} , for a given G, H, i.e., $\mathcal{B}_{GH}^{[2]} =$ $conv(P_{\sigma}^{[2]} | \sigma \text{ is an isomorphism between } G, H)$

Definition

Define polytope $\mathcal P$ as $\mathcal P_{GH}$ with $G=H=(V,\emptyset)$ or $G=H=K_n$

Definition

Define polytope $\mathcal P$ as $\mathcal P_{GH}$ with $G=H=(V,\emptyset)$ or $G=H=K_n$

Definition

Similarly, define polytope $\mathcal{B}^{[2]}$ as $\mathcal{B}^{[2]}_{GH}$ with $G=H=(V,\emptyset)$ or $G=H=K_n$

11 / 44

Definition

Define polytope $\mathcal P$ as $\mathcal P_{GH}$ with $G=H=(V,\emptyset)$ or $G=H=K_n$

Definition

Similarly, define polytope $\mathcal{B}^{[2]}$ as $\mathcal{B}^{[2]}_{GH}$ with $G=H=(V,\emptyset)$ or $G=H=K_n$

Observation

The Second-order Birkhoff polytope $\mathcal{B}^{[2]}$ is the integer hull of \mathcal{P} or $\mathcal{B}^{[2]} = conv(\mathcal{P}^{[2]}_{\sigma}| \ \sigma \in \mathcal{S}_n)$. Clearly, $\mathcal{B}^{[2]} \subseteq \mathcal{P}$

Definition

Define polytope \mathcal{P} as \mathcal{P}_{GH} with $G = H = (V, \emptyset)$ or $G = H = K_n$

Definition

Similarly, define polytope $\mathcal{B}^{[2]}$ as $\mathcal{B}^{[2]}_{GH}$ with $G=H=(V,\emptyset)$ or $G=H=K_n$

Observation

The Second-order Birkhoff polytope $\mathcal{B}^{[2]}$ is the integer hull of \mathcal{P} or $\mathcal{B}^{[2]} = conv(\mathcal{P}^{[2]}_{\sigma}| \sigma \in S_n)$. Clearly, $\mathcal{B}^{[2]} \subseteq \mathcal{P}$

History of $\mathcal{B}^{[2]}$

Appears in literature as the QAP(Quadratic Assignment Problem)-polytope [Volker Kaibel's PhD Thesis, 1997]

Role of $\mathcal{B}^{[2]}$ in GI

Theorem

Graphs G, H are isomorphic iff $\mathcal{P}_{GH} \cap \mathcal{B}^{[2]} \neq \emptyset$. Moreover, $\mathcal{P}_{GH} \cap \mathcal{B}^{[2]} = \mathcal{B}^{[2]}_{GH}$

Role of $\mathcal{B}^{[2]}$ in GI

Theorem

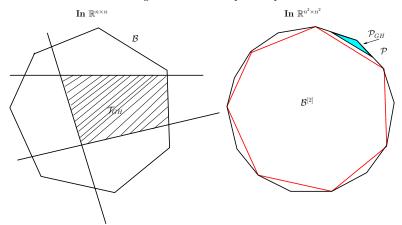
Graphs G,H are isomorphic iff $\mathcal{P}_{GH}\cap\mathcal{B}^{[2]}\neq\emptyset$. Moreover, $\mathcal{P}_{GH}\cap\mathcal{B}^{[2]}=\mathcal{B}^{[2]}_{GH}$

Corollary

For non-isomorphic graphs $G, H, \mathcal{P}_{GH} \subseteq \mathcal{P} \setminus \mathcal{B}^{[2]}$

Motivation

▶ Feasible region for Non-Isomorphic Graphs



Approach

Lemma

The polytopes \mathcal{P} and $\mathcal{B}^{[2]}$ are full-dimensional in the affine plane P given by (2a)-(2d). Thus a facet plane of $\mathcal{B}^{[2]}$ is a hyperplane in P and hence must split \mathcal{P} into two parts

Approach

Lemma

The polytopes \mathcal{P} and $\mathcal{B}^{[2]}$ are full-dimensional in the affine plane P given by (2a)-(2d). Thus a facet plane of $\mathcal{B}^{[2]}$ is a hyperplane in P and hence must split \mathcal{P} into two parts

Idea

The facet planes of $\mathcal{B}^{[2]}$ separate $\mathcal{P}_{GH}\setminus\mathcal{B}^{[2]}$ from $\mathcal{B}^{[2]}$. We can use the knowledge of these facets to eliminate $\mathcal{P}_{GH}\setminus\mathcal{B}^{[2]}$ and thus reduce \mathcal{P}_{GH} to its integer hull, $\mathcal{B}^{[2]}_{GH}$

The Trivial Facets of $\mathcal{B}^{[2]}$

Lemma

 $Y_{ij,kl} = 0$ for all $i \neq k, j \neq l$, define some of the facets of $\mathcal{B}^{[2]}$. We call them the trivial facets of $\mathcal{B}^{[2]}$

The Trivial Facets of $\mathcal{B}^{[2]}$

Lemma

 $Y_{ij,kl} = 0$ for all $i \neq k, j \neq l$, define some of the facets of $\mathcal{B}^{[2]}$. We call them the trivial facets of $\mathcal{B}^{[2]}$

Remark

Note that these are the non-negativity conditions in LP-GI, hence also facets of $\ensuremath{\mathcal{P}}$

The Trivial Facets of $\mathcal{B}^{[2]}$

Lemma

 $Y_{ij,kl} = 0$ for all $i \neq k, j \neq l$, define some of the facets of $\mathcal{B}^{[2]}$. We call them the trivial facets of $\mathcal{B}^{[2]}$

Remark

Note that these are the non-negativity conditions in LP-GI, hence also facets of $\ensuremath{\mathcal{P}}$

Theorem

All the vertices of $\mathcal{B}^{[2]}$ are some of the vertices of \mathcal{P} and all the facet planes of \mathcal{P} define some of the facets of $\mathcal{B}^{[2]}$ (its trivial facets)

Let i, i', k be distinct indices

- Let i, i', k be distinct indices
- ▶ Similarly let j, j', l be distinct indices

- Let i, i', k be distinct indices
- ▶ Similarly let j, j', l be distinct indices
- ▶ The inequality $Q_0(k, l, i, i', j, j')$ is given by

$$Y_{ij,kl} + Y_{i'j',kl} + Y_{ij',kl} \le Y_{kl,kl} + Y_{ij,i'j'}$$

- Let i, i', k be distinct indices
- ▶ Similarly let j, j', l be distinct indices
- ▶ The inequality $Q_0(k, l, i, i', j, j')$ is given by

$$Y_{ij,kl} + Y_{i'j',kl} + Y_{ij',kl} \le Y_{kl,kl} + Y_{ij,i'j'}$$

▶ $Q_0(k, l, i, i', j, j')$ defines a family of facets for $n \ge 6$

- Let i, i', k be distinct indices
- ▶ Similarly let j, j', l be distinct indices
- ▶ The inequality $Q_0(k, l, i, i', j, j')$ is given by

$$Y_{ij,kl} + Y_{i'j',kl} + Y_{ij',kl} \le Y_{kl,kl} + Y_{ij,i'j'}$$

- ▶ $Q_0(k, l, i, i', j, j')$ defines a family of facets for $n \ge 6$
- ▶ $Q_0(k, l, i, i', j, j')$ can be included in LP-GI without affecting its polynomial time complexity

Let i_1, \ldots, i_m, k be m+1 distinct indices

- ▶ Let i_1, \ldots, i_m, k be m+1 distinct indices
- ▶ Similarly let $j_1, ..., j_m, I$ be distinct indices

- Let i_1, \ldots, i_m, k be m+1 distinct indices
- ▶ Similarly let $j_1, ..., j_m, I$ be distinct indices
- ▶ Let $A = \{(i_1, j_1), \dots, (i_m, j_m)\}$

- Let i_1, \ldots, i_m, k be m+1 distinct indices
- \triangleright Similarly let j_1, \ldots, j_m, l be distinct indices
- ▶ Let $A = \{(i_1, i_1), \dots, (i_m, i_m)\}$
- ▶ Then the inequality $Q_1(k, I, A)$ is given by

$$\sum_{(i,j) \in A} Y_{ij,kl} \le Y_{kl,kl} + \sum_{(i,j) \ne (i',j') \in A} Y_{ij,i'j'}$$

- Let i_1, \ldots, i_m, k be m+1 distinct indices
- ▶ Similarly let $j_1, ..., j_m, I$ be distinct indices
- ▶ Let $A = \{(i_1, j_1), \dots, (i_m, j_m)\}$
- ▶ Then the inequality $Q_1(k, l, A)$ is given by

$$\sum_{(i,j) \in A} Y_{ij,kl} \le Y_{kl,kl} + \sum_{(i,j) \ne (i',j') \in A} Y_{ij,i'j'}$$

▶ $Q_1(k, l, A)$ defines a family of facets for $n \ge 6, m \ge 3$

Another Exponential-Sized Family of Facets [Jünger-Kaibel]

▶ Let P and Q be sets of indices and β be an integer

Another Exponential-Sized Family of Facets [Jünger-Kaibel]

- ▶ Let P and Q be sets of indices and β be an integer
- ▶ Then the inequality $Q_2(P, Q, \beta)$ is given by

$$(\beta-1)\sum_{(ij)\in P\times Q}Y_{ij,ij}\leq \sum_{(ij),(kl)\in P\times Q,i< k}Y_{ij,kl}+(\beta^2-\beta)/2$$

Another Exponential-Sized Family of Facets [Jünger-Kaibel]

- ▶ Let P and Q be sets of indices and β be an integer
- ▶ Then the inequality $Q_2(P, Q, \beta)$ is given by

$$(\beta-1)\sum_{(ij)\in P\times Q}Y_{ij,ij}\leq \sum_{(ij),(kl)\in P\times Q,i< k}Y_{ij,kl}+(\beta^2-\beta)/2$$

▶ $Q_2(P, Q, \beta)$ defines a family of facets for $\beta+1 \leq \min\{|P|, |Q|\}$, $|P|+|Q| \leq n-3+\beta, \beta \geq 2$

A Third Exponential-Sized Family of Facets [Jünger-Kaibel]

▶ Let Q, P_1 , and P_2 be index sets such that $P_1 \cap P_2 = \emptyset$ and β be any integer

A Third Exponential-Sized Family of Facets [Jünger-Kaibel]

- ▶ Let Q, P_1 , and P_2 be index sets such that $P_1 \cap P_2 = \emptyset$ and β be any integer
- ▶ Then the inequality $Q_3(P_1, P_2, Q, \beta)$ is given by

 $(ij),(kl) \in P_2 \times Q, i < k$ $(ij) \in P_1 \times Q,(kl) \in P_2 \times Q$

$$\begin{split} & - (\beta - 1) \sum_{(ij) \in P_1 \times Q} Y_{ij,ij} + \beta \sum_{(ij) \in P_2 \times Q} Y_{ij,ij} + \sum_{(ij),(kl) \in P_1 \times Q,i < k} Y_{ij,kl} \\ & + \sum_{ij,kl} Y_{ij,kl} - \sum_{ij,kl} Y_{ij,kl} + \frac{\beta^2 - \beta}{2} \ge 0 \end{split}$$

A Third Exponential-Sized Family of Facets [Jünger-Kaibel]

- ▶ Let Q, P_1 , and P_2 be index sets such that $P_1 \cap P_2 = \emptyset$ and β be any integer
- ▶ Then the inequality $Q_3(P_1, P_2, Q, \beta)$ is given by

$$\begin{split} & - (\beta - 1) \sum_{(ij) \in P_1 \times Q} Y_{ij,ij} + \beta \sum_{(ij) \in P_2 \times Q} Y_{ij,ij} + \sum_{(ij),(kl) \in P_1 \times Q,i < k} Y_{ij,kl} \\ & + \sum_{(ij),(kl) \in P_2 \times Q,i < k} Y_{ij,kl} - \sum_{(ij) \in P_1 \times Q,(kl) \in P_2 \times Q} Y_{ij,kl} + \frac{\beta^2 - \beta}{2} \ge 0 \end{split}$$

▶ $Q_3(P_1, P_2, Q, \beta)$ defines a family of facets under certain restrictions on the parameters

Facial Structure of $\mathcal{B}^{[2]}$

A General Inequality

All the known facets of $\mathcal{B}^{\left[2\right]}$ are special instances of a general inequality

$$\sum_{ijkl} n_{ij} n_{kl} Y_{ij,kl} + (\beta - 1/2)^2 \ge (2\beta - 1) \sum_{ij} n_{ij} Y_{ij,ij} + 1/4$$

where $\beta \in \mathbb{Z}$ and $n_{ij} \in \mathbb{Z}$ for all (ij)

Facial Structure of $\mathcal{B}^{[2]}$

A General Inequality

All the known facets of $\mathcal{B}^{[2]}$ are special instances of a general inequality

$$\sum_{ijkl} n_{ij} n_{kl} Y_{ij,kl} + (\beta - 1/2)^2 \ge (2\beta - 1) \sum_{ij} n_{ij} Y_{ij,ij} + 1/4$$

where $\beta \in \mathbb{Z}$ and $n_{ii} \in \mathbb{Z}$ for all (ij)

There are more Facets

Theorem

There exists at least one facet of $\mathcal{B}^{[2]}$ which is not an instance of the above inequality

Limitations

ightharpoonup We see that our knowledge of the facets of $\mathcal{B}^{[2]}$ is limited

Limitations

- ightharpoonup We see that our knowledge of the facets of $\mathcal{B}^{[2]}$ is limited
- Our analysis will be limited to the situation when $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ is separated from $\mathcal{B}^{[2]}$ by facets of type Q_1, Q_2 and Q_3

▶ A partial ordering can be defined for each exponential-sized family

- ▶ A partial ordering can be defined for each exponential-sized family
- ▶ The number of all the minimal facets is polynomial in *n*

- A partial ordering can be defined for each exponential-sized family
- ▶ The number of all the minimal facets is polynomial in *n*
- These are included in LP-GI without affecting its poly-time complexity

- A partial ordering can be defined for each exponential-sized family
- ▶ The number of all the minimal facets is polynomial in *n*
- These are included in LP-GI without affecting its poly-time complexity

Consequently

- A partial ordering can be defined for each exponential-sized family
- ▶ The number of all the minimal facets is polynomial in *n*
- These are included in LP-GI without affecting its poly-time complexity

Consequently

▶ Let $Y \in \mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ violates an inequality in Q_i for $i \in \{1, 2, 3\}$

- A partial ordering can be defined for each exponential-sized family
- ▶ The number of all the minimal facets is polynomial in *n*
- These are included in LP-GI without affecting its poly-time complexity

Consequently

- ▶ Let $Y \in \mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ violates an inequality in Q_i for $i \in \{1, 2, 3\}$
- ▶ There must exist an inequality $Z \in Q_i$ such that Y violates Z but does not violate any other inequality $I \in Q_i$ s.t. $I \prec Z$

22 / 44

- A partial ordering can be defined for each exponential-sized family
- ▶ The number of all the minimal facets is polynomial in *n*
- These are included in LP-GI without affecting its poly-time complexity

Consequently

- ▶ Let $Y \in \mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ violates an inequality in Q_i for $i \in \{1, 2, 3\}$
- ▶ There must exist an inequality $Z \in Q_i$ such that Y violates Z but does not violate any other inequality $I \in Q_i$ s.t. $I \prec Z$
- ▶ We call Z a minimal violated inequality for point Y

- Let i_1, \ldots, i_m, k be m+1 distinct indices
- ▶ Similarly let $j_1, ..., j_m, I$ be distinct indices
- ▶ Let $A = \{(i_1, j_1), \dots, (i_m, j_m)\}$
- ▶ Then the inequality $Q_1(k, l, A)$ is given by

$$\sum_{(i,j)\in A} Y_{ij,kl} \leq Y_{kl,kl} + \sum_{(i,j)\neq (i',j')\in A} Y_{ij,i'j'}$$

▶ $Q_1(k, l, A)$ defines a family of facets for $n \ge 6, m \ge 3$

- Let i_1, \ldots, i_m, k be m+1 distinct indices
- ▶ Similarly let $j_1, ..., j_m, I$ be distinct indices
- ▶ Let $A = \{(i_1, j_1), \dots, (i_m, j_m)\}$
- ▶ Then the inequality $Q_1(k, l, A)$ is given by

$$\sum_{(i,j)\in A} Y_{ij,kl} \le Y_{kl,kl} + \sum_{(i,j)\neq (i',j')\in A} Y_{ij,i'j'}$$

- ▶ $Q_1(k, l, A)$ defines a family of facets for $n \ge 6, m \ge 3$
- ▶ Let $A' \subseteq A$. Then we define $Q_1(k, l, A') \leq Q_1(k, l, A)$

23 / 44

- Let i_1, \ldots, i_m, k be m+1 distinct indices
- ▶ Similarly let $j_1, ..., j_m, I$ be distinct indices
- ▶ Let $A = \{(i_1, i_1), \dots, (i_m, i_m)\}$
- ▶ Then the inequality $Q_1(k, I, A)$ is given by

$$\sum_{(i,j)\in A} Y_{ij,kl} \leq Y_{kl,kl} + \sum_{(i,j)\neq (i',j')\in A} Y_{ij,i'j'}$$

- ▶ $Q_1(k, l, A)$ defines a family of facets for $n \ge 6, m \ge 3$
- ▶ Let $A' \subseteq A$. Then we define $Q_1(k, l, A') \leq Q_1(k, l, A)$
- ▶ The facets corresponding to m = 3 are polynomial in size

Zero-One Reducibility

Let R be a region in $[0,1]^N$ and let x_1, \ldots, x_N denote the coordinate variables

Zero-One Reducibility

- Let R be a region in $[0,1]^N$ and let x_1, \ldots, x_N denote the coordinate variables
- ▶ R is zero-one reducible if there exists a sequence of variables $x_{j_1}, x_{j_2}, \ldots, x_{j_r}$ and corresponding values $\alpha_{j_r} \in \{0, 1\}$ s.t.

Zero-One Reducibility

- Let R be a region in $[0,1]^N$ and let x_1, \ldots, x_N denote the coordinate variables
- ▶ R is zero-one reducible if there exists a sequence of variables $x_{j_1}, x_{j_2}, \ldots, x_{j_r}$ and corresponding values $\alpha_{j_r} \in \{0, 1\}$ s.t.
 - $ightharpoonup R|_{x_{j_1}=\alpha_{j_1},...,x_{j_{i-1}}=\alpha_{j_{i-1}},x_{j_i}=\overline{\alpha_{j_i}}}=\emptyset\ \forall\ i$, and

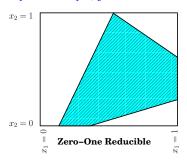
Zero-One Reducibility

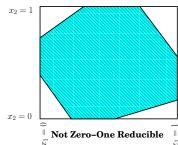
- Let R be a region in $[0,1]^N$ and let x_1, \ldots, x_N denote the coordinate variables
- ▶ R is zero-one reducible if there exists a sequence of variables $x_{j_1}, x_{j_2}, \ldots, x_{j_r}$ and corresponding values $\alpha_{j_r} \in \{0, 1\}$ s.t.
 - $P|_{x_{j_1}=\alpha_{j_1},\dots,x_{j_{i-1}}=\alpha_{j_{i-1}},x_{j_i}=\overline{\alpha_{j_i}}}=\emptyset \ \forall \ i, \ \text{and}$
 - $P|_{x_{j_1}=\alpha_{j_1},...,x_{j_r}=\alpha_{j_r}}=\emptyset$

Zero-One Reducibility

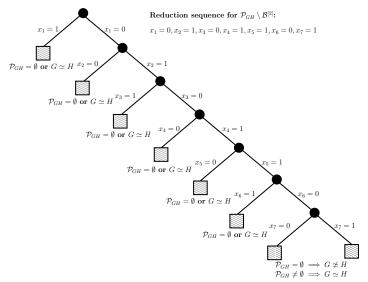
- Let R be a region in $[0,1]^N$ and let x_1, \ldots, x_N denote the coordinate variables
- ▶ R is zero-one reducible if there exists a sequence of variables $x_{j_1}, x_{j_2}, \ldots, x_{j_r}$ and corresponding values $\alpha_{j_r} \in \{0, 1\}$ s.t.
 - $R|_{x_{j_1}=\alpha_{j_1},\ldots,x_{j_{i-1}}=\alpha_{i_{i-1}},x_{j_i}=\overline{\alpha_{i_i}}}=\emptyset\ \forall\ i,\ \text{and}$

$$R|_{x_1=\overline{1}}=\emptyset, R|_{x_1=1,x_2=\overline{0}}=\emptyset; R|_{x_1=1,x_2=0}=\emptyset$$

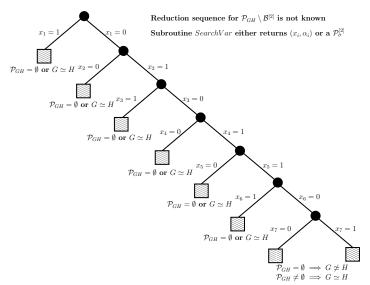




Solving GI When $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ is Zero-One Reducible



Solving GI When $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ is Zero-One Reducible



Case of Common Minimal Violated Inequality

Lemma

If $\mathcal{P}_{GH}\setminus\mathcal{B}^{[2]}$ is zero-one reducible then there exists a polynomial time procedure for GI

Case of Common Minimal Violated Inequality

Lemma

If $\mathcal{P}_{GH}\setminus\mathcal{B}^{[2]}$ is zero-one reducible then there exists a polynomial time procedure for GI

Theorem

If all points in $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ have a common minimal violated inequality from Q_1, Q_2 or Q_3 , then $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ is zero-one reducible

Case of Common Minimal Violated Inequality

Lemma

If $\mathcal{P}_{GH}\setminus\mathcal{B}^{[2]}$ is zero-one reducible then there exists a polynomial time procedure for GI

Theorem

If all points in $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ have a common minimal violated inequality from Q_1, Q_2 or Q_3 , then $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ is zero-one reducible

Remark

If $\mathcal{P}_{GH}\setminus\mathcal{B}^{[2]}$ is zero-one reducible then only one round of any of the lift-and-project methods would suffice. For e.g., $LS^1(\mathcal{P}_{GH})=\mathcal{B}_{GH}^{[2]}$

The General Case

▶ In general, it may not be true that all points in $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ have a common minimal violated inequality

The General Case

- ▶ In general, it may not be true that all points in $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ have a common minimal violated inequality
- ▶ Let $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]} = \cup_j R_j$ for j = 1, ..., k s.t. each R_j has a common minimal violated inequality from Q_1, Q_2 or Q_3

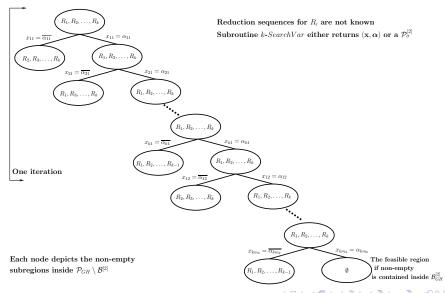
The General Case

- ▶ In general, it may not be true that all points in $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ have a common minimal violated inequality
- ▶ Let $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]} = \cup_j R_j$ for j = 1, ..., k s.t. each R_j has a common minimal violated inequality from Q_1, Q_2 or Q_3
- ▶ We will use the fact that each R_j is zero-one reducible to design an efficient procedure for GI

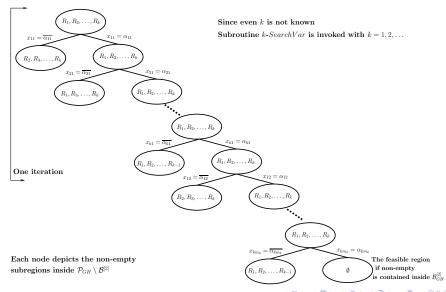
Solving GI When $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]} = \cup_j R_j$, Each R_j is ZOR



Solving GI When $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]} = \cup_j R_j$, Each R_j is ZOR



Solving GI When $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]} = \cup_j R_j$, Each R_j is ZOR



Analysis

The following recurrence sums up the performance of the Algorithm:

$$T(k) \le N \cdot T(k-1) + {N \choose k} 2^k + {N-k \choose k} 2^k + \ldots + {k \choose k} 2^k$$

 $T(1) \le O(N^2)$

Analysis

The following recurrence sums up the performance of the Algorithm:

$$T(k) \le N \cdot T(k-1) + {N \choose k} 2^k + {N-k \choose k} 2^k + \ldots + {k \choose k} 2^k$$

 $T(1) \le O(N^2)$

On solving the above recurrence, we get $T(k) = O(k \cdot (2N)^{k+1})$

Analysis

The following recurrence sums up the performance of the Algorithm:

$$T(k) \le N \cdot T(k-1) + {N \choose k} 2^k + {N-k \choose k} 2^k + \ldots + {k \choose k} 2^k$$

 $T(1) \le O(N^2)$

On solving the above recurrence, we get $T(k) = O(k \cdot (2N)^{k+1})$

Theorem

The Algorithm solves the graph isomorphism problem in $O(k \cdot 2^k \cdot N^{k+c})$ time where $N = O(n^4)$ is the number of variables in LP-GI and k is the number of subregions into which $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ is divided such that each subregion has a common minimal violated inequality of type Q_1 , Q_2 or Q_3 . Here $O(N^c)$ denotes the cost of solving LP-GI

Bounding the value of k

Pocket Region of $\mathcal{P} \setminus \mathcal{B}^{[2]}$ on the non- $\mathcal{B}^{[2]}$ side of a facet plane of $\mathcal{B}^{[2]}$

Facet Plane 1 $B^{[2]}$ Facet Plane 2 Pockets

Bounding the value of k

Theorem

If $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ is confined to a pocket of \mathcal{P} due to a facet in Q_1 , then k is bounded by \sqrt{n} , leading to a $2^{O(\sqrt{n} \log n)}$ time algorithm for GI

Bounding the value of k

Theorem

If $\mathcal{P}_{GH}\setminus\mathcal{B}^{[2]}$ is confined to a pocket of \mathcal{P} due to a facet in Q_1 , then k is bounded by \sqrt{n} , leading to a $2^{O(\sqrt{n}\log n)}$ time algorithm for GI

Theorem

If $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$ is confined to a pocket of \mathcal{P} due to a facet in Q_2 or Q_3 , then k is bounded by $\sqrt{\beta n}$, leading to a $2^{O(\sqrt{\beta n}\log n)}$ time algorithm for GI

Objective

To determine the value of *k* for pairs of non-isomorphic graphs taken from families considered hard for GI

35 / 44

Objective

To determine the value of k for pairs of non-isomorphic graphs taken from families considered hard for GI

Strongly Regular Graphs

A d-regular n vertex graph is said to be (n,d,λ,μ) -strongly regular if all adjacent pairs of vertices have λ common neighbors and all non-adjacent pairs of vertices have μ common neighbors. Believed to be hard for GI, though not known to be GI-complete

Objective

To determine the value of k for pairs of non-isomorphic graphs taken from families considered hard for GI

Strongly Regular Graphs

A d-regular n vertex graph is said to be (n,d,λ,μ) -strongly regular if all adjacent pairs of vertices have λ common neighbors and all non-adjacent pairs of vertices have μ common neighbors. Believed to be hard for GI, though not known to be GI-complete

Cai-Fürer-Immerman (CFI) Graphs

These are the graphs on which the Sherali-Adams hierarchy takes $\Omega(n)$ rounds to converge

Objective

To determine the value of k for pairs of non-isomorphic graphs taken from families considered hard for GI

Strongly Regular Graphs

A d-regular n vertex graph is said to be (n, d, λ, μ) -strongly regular if all adjacent pairs of vertices have λ common neighbors and all non-adjacent pairs of vertices have μ common neighbors. Believed to be hard for GI, though not known to be GI-complete

Cai-Fürer-Immerman (CFI) Graphs

These are the graphs on which the Sherali-Adams hierarchy takes $\Omega(n)$ rounds to converge

Results

We found the feasible region to be zero-one reducible (k = 1), in all the cases

Let's say we need to show that $f(x) \ge 0$ is a facet defining inequality

- Let's say we need to show that $f(x) \ge 0$ is a facet defining inequality
- ▶ Let V be the set of vertices of the polytope

- Let's say we need to show that $f(x) \ge 0$ is a facet defining inequality
- ▶ Let V be the set of vertices of the polytope
- Let S be the set of vertices that satisfy f(x) = 0

36 / 44

- Let's say we need to show that $f(x) \ge 0$ is a facet defining inequality
- ▶ Let *V* be the set of vertices of the polytope
- Let S be the set of vertices that satisfy f(x) = 0
- ▶ Let $v_0 \in V \setminus S$ be such that $V \subset AS(\{v_0\} \cup S)$

- Let's say we need to show that $f(x) \ge 0$ is a facet defining inequality
- ▶ Let *V* be the set of vertices of the polytope
- Let S be the set of vertices that satisfy f(x) = 0
- ▶ Let $v_0 \in V \setminus S$ be such that $V \subset AS(\{v_0\} \cup S)$
- ▶ Note that $V \not\subset AS(S)$

- Let's say we need to show that $f(x) \ge 0$ is a facet defining inequality
- Let V be the set of vertices of the polytope
- Let S be the set of vertices that satisfy f(x) = 0
- ▶ Let $v_0 \in V \setminus S$ be such that $V \subset AS(\{v_0\} \cup S)$
- ▶ Note that $V \not\subset AS(S)$
- ▶ Then the affine plane of *S* defines a facet

- Let's say we need to show that $f(x) \ge 0$ is a facet defining inequality
- Let V be the set of vertices of the polytope
- Let S be the set of vertices that satisfy f(x) = 0
- ▶ Let $v_0 \in V \setminus S$ be such that $V \subset AS(\{v_0\} \cup S)$
- ▶ Note that $V \not\subset AS(S)$
- ▶ Then the affine plane of *S* defines a facet
- In case of $\mathcal{B}^{[2]}$, since the affine plane does not contain the origin we can replace Affine Span (AS) with Linear Span (LS)

- Let's say we need to show that $f(x) \ge 0$ is a facet defining inequality
- ▶ Let *V* be the set of vertices of the polytope
- Let S be the set of vertices that satisfy f(x) = 0
- ▶ Let $v_0 \in V \setminus S$ be such that $V \subset AS(\{v_0\} \cup S)$
- ▶ Note that $V \not\subset AS(S)$
- ▶ Then the affine plane of *S* defines a facet
- In case of $\mathcal{B}^{[2]}$, since the affine plane does not contain the origin we can replace Affine Span (AS) with Linear Span (LS)

Lemma

Let $G = (V \setminus S, E)$ be a graph with the property that $\{u, v\} \in E$ iff $u - v \in LS(S)$. If G is connected, then S is a facet

▶ Let k_1, k_2, k_3 be any three integers belonging to $\{1, ..., n\}$

- ▶ Let k_1, k_2, k_3 be any three integers belonging to $\{1, \ldots, n\}$
- ▶ Let $\sigma_1, \ldots, \sigma_6$ be a set of permutations of S_n having the same image for each element of $\{1, \ldots, n\} \setminus \{k_1, k_2, k_3\}$

- ▶ Let k_1, k_2, k_3 be any three integers belonging to $\{1, ..., n\}$
- ▶ Let $\sigma_1, \ldots, \sigma_6$ be a set of permutations of S_n having the same image for each element of $\{1, \ldots, n\} \setminus \{k_1, k_2, k_3\}$
- ▶ Let x, y be any two elements of $\{1, ..., n\} \setminus \{k_1, k_2, k_3\}$

- ▶ Let k_1, k_2, k_3 be any three integers belonging to $\{1, \ldots, n\}$
- ▶ Let $\sigma_1, \ldots, \sigma_6$ be a set of permutations of S_n having the same image for each element of $\{1, \ldots, n\} \setminus \{k_1, k_2, k_3\}$
- ▶ Let x, y be any two elements of $\{1, ..., n\} \setminus \{k_1, k_2, k_3\}$
- Let σ'_i be transposition of σ_i on indices x and y, for each $i = 1, \ldots, 6$

Proof of Facets

- ▶ Let k_1, k_2, k_3 be any three integers belonging to $\{1, ..., n\}$
- ▶ Let $\sigma_1, \ldots, \sigma_6$ be a set of permutations of S_n having the same image for each element of $\{1, \ldots, n\} \setminus \{k_1, k_2, k_3\}$
- ▶ Let x, y be any two elements of $\{1, ..., n\} \setminus \{k_1, k_2, k_3\}$
- Let σ'_i be transposition of σ_i on indices x and y, for each $i = 1, \ldots, 6$

Lemma

Let
$$\Sigma = \{\sigma_1, \dots, \sigma_6, \sigma'_1, \dots, \sigma'_6\}$$
. Then $\sum_{\sigma \in \Sigma} sign(\sigma) P_{\sigma}^{[2]} \equiv \mathbf{0}$

▶ Let A be the $\frac{n^4+n^2}{2} \times n!$ matrix given below:

$$A = \begin{bmatrix} & & & & & & & & \\ & symvec(P_{\sigma_1}^{[2]}) & symvec(P_{\sigma_2}^{[2]}) & \dots & symvec(P_{\sigma_{n!}}^{[2]}) \end{bmatrix}$$

$$p = \begin{bmatrix} a & b & c & d \\ b & e & f & g \\ c & f & h & i \\ d & g & i & j \end{bmatrix}$$

$$symvec(p) = \begin{bmatrix} a & b & e & c & f & h & d & g & i & j \end{bmatrix}^T$$

▶ Let A be the $\frac{n^4+n^2}{2} \times n!$ matrix given below:

▶ Define the $\frac{n^4+n^2}{2} \times \frac{n^4+n^2}{2}$ psd matrix $B = AA^T$

Table : Eigenvalues of matrix B with the corresponding multiplicities

Eigenvalue	Multiplicity
(3/2)n!	1
n(n-3)!	$\binom{n-1}{2}^2$
$\frac{(n-1)!}{n-3}$	$\left (\binom{n-1}{2} - 1)^2 \right $
2n(n-2)!	$(n-1)^2$

Table : Eigenvalues of matrix B with the corresponding multiplicities

Eigenvalue	Multiplicity
(3/2)n!	1
n(n-3)!	$\binom{n-1}{2}^2$
$\frac{(n-1)!}{n-3}$	$\left (\binom{n-1}{2} - 1)^2 \right $
2n(n-2)!	$(n-1)^2$

$$rank(A) = rank(B) = 1 + {\binom{n-1}{2}}^2 + ({\binom{n-1}{2}} - 1)^2 + (n-1)^2$$

Theorem

Dimension of
$$\mathcal{B}^{[2]} = \text{Dimension of the affine space of } P_{\sigma}^{[2]}s$$

= $rank(A) - 1 = \frac{n!}{2(n-4)!} + (n-1)^2 + 1$

Theorem

Dimension of
$$\mathcal{B}^{[2]}=$$
 Dimension of the affine space of $P_{\sigma}^{[2]}s$ = $rank(A)-1=rac{n!}{2(n-4)!}+(n-1)^2+1$

Lemma

The dimension of the solution plane, P, of equations 2a-2d is at most $\frac{n!}{2(n-4)!}+(n-1)^2+1$

Theorem

Dimension of
$$\mathcal{B}^{[2]}=$$
 Dimension of the affine space of $P_{\sigma}^{[2]}s$ = $rank(A)-1=rac{n!}{2(n-4)!}+(n-1)^2+1$

Lemma

The dimension of the solution plane, P, of equations 2a-2d is at most $\frac{n!}{2(n-4)!}+(n-1)^2+1$

Corollary

 $\mathcal{B}^{[2]}$ is a full-dimensional polytope in P or P is the affine plane spanned by $P_{\sigma}^{[2]}$ s, i.e., $P=\{\sum_{\sigma}\alpha_{\sigma}P_{\sigma}^{[2]}|\sum_{\sigma}\alpha_{\sigma}=1\}$

Theorem

Dimension of
$$\mathcal{B}^{[2]}=$$
 Dimension of the affine space of $P_{\sigma}^{[2]}s$ = $rank(A)-1=\frac{n!}{2(n-4)!}+(n-1)^2+1$

Lemma

The dimension of the solution plane, P, of equations 2a-2d is at $most \frac{n!}{2(n-4)!} + (n-1)^2 + 1$

Corollary

 $\mathcal{B}^{[2]}$ is a full-dimensional polytope in P or P is the affine plane spanned by $P_{\sigma}^{[2]}$ s, i.e., $P = \{\sum_{\sigma} \alpha_{\sigma} P_{\sigma}^{[2]} | \sum_{\sigma} \alpha_{\sigma} = 1\}$

Corollary

Since $\mathcal{B}^{[2]} \subset \mathcal{P}$ and \mathcal{P} is contained in plane P, \mathcal{P} is also a fulldimensional polytope in P

Lemma

Let $Q_1(k, l, A)$ be a minimal violated inequality for region $R_i \subseteq \mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$. Then R_i is zero-one reducible

Lemma

Let $Q_1(k, l, A)$ be a minimal violated inequality for region $R_i \subseteq \mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$. Then R_i is zero-one reducible

Proof Sketch

▶ $Q_1(k, l, A)$: $\sum_{r \in [m]} Y_{i_r j_r, kl} \le Y_{kl, kl} + \sum_{r < s \in [m]} Y_{i_r j_r, i_s, j_s}$

Lemma

Let $Q_1(k, l, A)$ be a minimal violated inequality for region $R_i \subseteq \mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$. Then R_i is zero-one reducible

- ▶ $Q_1(k, l, A)$: $\sum_{r \in [m]} Y_{i_r j_r, kl} \le Y_{kl, kl} + \sum_{r < s \in [m]} Y_{i_r j_r, i_s, j_s}$
- $ightharpoonup R_i$ will satisfy $(1)\sum_{r=1}^m Y_{i_rj_r,kl} > Y_{kl,kl} + \sum_{r < s} Y_{i_rj_r,i_s,j_s}$

Lemma

Let $Q_1(k, l, A)$ be a minimal violated inequality for region $R_i \subseteq \mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$. Then R_i is zero-one reducible

- ▶ $Q_1(k, l, A)$: $\sum_{r \in [m]} Y_{i_r j_r, kl} \le Y_{kl, kl} + \sum_{r < s \in [m]} Y_{i_r j_r, i_s, j_s}$
- $ightharpoonup R_i$ will satisfy $(1)\sum_{r=1}^m Y_{i_rj_r,kl} > Y_{kl,kl} + \sum_{r < s} Y_{i_rj_r,i_s,j_s}$
- ▶ Let a be an arbitrary element of [m] and define $S = [m] \setminus \{a\}$

Lemma

Let $Q_1(k, l, A)$ be a minimal violated inequality for region $R_i \subseteq \mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$. Then R_i is zero-one reducible

- ▶ $Q_1(k, l, A)$: $\sum_{r \in [m]} Y_{i_r j_r, kl} \le Y_{kl, kl} + \sum_{r < s \in [m]} Y_{i_r j_r, i_s, j_s}$
- $ightharpoonup R_i$ will satisfy $(1)\sum_{r=1}^m Y_{i_rj_r,kl} > Y_{kl,kl} + \sum_{r < s} Y_{i_rj_r,i_s,j_s}$
- ▶ Let a be an arbitrary element of [m] and define $S = [m] \setminus \{a\}$
- ▶ R_i will also satisfy $(2)\sum_{r \in S} Y_{i_rj_r,kl} \leq Y_{kl,kl} + \sum_{r < s \in S} Y_{i_rj_r,i_s,j_s}$

Lemma

Let $Q_1(k, l, A)$ be a minimal violated inequality for region $R_i \subseteq \mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$. Then R_i is zero-one reducible

- ▶ $Q_1(k, l, A)$: $\sum_{r \in [m]} Y_{i_r j_r, kl} \le Y_{kl, kl} + \sum_{r < s \in [m]} Y_{i_r j_r, i_s, j_s}$
- $ightharpoonup R_i$ will satisfy $(1)\sum_{r=1}^m Y_{i_rj_r,kl} > Y_{kl,kl} + \sum_{r < s} Y_{i_rj_r,i_s,j_s}$
- ▶ Let a be an arbitrary element of [m] and define $S = [m] \setminus \{a\}$
- ▶ R_i will also satisfy $(2)\sum_{r \in S} Y_{i_rj_r,kl} \leq Y_{kl,kl} + \sum_{r < s \in S} Y_{i_rj_r,i_s,j_s}$
- $(1)-(2) \implies Y_{i_aj_a,kl} > \sum_{r \in S} Y_{i_rj_r,i_aj_a} \ge 0$

Lemma

Let $Q_1(k, l, A)$ be a minimal violated inequality for region $R_i \subseteq \mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$. Then R_i is zero-one reducible

Proof Sketch

- ▶ $Q_1(k, l, A)$: $\sum_{r \in [m]} Y_{i_r j_r, kl} \le Y_{kl, kl} + \sum_{r < s \in [m]} Y_{i_r j_r, i_s, j_s}$
- $ightharpoonup R_i$ will satisfy $(1)\sum_{r=1}^m Y_{i_rj_r,kl} > Y_{kl,kl} + \sum_{r < s} Y_{i_rj_r,i_s,j_s}$
- ▶ Let a be an arbitrary element of [m] and define $S = [m] \setminus \{a\}$
- ▶ R_i will also satisfy $(2)\sum_{r \in S} Y_{i_rj_r,kl} \leq Y_{kl,kl} + \sum_{r < s \in S} Y_{i_rj_r,i_s,j_s}$
- $(1)-(2) \implies Y_{i_aj_a,kl} > \sum_{r \in S} Y_{i_rj_r,i_aj_a} \ge 0$
- $Y_{i_a j_a, kl} = 0 \implies R_i = \emptyset \ \forall \ a \in [m]$

42 / 44

Lemma

Let $Q_1(k, l, A)$ be a minimal violated inequality for region $R_i \subseteq \mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$. Then R_i is zero-one reducible

- ▶ $Q_1(k, l, A)$: $\sum_{r \in [m]} Y_{i_r j_r, kl} \le Y_{kl, kl} + \sum_{r < s \in [m]} Y_{i_r j_r, i_s, j_s}$
- $ightharpoonup R_i$ will satisfy $(1)\sum_{r=1}^m Y_{i_rj_r,kl} > Y_{kl,kl} + \sum_{r < s} Y_{i_rj_r,i_s,j_s}$
- ▶ Let a be an arbitrary element of [m] and define $S = [m] \setminus \{a\}$
- ▶ R_i will also satisfy $(2)\sum_{r \in S} Y_{i_r j_r, kl} \leq Y_{kl, kl} + \sum_{r < s \in S} Y_{i_r j_r, i_s, j_s}$
- $(1)-(2) \implies Y_{i_aj_a,kl} > \sum_{r \in S} Y_{i_rj_r,i_aj_a} \ge 0$
- $Y_{i_aj_a,kl} = 0 \implies R_i = \emptyset \ \forall \ a \in [m]$
- ▶ $Y_{i_aj_a,kl} = 1 \ \forall \ a \in [m] \implies$ Ihs of (1) is m and rhs of (1) is $1 + {m \choose 2} \implies R_i = \emptyset$ since $m \ge 4$

Lemma

Let $Q_1(k, l, A)$ be a minimal violated inequality for region $R_i \subseteq$ $\mathcal{P}_{GH} \setminus \mathcal{B}^{[2]}$. Then R_i is zero-one reducible

- ▶ $Q_1(k, l, A)$: $\sum_{r \in [m]} Y_{i_r j_r, kl} \leq Y_{kl, kl} + \sum_{r < s \in [m]} Y_{i_r j_r, i_s, j_s}$
- $ightharpoonup R_i$ will satisfy $(1)\sum_{r=1}^m Y_{i_ri_r,k_l} > Y_{kl,k_l} + \sum_{r < s} Y_{i_ri_r,i_s,i_s}$
- ▶ Let a be an arbitrary element of [m] and define $S = [m] \setminus \{a\}$
- $ightharpoonup R_i$ will also satisfy $(2)\sum_{r \in S} Y_{i_r i_r, kl} \leq Y_{kl, kl} + \sum_{r < s \in S} Y_{i_r i_r, i_s, i_s}$
- \blacktriangleright (1)-(2) $\Longrightarrow Y_{i_1i_2,kl} > \sum_{r \in S} Y_{i_1i_2,i_2i_2} \ge 0$
- $Y_{i_2i_2kl} = 0 \implies R_i = \emptyset \ \forall \ a \in [m]$
- ▶ $Y_{i,i,kl} = 1 \ \forall \ a \in [m] \implies$ Ihs of (1) is m and rhs of (1) is $1+\binom{m}{2} \implies R_i=\emptyset \text{ since } m>4$
- ▶ Reduction sequence: $Y_{i_1j_1,kl} = 1, Y_{i_2j_2,kl} = 1, Y_{i_3j_3,kl} = 1$

Main Contributions

► We gave a geometric characterization of *easy* vs *hard* instances of the GI problem

43 / 44

Main Contributions

- ▶ We gave a geometric characterization of *easy* vs *hard* instances of the GI problem
- ▶ We introduced two new families of facets of the QAP-polytope

Main Contributions

- We gave a geometric characterization of easy vs hard instances of the GI problem
- ▶ We introduced two new families of facets of the QAP-polytope

Open Problems

Main Contributions

- We gave a geometric characterization of easy vs hard instances of the GI problem
- ▶ We introduced two new families of facets of the QAP-polytope

Open Problems

Find more facets of $\mathcal{B}^{[2]}$ and analyse the algorithm with respect to them

Main Contributions

- We gave a geometric characterization of easy vs hard instances of the GI problem
- ▶ We introduced two new families of facets of the QAP-polytope

Open Problems

- ▶ Find more facets of $\mathcal{B}^{[2]}$ and analyse the algorithm with respect to them
- ► GI ∈ co-NP?: can a minimal set of facet planes act as a certificate that can be verified in poly-time using say, the ellipsoid method?

Main Contributions

- ▶ We gave a geometric characterization of *easy* vs *hard* instances of the GI problem
- ▶ We introduced two new families of facets of the QAP-polytope

Open Problems

- ▶ Find more facets of $\mathcal{B}^{[2]}$ and analyse the algorithm with respect to them
- ▶ $GI \in co$ -NP?: can a minimal set of facet planes act as a certificate that can be verified in poly-time using say, the ellipsoid method?
- ightharpoonup Can we use the geometry to differentiate faces of $\mathcal P$ that touch $\mathcal{B}^{[2]}$ at only a single vertex (the identity permutation) from those that touch at several vertices?

Thank you! Questions?