PARTIAL DEGREE BOUNDED EDGE PACKING PROBLEM WITH ARBITRARY BOUNDS

Pawan Aurora Sumit Singh Shashank K. Mehta

Indian Institute of Technology, Kanpur

FAW-AAIM 2013

PROBLEM DEFINITION

PDBEP PROBLEM

• Input: Graph G = (V, E) and degree-bound function $c: V \to \mathbb{Z}^*$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

PDBEP PROBLEM

- Input: Graph G = (V, E) and degree-bound function
 c : V → Z*.
- Objective: Compute a maximum cardinality set E' ⊆ E which satisfies the *degree condition*:
 (d'_u ≤ c_u) ∨ (d'_v ≤ c_v) for each e = (u, v) ∈ E'.

PDBEP PROBLEM

- Input: Graph G = (V, E) and degree-bound function $c: V \to \mathbb{Z}^*$.
- Objective: Compute a maximum cardinality set E' ⊆ E which satisfies the *degree condition*:
 (d'_u ≤ c_u) ∨ (d'_v ≤ c_v) for each e = (u, v) ∈ E'.

• Introduced by Peng Zhang in FAW-AAIM 2012.

PDBEP PROBLEM

- Input: Graph G = (V, E) and degree-bound function
 c : V → Z*.
- Objective: Compute a maximum cardinality set E' ⊆ E which satisfies the *degree condition*:
 (d'_u ≤ c_u) ∨ (d'_u ≤ c_v) for each e = (u, v) ∈ E'.
- Introduced by Peng Zhang in FAW-AAIM 2012.
- Zhang showed PDBEP is NP-Hard even for uniform $c_v = 1$.

Zhang, 2012

For uniform $c_v = k$:

• 2-approx for k = 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Zhang, 2012

For uniform $c_v = k$:

- 2-approx for k = 1.
- $\frac{32}{11}$ -approx for k = 2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Zhang, 2012

For uniform $c_v = k$:

- 2-approx for k = 1.
- $\frac{32}{11}$ -approx for k = 2.
- $O(n^2)$ -time exact algorithm on trees for any k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Zhang, 2012

For uniform $c_v = k$:

- 2-approx for k = 1.
- $\frac{32}{11}$ -approx for k = 2.
- $O(n^2)$ -time exact algorithm on trees for any k.

OUR RESULTS

For arbitrary $c: V \to \mathbb{Z}^*$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Zhang, 2012

For uniform $c_v = k$:

- 2-approx for k = 1.
- $\frac{32}{11}$ -approx for k = 2.
- $O(n^2)$ -time exact algorithm on trees for any k.

OUR RESULTS

For arbitrary $c: V \to \mathbb{Z}^*$:

• 2-approx.

Zhang, 2012

For uniform $c_v = k$:

- 2-approx for k = 1.
- $\frac{32}{11}$ -approx for k = 2.
- $O(n^2)$ -time exact algorithm on trees for any k.

OUR RESULTS

For arbitrary $c: V \to \mathbb{Z}^*$:

- 2-approx.
- $1.5/(1-\epsilon)$ -approx for large values of c_v/d_v .

Zhang, 2012

For uniform $c_v = k$:

- 2-approx for k = 1.
- $\frac{32}{11}$ -approx for k = 2.
- $O(n^2)$ -time exact algorithm on trees for any k.

OUR RESULTS

For arbitrary $c: V \to \mathbb{Z}^*$:

- 2-approx.
- $1.5/(1-\epsilon)$ -approx for large values of c_v/d_v .

• $O(n \log n)$ -time exact algorithm on trees.

Zhang, 2012

For uniform $c_v = k$:

- 2-approx for k = 1.
- $\frac{32}{11}$ -approx for k = 2.
- $O(n^2)$ -time exact algorithm on trees for any k.

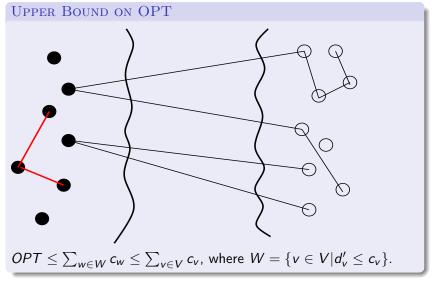
OUR RESULTS

For arbitrary $c: V \to \mathbb{Z}^*$:

- 2-approx.
- $1.5/(1-\epsilon)$ -approx for large values of c_v/d_v .

- $O(n \log n)$ -time exact algorithm on trees.
- 2 + log₂ *n*-approx with weights on edges.

UPPER BOUND



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Edge Deletion based Algorithm

• Iteratively delete violating edges.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Edge Deletion based Algorithm

- Iteratively delete violating edges.
- Output the set Y of surviving edges.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Edge Deletion based Algorithm

- Iteratively delete violating edges.
- Output the set Y of surviving edges.

• Observe that $d_Y(v) \ge c_v \ \forall \ v \in V$.

Edge Deletion based Algorithm

- Iteratively delete violating edges.
- Output the set Y of surviving edges.
- Observe that $d_Y(v) \ge c_v \ \forall \ v \in V$.
- Hence $|Y| \ge \sum_{v} c_{v}/2 \ge OPT/2$.

$2 + \log_2 n$ -Approximation

• Let H(v) be the heaviest c_v edges incident on vertex v.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$2 + \log_2 n$ -Approximation

• Let H(v) be the heaviest c_v edges incident on vertex v.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

• Clearly $OPT \leq \sum_{v \in V} \sum_{e \in H(v)} w(e)$.

$2 + \log_2 n$ -Approximation

- Let H(v) be the heaviest c_v edges incident on vertex v.
- Clearly $OPT \leq \sum_{v \in V} \sum_{e \in H(v)} w(e)$.
- Idea is to construct upto $1 + \log_2 |V|$ solutions, which cover $\bigcup_{v \in V} H(v)$.

$2 + \log_2 n$ -Approximation

- Let H(v) be the heaviest c_v edges incident on vertex v.
- Clearly $OPT \leq \sum_{v \in V} \sum_{e \in H(v)} w(e)$.
- Idea is to construct upto $1 + \log_2 |V|$ solutions, which cover $\bigcup_{v \in V} H(v)$.
- Then the heaviest solution gives a $2 + \log_2 |V|$ approximation of the problem.

EXACT ALGORITHM

At each vertex v we maintain values of three solutions of T(v).

- At each vertex v we maintain values of three solutions of T(v).
- The algorithm initializes these values to zero for the leaf vertices and computes these values for the internal vertices bottom up.

- At each vertex v we maintain values of three solutions of T(v).
- The algorithm initializes these values to zero for the leaf vertices and computes these values for the internal vertices bottom up.
- Finally it outputs the maximum of the three values of the root *R*.

- At each vertex v we maintain values of three solutions of T(v).
- The algorithm initializes these values to zero for the leaf vertices and computes these values for the internal vertices bottom up.
- Finally it outputs the maximum of the three values of the root *R*.
- In order to compute the values for internal nodes we need to sort the child nodes with respect to some key values.

- At each vertex v we maintain values of three solutions of T(v).
- The algorithm initializes these values to zero for the leaf vertices and computes these values for the internal vertices bottom up.
- Finally it outputs the maximum of the three values of the root *R*.
- In order to compute the values for internal nodes we need to sort the child nodes with respect to some key values.
- Thus at each vertex we incur $O(|Ch| \log |Ch|)$ cost.

- At each vertex v we maintain values of three solutions of T(v).
- The algorithm initializes these values to zero for the leaf vertices and computes these values for the internal vertices bottom up.
- Finally it outputs the maximum of the three values of the root *R*.
- In order to compute the values for internal nodes we need to sort the child nodes with respect to some key values.
- Thus at each vertex we incur $O(|Ch| \log |Ch|)$ cost.
- That gives an overall time complexity of $O(n \log n)$.

THE NATURAL IP FORMULATION OF THE PROBLEM IP1: max $\psi = \sum_{e \in E} y_e$, subject to

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

THE NATURAL IP FORMULATION OF THE PROBLEM IP1: max $\psi = \sum_{e \in E} y_e$, subject to $\mathbf{y}_e \leq x_u + x_v \ \forall e = (u, v) \in E$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

THE NATURAL IP FORMULATION OF THE PROBLEM IP1: max $\psi = \sum_{e \in E} y_e$, subject to $y_e \le x_u + x_v \ \forall e = (u, v) \in E$. $\sum_{e \in \delta(v)} y_e \le c_v x_v + d_v (1 - x_v) \ \forall v \in V$.

THE NATURAL IP FORMULATION OF THE PROBLEM IP1: max $\psi = \sum_{e \in E} y_e$, subject to • $y_e \le x_u + x_v \ \forall e = (u, v) \in E$. • $\sum_{e \in \delta(v)} y_e \le c_v x_v + d_v (1 - x_v) \ \forall v \in V$. • $x_v \in \{0, 1\} \ \forall v \in V, \ y_e \in \{0, 1\} \ \forall e \in E$.

THE NATURAL IP FORMULATION OF THE PROBLEM IP1: max $\psi = \sum_{e \in E} y_e$, subject to • $y_e \le x_u + x_v \ \forall e = (u, v) \in E$. • $\sum_{e \in \delta(v)} y_e \le c_v x_v + d_v (1 - x_v) \ \forall v \in V$. • $x_v \in \{0, 1\} \ \forall v \in V, \ y_e \in \{0, 1\} \ \forall e \in E$.

IP1 has large Integrality Gap

THE NATURAL IP FORMULATION OF THE PROBLEM IP1: max $\psi = \sum_{e \in E} y_e$, subject to • $y_e \le x_u + x_v \ \forall e = (u, v) \in E$. • $\sum_{e \in \delta(v)} y_e \le c_v x_v + d_v (1 - x_v) \ \forall v \in V$. • $x_v \in \{0, 1\} \ \forall v \in V, \ y_e \in \{0, 1\} \ \forall e \in E$.

IP1 has large Integrality Gap

• Consider K_n with uniform degree constraint $c_v = 1$.

THE NATURAL IP FORMULATION OF THE PROBLEM IP1: max $\psi = \sum_{e \in E} y_e$, subject to • $y_e \le x_u + x_v \ \forall e = (u, v) \in E$. • $\sum_{e \in \delta(v)} y_e \le c_v x_v + d_v (1 - x_v) \ \forall v \in V$. • $x_v \in \{0, 1\} \ \forall v \in V, \ y_e \in \{0, 1\} \ \forall e \in E$.

IP1 has large Integrality Gap

- Consider K_n with uniform degree constraint $c_v = 1$.
- Set $x_v = 0.5 \forall v$. Consider disjoint cliques on $\lfloor n/2 \rfloor + 1$ and $n \lfloor n/2 \rfloor 1$ vertices. Set $y_e = 1$ for edges in these cliques.

THE NATURAL IP FORMULATION OF THE PROBLEM IP1: max $\psi = \sum_{e \in E} y_e$, subject to • $y_e \le x_u + x_v \ \forall e = (u, v) \in E$. • $\sum_{e \in \delta(v)} y_e \le c_v x_v + d_v (1 - x_v) \ \forall v \in V$. • $x_v \in \{0, 1\} \ \forall v \in V, \ y_e \in \{0, 1\} \ \forall e \in E$.

IP1 has large Integrality Gap

- Consider K_n with uniform degree constraint $c_v = 1$.
- Set x_v = 0.5 ∀ v. Consider disjoint cliques on ⌊n/2⌋ + 1 and n ⌊n/2⌋ 1 vertices. Set y_e = 1 for edges in these cliques.
 ψ ≥ (n 1)²/4.

NATURAL IP

THE NATURAL IP FORMULATION OF THE PROBLEM IP1: max $\psi = \sum_{e \in E} y_e$, subject to • $y_e \le x_u + x_v \ \forall e = (u, v) \in E$. • $\sum_{e \in \delta(v)} y_e \le c_v x_v + d_v (1 - x_v) \ \forall v \in V$. • $x_v \in \{0, 1\} \ \forall v \in V, \ y_e \in \{0, 1\} \ \forall e \in E$.

IP1 has large Integrality Gap

- Consider K_n with uniform degree constraint $c_v = 1$.
- Set $x_v = 0.5 \forall v$. Consider disjoint cliques on $\lfloor n/2 \rfloor + 1$ and $n \lfloor n/2 \rfloor 1$ vertices. Set $y_e = 1$ for edges in these cliques.

•
$$\psi \ge (n-1)^2/4$$
.

• However, $OPT \leq n$.

NATURAL IP

THE NATURAL IP FORMULATION OF THE PROBLEM IP1: max $\psi = \sum_{e \in E} y_e$, subject to • $y_e \le x_u + x_v \ \forall e = (u, v) \in E$. • $\sum_{e \in \delta(v)} y_e \le c_v x_v + d_v (1 - x_v) \ \forall v \in V$. • $x_v \in \{0, 1\} \ \forall v \in V, \ y_e \in \{0, 1\} \ \forall e \in E$.

IP1 has large Integrality Gap

- Consider K_n with uniform degree constraint $c_v = 1$.
- Set $x_v = 0.5 \forall v$. Consider disjoint cliques on $\lfloor n/2 \rfloor + 1$ and $n \lfloor n/2 \rfloor 1$ vertices. Set $y_e = 1$ for edges in these cliques.
- $\psi \ge (n-1)^2/4$.
- However, $OPT \leq n$.
- \implies integrality gap = $\Omega(n)$.

LAGRANGIAN LIKE RELAXATION

IP2: max $\phi = 2 \sum_{e \in E} y_e - (1 + \epsilon) \sum_{v \in V} z_v$, subject to

LAGRANGIAN LIKE RELAXATION

IP2: max
$$\phi = 2 \sum_{e \in E} y_e - (1 + \epsilon) \sum_{v \in V} z_v$$
, subject to
 $\sum_{e \in \delta(v)} y_e \le c_v + z_v \ \forall v \in V$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

LAGRANGIAN LIKE RELAXATION

IP2: max
$$\phi = 2 \sum_{e \in E} y_e - (1 + \epsilon) \sum_{v \in V} z_v$$
, subject to
1 $\sum_{e \in \delta(v)} y_e \le c_v + z_v \ \forall v \in V$.
2 $z_v \in \{0, 1, 2, ...\} \ \forall v \in V$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

LAGRANGIAN LIKE RELAXATION IP2: max $\phi = 2 \sum_{e \in E} y_e - (1 + \epsilon) \sum_{v \in V} z_v$, subject to $\sum_{e \in \delta(v)} y_e \le c_v + z_v \ \forall v \in V$. $z_v \in \{0, 1, 2, ...\} \ \forall v \in V$. $y_e \in \{0, 1\} \ \forall e \in E$.

LAGRANGIAN LIKE RELAXATION
IP2: max
$$\phi = 2 \sum_{e \in E} y_e - (1 + \epsilon) \sum_{v \in V} z_v$$
, subject to
a) $\sum_{e \in \delta(v)} y_e \le c_v + z_v \ \forall v \in V$.
b) $z_v \in \{0, 1, 2, ...\} \ \forall v \in V$.
c) $y_e \in \{0, 1\} \ \forall e \in E$.

LEMMA

Every maximal solution of IP2 is also a feasible solution of PDBEP.

LEMMA

Any α approximate solution of IP2, which is also maximal, is a $2\alpha/(1-\epsilon)$ approximation of PDBEP problem.

LEMMA

Any α approximate solution of IP2, which is also maximal, is a $2\alpha/(1-\epsilon)$ approximation of PDBEP problem.

LEMMA

If $c_v \ge (1 - \beta)d_v \forall v$, then any α approximate solution of IP2, which is also maximal, is a $2\alpha/(2 - (1 + \epsilon)\beta)$ approximation of PDBEP.

LP RELAXATION

LP RELAXATION OF IP2 LP2: max $\phi = 2 \sum_{e \in E} y_e - (1 + \epsilon) \sum_{v \in V} z_v$, subject to $\sum_{e \in \delta(v)} y_e \le c_v + z_v \ \forall v \in V$. $z_v \ge 0 \ \forall v \in V$. $y_e \ge 0 \ \forall e \in E$. $-y_e \ge -1 \ \forall e \in E$.

LP RELAXATION

LP RELAXATION OF IP2 LP2: max $\phi = 2 \sum_{e \in E} y_e - (1 + \epsilon) \sum_{v \in V} z_v$, subject to $\sum_{e \in \delta(v)} y_e \le c_v + z_v \ \forall v \in V$. $z_v \ge 0 \ \forall v \in V$. $y_e \ge 0 \ \forall e \in E$. $-y_e \ge -1 \ \forall e \in E$.

LEMMA

In a corner solution of LP2 on a non-empty graph there is at least one edge e with $y_e = 0$ or $y_e \ge 1/2$.

Algorithm using LP2

ITERATIVE ROUNDING ALGORITHM

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Solve LP2.

ITERATIVE ROUNDING ALGORITHM

- Solve LP2.
- Discard edge(s) with $y_e = 0$.

ITERATIVE ROUNDING ALGORITHM

- Solve LP2.
- Discard edge(s) with $y_e = 0$.
- Include edge(s) with $y_e \ge 1/2$ in the solution.

ITERATIVE ROUNDING ALGORITHM

- Solve LP2.
- Discard edge(s) with $y_e = 0$.
- Include edge(s) with $y_e \ge 1/2$ in the solution.

Lemma

The Iterative Rounding Algorithm returns a feasible solution of PDBEP.

LEMMA

The Iterative Rounding Algorithm gives a $1.5/(1-\epsilon)$ approximation of IP2.

LEMMA

The Iterative Rounding Algorithm gives a $1.5/(1-\epsilon)$ approximation of IP2.

Theorem

The Iterative Rounding Algorithm approximates PDBEP with approximation factor $3/(1-\epsilon)^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

LEMMA

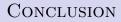
The Iterative Rounding Algorithm gives a $1.5/(1-\epsilon)$ approximation of IP2.

THEOREM

The Iterative Rounding Algorithm approximates PDBEP with approximation factor $3/(1-\epsilon)^2$.

THEOREM

If $c_v \ge (1 - \beta)d_v$ for all v, then The Iterative Rounding Algorithm approximates PDBEP with approximation factor $\frac{3}{(2-(1+\epsilon)\beta)(1-\epsilon)}$.



SUMMARY

• A very simple factor 2 algorithm that takes linear time.

SUMMARY

- A very simple factor 2 algorithm that takes linear time.
- A very expensive iterative rounding algorithm that beats factor 2 only for rare inputs.

SUMMARY

- A very simple factor 2 algorithm that takes linear time.
- A very expensive iterative rounding algorithm that beats factor 2 only for rare inputs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

FUTURE DIRECTIONS

SUMMARY

- A very simple factor 2 algorithm that takes linear time.
- A very expensive iterative rounding algorithm that beats factor 2 only for rare inputs.

FUTURE DIRECTIONS

• Establishing lower bounds for both the weighted and unweighted PDBEP.

SUMMARY

- A very simple factor 2 algorithm that takes linear time.
- A very expensive iterative rounding algorithm that beats factor 2 only for rare inputs.

FUTURE DIRECTIONS

• Establishing lower bounds for both the weighted and unweighted PDBEP.

• LP based solution for the weighted case.

SUMMARY

- A very simple factor 2 algorithm that takes linear time.
- A very expensive iterative rounding algorithm that beats factor 2 only for rare inputs.

FUTURE DIRECTIONS

• Establishing lower bounds for both the weighted and unweighted PDBEP.

- LP based solution for the weighted case.
- Generalization to hypergraphs.

Thanks!