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Problem Definition

PDBEP problem

Input: Graph G = (V ,E ) and degree-bound function
c : V → Z∗.

Objective: Compute a maximum cardinality set E ′ ⊆ E which
satisfies the degree condition:
(d ′u ≤ cu) ∨ (d ′v ≤ cv ) for each e = (u, v) ∈ E ′.

Introduced by Peng Zhang in FAW-AAIM 2012.

Zhang showed PDBEP is NP-Hard even for uniform cv = 1.
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Our Contribution

Zhang, 2012

For uniform cv = k:

2-approx for k = 1.

32
11 -approx for k = 2.

O(n2)-time exact algorithm
on trees for any k .

Our Results

For arbitrary c : V → Z∗:

2-approx.

1.5/(1− ε)-approx for large
values of cv/dv .

O(n log n)-time exact
algorithm on trees.

2 + log2 n-approx with
weights on edges.
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Upper Bound

Upper Bound on OPT

OPT ≤
∑

w∈W cw ≤
∑

v∈V cv , where W = {v ∈ V |d ′v ≤ cv}.



2-Approximation

Edge Deletion based Algorithm

Iteratively delete violating edges.

Output the set Y of surviving edges.

Observe that dY (v) ≥ cv ∀ v ∈ V .

Hence |Y | ≥
∑

v cv/2 ≥ OPT/2.
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Weighted PDBEP

2 + log2 n-Approximation

Let H(v) be the heaviest cv edges incident on vertex v .

Clearly OPT ≤
∑

v∈V
∑

e∈H(v) w(e).

Idea is to construct upto 1 + log2 |V | solutions, which cover
∪v∈VH(v).

Then the heaviest solution gives a 2 + log2 |V | approximation
of the problem.
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Input Graph is an Unweighted Tree

Exact Algorithm

At each vertex v we maintain values of three solutions of
T (v).

The algorithm initializes these values to zero for the leaf
vertices and computes these values for the internal vertices
bottom up.

Finally it outputs the maximum of the three values of the root
R.

In order to compute the values for internal nodes we need to
sort the child nodes with respect to some key values.

Thus at each vertex we incur O(|Ch| log |Ch|) cost.

That gives an overall time complexity of O(n log n).
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Natural IP

The natural IP formulation of the problem

IP1: max ψ =
∑

e∈E ye , subject to

1 ye ≤ xu + xv ∀e = (u, v) ∈ E .

2
∑

e∈δ(v) ye ≤ cvxv + dv (1− xv ) ∀v ∈ V .

3 xv ∈ {0, 1} ∀v ∈ V , ye ∈ {0, 1} ∀e ∈ E .

IP1 has large Integrality Gap

Consider Kn with uniform degree constraint cv = 1.

Set xv = 0.5 ∀ v . Consider disjoint cliques on bn/2c+ 1 and
n − bn/2c − 1 vertices. Set ye = 1 for edges in these cliques.

ψ ≥ (n − 1)2/4.

However, OPT ≤ n.

=⇒ integrality gap = Ω(n).
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Approximate IP

Lagrangian Like Relaxation

IP2: max φ = 2
∑

e∈E ye − (1 + ε)
∑

v∈V zv , subject to

1
∑

e∈δ(v) ye ≤ cv + zv ∀v ∈ V .

2 zv ∈ {0, 1, 2, . . . } ∀v ∈ V .

3 ye ∈ {0, 1} ∀e ∈ E .

Lemma

Every maximal solution of IP2 is also a feasible solution of PDBEP.
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Approximate IP

Lemma

Any α approximate solution of IP2, which is also maximal, is a
2α/(1− ε) approximation of PDBEP problem.

Lemma

If cv ≥ (1− β)dv ∀v, then any α approximate solution of IP2,
which is also maximal, is a 2α/(2− (1 + ε)β) approximation of
PDBEP.
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Algorithm using LP2

Iterative Rounding Algorithm

Solve LP2.

Discard edge(s) with ye = 0.

Include edge(s) with ye ≥ 1/2 in the solution.

Lemma

The Iterative Rounding Algorithm returns a feasible solution of
PDBEP.
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Algorithm using LP2

Lemma

The Iterative Rounding Algorithm gives a 1.5/(1− ε)
approximation of IP2.

Theorem

The Iterative Rounding Algorithm approximates PDBEP with
approximation factor 3/(1− ε)2.

Theorem

If cv ≥ (1− β)dv for all v , then The Iterative Rounding Algorithm
approximates PDBEP with approximation factor 3

(2−(1+ε)β)(1−ε) .
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Conclusion

Summary

A very simple factor 2 algorithm that takes linear time.

A very expensive iterative rounding algorithm that beats
factor 2 only for rare inputs.

Future Directions

Establishing lower bounds for both the weighted and
unweighted PDBEP.

LP based solution for the weighted case.

Generalization to hypergraphs.
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