
Partial Degree Bounded Edge Packing Problem for

Graphs and k-Uniform Hypergraphs

Pawan Aurora Sumit Singh
Shashank K Mehta

Indian Institute of Technology, Kanpur - 208016, India
paurora@iitk.ac.in,ssumit@iitk.ac.in,skmehta@cse.iitk.ac.in

January 29, 2015

Abstract

Given a graph G = (V,E) and a non-negative integer cu for each u ∈ V ,
Partial Degree Bounded Edge Packing (PDBEP) problem is to find a subgraph
G′ = (V,E′) with maximum |E′| such that for each edge (u, v) ∈ E′, either
degG′(u) ≤ cu or degG′(v) ≤ cv. The problem has been shown to be NP-
hard even for uniform degree constraint (i.e., all cu being equal). In this work
we study the general degree constraint case (arbitrary degree constraint for
each vertex) and present two combinatorial approximation algorithms with ap-
proximation factors 4 and 2. Then we give a log2 n approximation algorithm
for edge-weighted version of the problem and an efficient exact algorithm for
edge-weighted trees with time complexity O(n log n). We also consider a gen-
eralization of this problem to k-uniform hypergraphs and present a constant
factor approximation algorithm based on linear programming using Lagrangian
relaxation.

Keywords: Edge-Packing Problems, Iterative Rounding, Lagrangian Relax-
ation, Hypergraphs.

1 Introduction

A (k, t)-partial degree bounded edge packing problem ((k, t)-PDBEP) is described as
follows: Given a k-uniform hypergraph G = (V,E) and a degree-bound function c :
V → Z≥0, compute a maximum cardinality set E′ ⊆ E such that every (hyper)edge
satisfies the degree condition in the (hyper)graph G′ = (V,E′). An edge e in G′ is
said to satisfy the degree condition if there are at least t vertices, say, u1, . . . , ut in
e such that d′(ui) ≤ c(ui). Here d′(x) denotes the degree of vertex x in graph G′.

1

Without loss of generality we assume that c(x) ≤ d(x) for all x ∈ V . For convenience
we will use notation cv in place of c(v). We further assume that t ≥ 1 since t = 0 is
a trivial case.

In the weighted version of the problem edges are assigned non-negative weights
and we want to compute a set of edges E′ with maximum cumulative weight subject
to the same condition as described above.

Zhang [12] studied the (2, 1)-PDBEP problem with constant function c. Note
that (2, 1)-instance corresponds to normal graphs. This problem was motivated by
an application in binary string representation. It was shown there that the maximum
expressible independent subset (MEIS) problem on 2-regular set can be reduced to
(2, 1)-PDBEP problem with constant degree-bound function c = 2. The generalized
problem (k, t)-PDBEP finds another interesting application in resource allocation.
Given n resources and m jobs, each job requires k resources. Associated with each
resource u there is an integer cu. Suppose a set of jobs J ′ is to be scheduled for
concurrent processing. A resource u is said to be easily accessible in this schedule if
the number of jobs in J ′ requiring u is no more than cu. The set J ′ can be processed
concurrently if for each job in J ′ there are at least t easily accessible resources among
the k resources required by it. The objective is to compute the largest subset of jobs
that can be processed concurrently.

1.1 Related Work

The decision version of (2, 1)-PDBEP problem when there is a constant degree bound
function c = 1 is the parametric dual of the Dominating Set (DS) problem. It was
studied by Nieminen [9]. It was also studied under the framework of parameterized
complexity by Dehne, Fellows, Fernau, Prieto and Rosamond in [2].

Recently Peng Zhang [12] showed that the (2, 1)-PDBEP problem with con-
stant degree bound function is NP-hard even for c = 1. They gave approximation
algorithms for (2, 1)-PDBEP problem for the degree bound functions c = 1 and
c = 2 with approximation factors 2 and 32/11 respectively. They showed that (2, 1)-
PDBEP problem on trees with constant degree bound function can be solved exactly
in O(n2) time.

1.2 Our Contribution

We propose three different approximation algorithms for the unweighted problem
with arbitrary degree bound function (i.e., for arbitrary non-negative function c).
Two of these algorithms are combinatorial in nature and give approximation ratios
of 4 and 2 for (2, 1)-PDBEP. The third algorithm solves the general (k, t)-PDBEP.
Here we start with the natural IP formulation (IP1) which turns out to have a large

2

integrality gap. To overcome this we propose a Lagrangian-like relaxation where
we give an approximate IP (IP2) such that any α approximation of this IP is a
α(k − t + 1) approximation of (k, t)-PDBEP problem. Lagrangian relaxation has
been used extensively in the design of approximation algorithms for a variety of
problems (see e.g., [1, 3, 10, 7, 6, 5] and a comprehensive survey in [8]). We then
present a t(k− t+ 1)(1− 1/k) + 1/k approximation iterative rounding algorithm for
IP2. Putting these results together we get t(1− 1/k)(k − t+ 1)2 + (k − t+ 1)(1/k)
approximation for (k, t)-PDBEP problem. See [4] for details on iterative rounding.

Next we consider the (2, 1)-PDBEP problem for edge-weighted graphs with arbi-
trary degree bound function. In this case we present a combinatorial approximation
algorithm with approximation factor of 2 + log2 n. Edge-weighted (2, 1)-PDBEP
problem is not addressed in the literature, to the best of our knowledge.

Finally we present an exact algorithm for the (2, 1)-PDBEP on edge-weighted
trees with arbitrary degree bound function. The time complexity of this algorithm
is O(n log n). This is an improvement over the O(n2) algorithm in [12] which is
applicable to only the constant degree bound function case for unweighted trees.

In this work we have considered three types of generalization of PDBEP problem:
(1) we have considered general function c() in place of the constant function, (2)
we have also considered the problem in the context of edge weighted graphs, and
(3) the problem is extended to k-uniform hypergraphs, referred as (k, t)-PDBEP. In
each case we have presented either an improved or a new solution.

2 Approximation Algorithms for (2, 1)-PDBEP

The number of edges in an optimum solution of (k, t)-PDBEP problem can be
bounded as follows.

Lemma 2.1. An optimum solution of (k, t)-PDBEP has at most (1/t)
∑

v∈V cv
edges.

Proof. Let E′ ⊂ E be a solution of (k, t)-PDBEP. Let U = {v ∈ V |d′v ≤ cv}. Then
from the degree condition we see that U is a vertex cover for the hypergraph (V,E′)
such that each hyperedge of this hypergraph is incident on at least t vertices of U .
Hence t · |E′| ≤

∑
u∈U cu ≤

∑
v∈V cv.

2.1 Edge Addition based Algorithm

Algorithm 1 computes a maximal solution Y by iteratively adding edges, i.e., in
each iteration selects a new edge and adds it to Y if it does not result into degree
violation on both end-vertices. By construction Y is a valid solution of (2, 1)-PDBEP
problem.

3

Let dY (x) denote the degree of a vertex x in the graph (V, Y). Partition the
vertex set into sets: A = {v|dY (v) < cv}, B = {v|dY (v) = cv}, and C = {v|dY (v) >
cv}. Observe that every edge of the set E \ Y which is incident on a vertex in A,
has its other vertex in B. Hence for any a1, a2 ∈ A the E \ Y edges incident on a1
are all distinct from those incident on a2.

Next, the algorithm constructs another edge set Z containing any cv − dY (v)
edges from E \ Y , incident on v for each v ∈ A. Observe that Z is also a solution of
(2, 1)-PDBEP because every edge in it satisfies the degree constraints. Finally the
larger of Y and Z is output. Either way the output is a valid solution.

Consider the set Y ∪ Z. In this set the degree of each vertex is not less than
its degree-bound. Hence the cardinality of the output of the algorithm is at least∑

v cv/4. From Lemma 2.1 the approximation ratio is bounded by 4.

Data: A connected graph G = (V,E) and a function c : V → Z≥0 such that
cv ≤ d(v) for each vertex v.

Result: Approximation for the largest subset of E which satisfies the
degree-condition.

Y := ∅;
for e ∈ E do

if Y ∪ {e} satisfies the degree-condition then
Y := Y ∪ {e};

end

end
Compute A := {v ∈ V |dY (v) < cv};
Z := ∅;
for v ∈ A do

Select arbitrary cv − dY (v) edges from E \ Y which are incident on v and
insert them into Z;

end
if |Y | ≥ |Z| then

return Y ;
else

return Z;
end

Algorithm 1: Edge Addition Based Algorithm

Theorem 2.2. Algorithm 1 has approximation factor 4.

4

2.2 Edge Deletion based Algorithm

The second algorithm for (2, 1)-PDBEP is based on elimination of edges from the
edge set. Starting with the input edge set E, iteratively we delete the edges in
violation, i.e., in each iteration one edge (u, v) is deleted if the current degree of u
is greater than cu and that of v is greater than cv. The surviving edge set Y is the
result of the algorithm. See Algorithm 2.

Data: A connected graph G = (V,E) and a function c : V → Z≥0 such that
cv is the degree bound for vertex v.

Result: Approximation for the largest subset of E which satisfies the
degree-condition.

Y := E;
for e = (u, v) ∈ Y do

if dY (u) > cu and dY (v) > cv then
Y ← Y \ {e};

end

end
return Y ;

Algorithm 2: Edge Deletion Based Algorithm

Clearly Y satisfies the degree condition. Also observe that dY (v) ≥ cv for all
v ∈ V . Hence |Y | ≥

∑
v cv/2. From Lemma 2.1, |Y | ≥ OPT/2 where OPT denotes

the value of the optimum solution.

Theorem 2.3. Algorithm 2 has approximation ratio 2.

3 Approximation Algorithm for (k, t)-PDBEP

In this section we explore a linear programming based approach to design an ap-
proximation algorithm for the (k, t)-PDBEP problem.

3.1 Integer Program

The natural IP formulation of the problem is as follows. Here xu takes value 1 if u
satisfies degree condition. Otherwise it takes value zero.

5

IP1: maximize ψ =
∑
e∈E

ye

subject to ye ≤
1

t
(xu1 + xu2 + . . .+ xuk) , ∀e = {u1, . . . , uk} ∈ E∑

e∈δ(v)

ye ≤ cvxv + dv(1− xv) , ∀v ∈ V

xv ∈ {0, 1} , ∀v ∈ V
ye ∈ {0, 1} , ∀e ∈ E

In the above δ(v) denotes the set of edges incident on vertex v. The solution
computed by the program is E′ = {e|ye = 1}. The linear programming relaxation
of the above integer program will be referred to as LP1.

Lemma 3.1. The integrality gap of IP1 is Ω(n) where n is the number of vertices
in the hypergraph.

Proof. Consider the following instance of the problem for normal graphs, i.e., k =
2, t = 1. Let G be a complete graph on n vertices {v0, v1, . . . , vn−1} and the degree
bound be cv = 1∀v ∈ V . We now construct a feasible fractional solution of LP1
as follows. Let xv = 0.5 for all v and ye = 1 for e = (vi, vj) for all i, where j is in
the interval [(i − bn/4c)(mod n), (i + bn/4c)(mod n)]. The value of the objective
function for this solution is at least (n − 1)2/4. On the other hand, from Lemma
2.1, the optimum solution for the IP1 cannot be more than n. Hence the integrality
gap is Ω(n).

High integrality gap necessitates an alternative approach.

3.2 Approximate Integer Program

We propose an alternative integer program IP2 given below where ε is any positive
real number. It is a form of Lagrangian relaxation of IP1. We will show that its
maximal solutions are also solutions of IP1 and any α approximation of IP2 is a
α(k − t + 1)/(1 − ε(k − t)) approximation of IP1. A solution of IP2 is maximal if
perturbing the value of any ye or any zv either renders the solution infeasible or does
not improve its objective function value.

6

IP2: maximize φ = (k − t+ 1)
∑
e∈E

ye − (1 + ε)
∑
v∈V

zv

subject to
∑
e∈δ(v)

ye ≤ cv + zv , ∀v ∈ V

zv ∈ {0, 1, 2, . . .} , ∀v ∈ V
ye ∈ {0, 1} , ∀e ∈ E

Note that any feasible solution of IP1 is also a feasible solution of IP2 if we
choose zv = max{0,

∑
e∈δ(v) ye − cv} for all v. Besides, in any maximal solution

of IP2, zv = max{0,
∑

e∈δ(v) ye − cv}. Hence in a maximal solution z values need

not be specified. We will denote
∑

v zv by Z. Given any valid solution E′, φ(E′)
will denote the objective function value where ye = 1 if and only if e ∈ E′ and
zv = max{0,

∑
e∈δ(v) ye − cv} for all v.

Lemma 3.2. Every maximal solution of the integer program IP2 is also a feasible
solution of (k, t)-PDBEP.

Proof. Consider any maximal solution E′ of IP2. In a maximal solution zv =
max{0,

∑
e∈δ(v) ye − cv} for all v. Assume that it is not a feasible solution of

(k, t)-PDBEP. Then there must exist an edge e = {u1, . . . , uk} ∈ E′ such that
more than k − t vertices incident on e are in violation. Suppose that number is
k − t + q. Let E′′ = E′ \ {e}, i.e., set ye to zero. Then for each vertex u ∈ e
and having zu > 1, we can reduce zu by 1 and still get a valid solution. Then
φ(E′′)− φ(E′) ≥ (k− t+ q)(1 + ε)− (k− t+ 1) > 0 because q ≥ 1. This contradicts
the fact that E′ is a maximal solution.

In a maximal solution E′ of IP2, from the point of view of IP1, Z is the sum of
excess degrees of violating vertices. Hence Z ≤ (k − t)|E′|.

Lemma 3.3. Any α approximate solution of IP2, which is also maximal, is a α(k−
t+ 1)/(1− ε(k − t)) approximation of (k, t)-PDBEP problem.

Proof. Let E′1 be an optimum solution of (k, t)-PDBEP and E′2 be an α - approxi-
mation maximal solution of IP2. Then E′1 is also a solution of IP2 with y1e = 1 for
e ∈ E′1 and z1v = max{0,

∑
e∈δ(v) y1e− cv}. Then φ(E′1) = (k− t+ 1)|E′1|− (1 + ε)Z1

and φ(E′2) = (k− t+ 1)|E′2|− (1 + ε)Z2. Let OPT denote the optimum value of IP2.
Then φ(E′1) ≤ OPT and OPT/α ≤ φ(E′2). So (k − t + 1)|E′1| − (1 + ε)Z1 ≤
α((k − t + 1)|E′2| − (1 + ε)Z2). Let β1 = Z1/|E′1| and β2 = Z2/|E′2|. Then
|E′1|/|E′2| ≤ α(k− t+1− (1+ε)β1)/(k− t+1− (1+ε)β2) ≤ α(k− t+1)/(1−ε(k− t))
because βi are between 0 and k − t.

7

3.3 Algorithm for IP2

We propose Algorithm 3 which approximates the IP2 problem with approximation
factor t(k − t + 1)(1 − 1/k) + 1/k. LP2 is the linear program relaxation of IP2.
Here we assume an additional set of constraints, {zv = 0|v ∈ C}, where we require
a solution in which every v ∈ C must necessarily satisfy the degree condition. The
input to the problem is (H = (V,E), C). Algorithm starts with E′ = ∅ and builds it
up one edge at a time by iterative rounding. In each iteration we remove at least one
edge from further consideration. Hence it requires at most |E| iterations (actually
it requires at most |V |+ 1 iterations, see the remark after Lemma 3.4). To simplify
the analysis, Algorithm 3 is presented in the recursive format.

LP2: maximize φ = (k − t+ 1)
∑
e∈E

ye − (1 + ε)
∑
v∈V

zv

subject to
∑
e∈δ(v)

ye ≤ cv + zv , ∀v ∈ V \ C

∑
e∈δ(v)

ye ≤ cv , ∀v ∈ C

zv ≥ 0 , ∀v ∈ V
ye ≥ 0 , ∀e ∈ E
ye ≤ 1 , ∀e ∈ E

In the following analysis we will focus on two problems: (H,C) of some i-th
nested recursive call and (H1, C1) of the next call of SolveIP2 function. For simplicity
we will refer to them as the problems associated with graphs H and H1 respectively.

Lemma 3.4. In a corner solution of LP2 on a non-empty graph there is at least
one edge e with ye = 0 or ye ≥ 1/k.

Proof. Assume the contrary, i.e., in an extreme point solution of LP2 all ye are in
the open interval (0, 1/k). Let us partition the vertices as follows. Let n1 vertices
have cv > 0 and zv > 0, n2 vertices have cv > 0 and zv = 0 and n3 vertices have
cv = 0 and zv > 0. Note that the case of cv = 0 and zv = 0 cannot arise because
ye > 0 for all e. In each case let n′i vertices have the condition

∑
e∈δ(v) ye ≤ cv + zv

or
∑

e∈δ(v) ye ≤ cv (depending on v ∈ V \ C or v ∈ C) tight (an equality), so

n′′i = ni−n′i vertices have the condition a strict inequality. Let the number of edges
in H be m.

The total number of variables is n1 +n2 +n3 +m. In n′1 +n′2 cases
∑

e∈δ(v) ye =
cv + zv or

∑
e∈δ(v) ye = cv (depending on v ∈ V \ C or v ∈ C) where cv ≥ 1

8

and each ye < 1/k so there must be at least k + 1 edges incident on such vertices.
Since the graph has no isolated vertices, every vertex has at least one incident edge.
Hence m ≥ n′1 + n′2 + (n1 + n2 + n3)/k. So the number of variables is at least
n′1 + n′2 + (1 + 1/k)(n1 + n2 + n3).

Now we find the number of tight conditions. No ye touches zero or one. The
number of zv which are equal to zero is n2, and the number of instances when∑

e∈δ(v) ye = cv+zv or
∑

e∈δ(v) ye = cv (depending on v ∈ V \C or v ∈ C) is n′1+n′2+

n′3. Hence the total number of conditions which are tight is n2 +n′1 +n′2 +n′3. Since
the solution is an extreme point, the number of tight conditions must not be less
than the number of variables. So n2+n′1+n′2+n′3 ≥ n′1+n′2+(1+1/k)(n1+n2+n3).
This implies that n1 = n2 = n3 = 0, which is absurd since the input graph is not
empty.

Remark: The program LP2 has |E| + |V | variables and 2|E| + 2|V | constraints.
Hence in the first iteration the optimum (corner) solution must have at least |E| −
|V | tight edge-constraints (i.e., ye = 0 or ye = 1.) All these can be processed
simultaneously so in the second iteration at most |V | edges will remain in the residual
graph. Thus the total number of iterations cannot exceed |V |+ 1.

Lemma 3.5. If ye > 0 in any maximal solution of LP2 where e = {u1, . . . , uk},
then (cui > 0, zui = 0) for at least t vertices in e.

Proof. Let S = {u ∈ e|zu > 0}. Assume that |S| ≥ k−t+1. Let δ = min{ye,minu∈S
{zu}}. Subtract δ from ye and each zu for u ∈ S. The resulting solution is still a
feasible solution of LP2 and its objective function value is greater than the optimum
by at least ε · δ(k − t + 1). This is absurd. Hence zu cannot be positive for more
than k − t vertices in any edge e having ye > 0 in the solution.

Next assume that cu = 0 for some u ∈ e\S. Then ye must be zero, contradicting
the fact that ye > 0.

Therefore at least t vertices in e must have (cui > 0, zui = 0).

Lemma 3.6. Algorithm 3 returns a feasible solution of (k, t)-PDBEP.

Proof. Let H denote the input graph in the i-th iteration of the algorithm, for some
i, and I denote the computed solution for it. Using induction we will show that I is
a solution of (k, t)-PDBEP on H. Actually we will establish a stronger claim: I is a
solution of (k, t)-PDBEP on H and every vertex in input set C satisfies the degree
condition. In the following, parameters associated with the i+ 1-st iteration will be
expressed with subscript-1, for example, H1, I1, fu1 etc.

In the base case (last iteration) the graph has no edges hence the solution I = ∅
trivially satisfies the claim.

9

In the induction step the input graph is H and the computed solution is I in
i-th iteration, for some i. From induction hypothesis, the i + 1-step solution I1 is
a feasible (k, t)-PDBEP solution on graph H1 and every vertex in C1 satisfies the
degree constraint with respect to I1.

First consider the case when ye = 0. In this case fu = fu1 for all u ∈ V ,
H = H1 ∪ {e}, C = C1, I = I1. Hence I is a solution of PDBEP on H and every
vertex in C satisfies the degree condition.

Now we consider the case when ye ≥ 1/k. We have to show that each edge in
I is valid w.r.t. I, i.e., at least t vertices incident on each edge satisfy the degree
condition in I. We consider three cases.

1. Consider some u /∈ e. Then δ(u) = δ1(u) and fu = fu1. So u satisfies the
degree condition in I if and only if it satisfies the same in I1. So every e′ ∈ I such
that e′ ∩ e = ∅, is valid in I.

2. Let u1, . . . , ut be the vertices which are selected, in the algorithm, from e to be
inserted in C to form C1. Then fui > 0 and zui = 0 and fui1 = fui − 1 for 1 ≤ i ≤ t.
From induction hypothesis each ui satisfies degree condition in I1. Coming back to
I, the degree and f -value of these vertices increase by 1. So they continue to satisfy
the degree condition in I. Hence e is valid in I.

3. Now we have to consider e′ ∈ I which are different from e but e′ ∩ e 6= ∅.
Clearly e′ ∈ I1, so it is valid in I1 from induction hypothesis. Assume that there
is a vertex u ∈ e′ ∩ e which satisfies the degree condition in I1 but does not satisfy
the condition in I. This is possible only if fu = fu1. But this happens only if
fu = fu1 = 0. But e′ ∈ I1 and it is incident on u so u was not satisfying degree
condition in I1, a contradiction. So e′ continues to remain valid in I.

We conclude that I is a solution of (k, t)-PDBEP for H. Lastly we have to show
that every vertex in C satisfies the degree condition with respect to I.

From the induction hypothesis each v ∈ C satisfies the condition in I1 because
C ⊆ C1. First consider the case that v /∈ e. In this case fv = fv1 and the degree
of v in I is same as in I1. So v continues to satisfy the degree condition in I. Next
consider the case that v ∈ e. Since zv = 0 and

∑
e′∈δ(v) ye′ ≤ fv, fv > 0. So

fv1 = fv − 1. Now f -value and the degree of v both increase when we go from I1 to
I. As v was satisfying the degree condition in I1, it still satisfies it in I.

Now we analyze the performance of the algorithm.

Lemma 3.7. Algorithm 3 gives a (t(k − t + 1)(1 − 1/k) + 1/k)/(1 − ε(k − t)) ap-
proximation for IP2.

Proof. Let us define c = (t(k − t + 1)(1 − 1/k) + 1/k)/(1 − ε(k − t)). Let E′

denote the optimum solution of LP2 on H and I denote the solution computed
by the algorithm for IP2. We can also treat I as a solution of LP2 by assigning

10

Data: A connected hypergraph G = (V,E) and a function c : V → Z≥0
Result: A solution of IP2.
for v ∈ V do

fv := cv;
end
C := ∅;
E′ := SolveIP2(G,C, f); /* see the function SolveIP2 */

return E′;
Algorithm 3: Iterative Rounding based Algorithm in Recursive Format

zu = max{0,
∑

e′∈δ(u) ye′−fu}. Similarly define E′1 and I1 for H1. Our goal is to show

that cφ(I) ≥ φ(E′). This claim is trivially true for the base case. From induction
hypothesis cφ(I1) ≥ φ(E′1). We consider two cases: (i) ye = 0, (ii) ye ≥ 1/k. In the
first case φ(I) = φ(I1) and φ(E′) = φ(E′1) so cφ(I) ≥ φ(E′) trivially holds. Next we
consider the second case.

Let us begin with the solution E′ of LP2 for H and construct a solution of LP2
for H1. Let α = ye. For each u ∈ e such that fu > 0, the f -value is decreased by 1 as
we go to the next iteration. So we need to decrease the value of

∑
e′∈δ(u) ye′ suitably.

First we remove ye from the solution. That balances α. Now if the remainder of ye′

add up to at least 1 − α, then decrease the values of these ye′ in any way so that
total decrement is 1− α. If their sum is less than 1− α, then set those ye′ to zero.
Repeat this step on each u ∈ e with positive f -value. In case where fu = 0 for some
u ∈ e, subtract zu by α. The resulting solution is a valid solution of LP2 for H1,
call it E′′1 .

Let n1 be the number of e vertices with f -value zero in H. From the fact that
E′1 is the optimum solution of LP2 for H1 and the details of the construction of E′′1
we have φ(E′1) ≥ φ(E′′1) ≥ φ(E′) +n1(1 + ε)α− (k− t+ 1)(α+ (k−n1)(1−α)). On
the other hand φ(I) ≥ φ(I1) + (k − t+ 1)− n1(1 + ε).

From induction hypothesis cφ(I1) ≥ φ(E′1). So cφ(I) ≥ φ(E′)+n1(1+ ε)α− (k−
t+1)(α+(k−n1)(1−α))+c((k−t+1)−n1(1+ε)). Since the coefficient of α is positive,
set it to its least value, namely, 1/k. So cφ(I) ≥ φ(E′) + (1/k)n1(1 + ε)− (1/k)(k−
t+1)(1+(k−n1)(k−1))+c((k− t+1)−n1(1+ε)). In this expression the coefficient
of n1 is negative so we replace it by k − t, its largest possible value. So cφ(I) ≥
φ(E′) + c(1− ε(k− t)) + (k− t)(1 + ε)/k− (k− t+ 1)(1/k)(1 + t(k−1)). This may be
rewritten as cφ(I) ≥ φ(E′)+c(1−ε(k−t))−(1−ε(k−t))/k−(k−t+1)t+(k−t+1)t/k.
So cφ(I) ≥ φ(E′) + c(1− ε(k− t))− 1/k− (k− t+ 1)t+ (k− t+ 1)t/k. Plugging the
value of c we get cφ(I) ≥ φ(E′).

Combining lemmas 3.3 and 3.7 we have the following result.

11

Function: SolveIP2(H = (VH , EH), C, f)
if EH := ∅ then

return ∅;
end
VH := VH \ {v|v is isolated in H};
(y, z) = LPSolver(H,C);
/* solve LP2 with degree-bounds f(x) for all x ∈ VH */

if ∃e ∈ EH with ye = 0 then
H1 := (VH , EH \ {e});
C1 := C;
E′ := SolveIP2(H1, C1, f);

else
From Lemma 3.4 there exists an edge e := {u1, . . . , uk} with ye ≥ 1/k;
From Lemma 3.5 w.l.o.g. we assume (fui > 0, zui = 0) for i = 1, . . . , t;
for j = 1 to t do

fuj := fuj − 1;
end
C1 := C ∪ {u1, . . . , ut};
for j = t+ 1 to k do

fuj := max{fuj − 1, 0};
end
H1 := (VH , EH \ {e});
E′ := SolveIP2(H1, C1, f) ∪ {e};
/* Including e in E′ means ye is rounded up to 1. In case

fui = 0, zui is implicitly raised to ensure that∑
e′∈δ(ui) ye′ ≤ fui + zui continues to hold. We do not

explicitly increase zui value in the code since it is not

output as a part of the solution. */

end
return E′;

12

Theorem 3.8. Algorithm 3 approximates (k, t)-PDBEP with approximation factor
t(1−1/k)(k−t+1)2+(k−t+1)(1/k)

(1−ε(k−t))2 .

4 Approximation Algorithm for Edge-Weighted (2, 1)-
PDBEP

In this section we will present an approximation algorithm for edge weighted (2, 1)-
PDBEP with arbitrary degree bound function.

Let H(v) denote the heaviest cv edges incident on vertex v, called heavy set
of vertex v. Then from a generalization of Lemma 2.1 the optimum solution of
(2, 1)-PDBEP in weighted-edge case is bounded by

∑
v∈V

∑
e∈H(v)w(e) where w(e)

denotes the weight of edge e. We will describe a method to construct up to 1+log2 |V |
solutions, which cover ∪v∈VH(v). Then the heaviest solution gives a 2 + log2 |V |
approximation of the problem.

4.1 The Algorithm

Input: A graph (V,E) with non-negative edge-weight function w(). Let |V | = n.
Step 0: Add infinitesimally small weights to ensure that all weights are distinct,

without affecting heavy sets.
Step 1: E1 = E \ {e = (u, v) ∈ E|e /∈ H(u) and e /∈ H(v)}.
Step 2: T = {e = (u, v) ∈ E|e ∈ H(u) and e ∈ H(v)}.
Step 3: E2 = E1 \ T . Clearly each edge of E2 is in the heavy set of only one of

its end-vertices. Suppose e = (u, v) ∈ E2 with e /∈ H(u) and e ∈ H(v). Then we
will think of e as directed from u to v. Observe that the graph has no directed cycle
since all edge weights are distinct.

Step 4: Label the vertices with integers 0 to n − 1 such that if edge (u, v)
is directed from u to v, then Label(u) < Label(v). Define subsets of E2-edges,
A0, . . . , Ak−1, where k = log2 n, as follows. Ar consists of edges (u, v) directed from
u to v, such that the most significant r − 1 bits of binary expansion of the labels of
u and v are same and r-th bit differs. Note that this bit will be 0 for u.

Step 5: Output that set among the log2 n + 1 sets, T,A0, . . . , Ak−1, which has
maximum cumulative edge weight.

Theorem 4.1. The algorithm gives a feasible solution with approximation factor
2 + log2 n.

Proof. Set T constitutes a feasible solution since both ends of each edge in it satisfy
the degree constraint. The directed E2 edges define an acyclic graph, hence the
labeling can be performed by topological sorting. Clearly E2 = ∪rAr. In Ar all

13

arrows are pointed from u with r-th most significant bit zero to v with r-th most
significant bit one. Hence it is a bipartite graph where all arrows have heads in
one set and the tails in the other. All vertices on the head side satisfy the degree
conditions because all their incident edges are in their heavy sets. Therefore Ar are
feasible solutions. We have T ∪ (∪rAr) = E1. Observe that ∪vH(v) = E1. Only
T -edges have both ends in heavy sets. Using the fact that OPT ≤

∑
v w(H(v)), we

deduce that OPT ≤ 2w(T) +
∑

r w(Ar). So the weight of the set output in step 5
is at least OPT/(2 + log2 n).

5 Exact Algorithm for Edge-Weighted Trees

In this section we give a polynomial time exact algorithm for the edge-weighted
(2, 1)-PDBEP problem for the special case when the input graph is a tree. We will
denote the degree of a vertex v in the input graph by d(v) and its degree in a solution
under consideration by d′(v).

Let T be a rooted tree with root R. For any vertex v we denote the subtree rooted
at v by T (v). Consider all feasible solutions of (2, 1)-PDBEP for tree T (v) in which
the degree of v is at most cv−1, call them H-solutions (white). Let h(v) denote the
weight (sum of the weights of the edges) of the maximum-weight solution among the
H-solutions. Similarly let g(v) be the maximum-weight G-solution (grey) in which
the degree of v is restricted to be equal to cv. Lastly b(v) will denote the maximum-
weight B-solution (black) which are solutions of T (v) under the restriction that
degree of v be at least cv and every neighbor of v in the solution satisfies its degree
condition. It may be observed that one class of solutions of T (v) are included in G-
solutions as well as in B-solutions. These are the solutions in which d′(v) = cv and
every child u of v in the solution has d′(u) ≤ cu. If in any of these categories there
are no feasible solutions, then the corresponding maximum-weight value is assumed
to be zero. Hence the optimum solution of (2, 1)-PDBEP for T is the maximum of
h(R), g(R), and b(R). Note that all the three values are zero for leaf nodes because
the corresponding tree has no edges. In this algorithm we will show how to compute
these three values, h(x), g(x) and b(x) for each vertex x, from bottom up. Finally
we output max{h(R), g(R), b(R)}.

Suppose we know the three values of every vertex in T (v), except v. Our objective
is to compute these values for v. Let Ch(v) denote the set of child-nodes of v. We
partition Ch(v) into H(v) = {u ∈ Ch(v)|h(u) ≥ max{g(u), b(u)}}, G(v) = {u ∈
Ch(v)|g(u) > max{h(u), b(u)}}, B(v) = Ch(V) \ (G(v) ∪H(v)). Note that in case
b(u) = g(u) > h(u), then u is placed in B(v).

Our goal is to construct one optimum member of each of H-, G-, and B-solutions
of T (v). The construction of the maximum-weight solution tree, in each case, in-

14

volves deciding which edges from v to its children must be a part of the solution
tree. Further we have to decide which solution of each child will be included in the
solution of T (v). It is easy to observe that if we decide not to include (v, u) in the
solution, then we must pick the optimum solution of T (u), i.e., which corresponds
to the largest of h(u), g(u), and b(u). Note that the weight of the optimum solution
of vertex u belonging to H(v), G(v), and B(v) is h(u), g(u), and b(u) respectively.
This is so because not adding the edge (v, u) to the solution leaves the degree of u
unchanged, i.e., if u was not violating the degree condition, then it continues to do
so. Similarly, if we decide to include the edge (v, u) and u ∈ H(v) ∪B(v), then also
we can use the optimum solution of T (u).

Suppose A is the optimum solution of T (u) and let B be the best solution of
T (u) that can be used if we decide to include the edge (v, u). Then the contribution
of u to the solution of T (v) being constructed is A if the edge (v, u) is not included,
and it is B + w(v, u) if the edge is included. We define gain(u) = B + w(v, u)−A,
which is the gain achieved if the edge (v, u) is included.

In order to construct a maximum weight G-solution of T (v), connecting v to any
u ∈ H(v) ∪B(v) we get a contribution of w(v, u) + max{h(u), b(u)} because in this
case we can use the optimum solution of T (u). If we do not connect v to such a
vertex, then the contribution will be only max{h(u), b(u)}. Hence the gain(u) will
be w(v, u). Now if u ∈ G(v) and if we connect it with v, then we can only use
H-solution or B-solution of u because using a G-solution will result in d′(u) = cu+1
and some child node of u may not be satisfying the degree condition. If all children
of u are satisfying degree condition in the optimum G-solution, then this solution is
also included in B-solutions. Therefore in case u ∈ G(v), not connecting v with u
gives a contribution of g(u). But connecting with v gives w(v, u) + max{h(u), b(u)}.
Hence the gain(u) is w(v, u) + max{h(u), b(u)} − g(u). Now that we know the gain
for each u ∈ Ch(v), we sort the vertices of Ch(v) in non-increasing order of their
gain(). To construct a maximum weight G-solution of v, we select top cv vertices
of the sorted list, call it set S′(v), and connect v with them.

Next consider the construction of a maximum weight B-solution of T (v). We
can connect v to any number of H(v) vertices and use their optimum H-solutions.
Connecting v to each such vertex u will give a gain of w(v, u). Next if u ∈ B(v)∪G(v),
then also we can only use its H-solution. In this case gain(u) will be w(v, u)+h(u)−
max{g(u), b(u)}. Once agin we sort the vertices of Ch(v) in non-increasing order of
the gains associated with them. Let first k1 vertices have positive gain and the rest
have non-positive gain. The subset S′′(v) of Ch(v) to which v should be connected
is computed as follows. If cv ≤ k1, then S′′(v) includes all the top k1 vertices.
Otherwise it includes top cv vertices.

In the construction of a maximum weight H-solution of T (v), observe that an
edge between v and any u ∈ H(v)∪B(v) can be included and the optimum solution

15

of T (u) can be used. In this case gain(u) = w(v, u). But for u ∈ G(v) if the edge
(v, u) is included in the solution, then the optimum solution of T (u) (which is a
G-solution) cannot be included in the solution being formed. Hence the net gain
on including (v, u) in this case is w(v, u) + max{h(u), b(u)} − g(u). Once again we
sort the elements of Ch(v) in non-increasing order of their gain. Suppose first k1
vertices have positive gain and the rest have non-positive gain. First min{k1, cv−1}
vertices, denoted by set S′′′(v) are connected with v.

Lemma 5.1. For any internal vertex v of T ,

(i) h(v) =
∑

u∈B(v) b(u) +
∑

u∈H(v) h(u) +
∑

u∈G(v) g(u) +
∑

u∈S′′′(v) gain(u),
where gain(u) = w(v, u)+max{h(u), b(u)}−g(u) for u ∈ G(v) and gain(u) = w(v, u)
for u ∈ B(v) ∪H(v).
If d(v) = cv and v 6= R, then set b(v) = g(v) = 0 otherwise

(ii) b(v) =
∑

u∈B(v) b(u) +
∑

u∈H(v) h(u) +
∑

u∈G(v) g(u) +
∑

u∈S′′(v) gain(u),
where gain(u) = w(v, u)+h(u)−max{g(u), b(u)} for u ∈ G(v)∪B(v) and gain(u) =
w(v, u) for u ∈ H(v).

(iii) g(v) =
∑

u∈B(v) b(u) +
∑

u∈H(v) h(u) +
∑

u∈G(v) g(u) +
∑

u∈S′(v) gain(u),
where gain(u) = w(v, u)+max{h(u), b(u)}−g(u) for u ∈ G(v) and gain(u) = w(v, u)
for u ∈ B(v) ∪H(v).

The algorithm initializes h(v), b(v), and g(v) to zero for the leaf vertices and
computes these values for the internal vertices bottom up. Finally it outputs the
maximum of the three values of the root R. In order to compute S′(), S′′() and S′′′()
sets for each vertex, we need to sort the child nodes with respect to the gain values.
Thus at each vertex we incur O(|Ch| log |Ch|) cost, where Ch denotes the set of
children of that vertex. Besides, ordering the vertices so that child occurs before the
parent (topological sort) takes O(n) time. Hence the time complexity is O(n log n).

6 Conclusion

In this work we gave constant factor approximation algorithms for the (2, 1)-PDBEP
problem. These algorithms are both simple and efficient taking time linear in the
size of the input. However their analysis does not seem to extend easily to the
general (k, t)-instance of the problem. Next we gave a constant factor (taking k, t
as constants) approximation algorithm for the (k, t)-PDBEP employing LP based
approach which uses the techniques of Lagrangian relaxation and iterative rounding.
This is an expensive algorithm that needs to solve a linear program several times.
However, it shows the power of linear programming based approach in combina-
torial optimization. Subsequently we presented a log2 n approximation algorithm

16

for the (2, 1)-PDBEP where edges are weighted. Finally an exact algorithm for
edge-weighted trees is presented with time complexity O(n log n).

Weighted (k, t)-PDBEP is an open problem. The objective function of LP1 can
be easily modified to handle the weighted case, but due to the large integrality gap
it remains useless. However, there are cutting-plane methods like Chvatal-Gomory
cuts [11] that have been known to improve the integrality gaps for some problems.
It would be worthwhile to see if these methods can help reduce the integrality gap
of our LP.

As far as we know there is no known inapproximability result for the PDBEP
problem. So that presents another avenue for further research.

Acknowledgement: We thank the referees of the paper for detailed feedback and
suggestions which improved the overall presentation of the paper. We also thank an
anonymous referee for pointing out an error in lemma 3.4.

References

[1] André Berger, Vincenzo Bonifaci, Fabrizio Grandoni, and Guido Schäfer. Bud-
geted matching and budgeted matroid intersection via the gasoline puzzle. In
IPCO, pages 273–287, 2008.

[2] Frank Dehne, Michael Fellows, Henning Fernau, Elena Prieto, and Frances
Rosamond. nonblocker: Parameterized algorithmics for minimum dominat-
ing set. In Jǐŕı Wiedermann, Gerard Tel, Jaroslav Pokorný, Mária Bieliková,
and Július Štuller, editors, SOFSEM 2006: Theory and Practice of Computer
Science, volume 3831 of Lecture Notes in Computer Science, pages 237–245.
Springer Berlin Heidelberg, 2006.

[3] Naveen Garg. A 3-approximation for the minimum tree spanning k vertices. In
FOCS, pages 302–309, 1996.

[4] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner
network problem. Combinatorica, 21(1):39–60, 2001.

[5] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema and lagrangian
relaxation. J. ACM, 48(2):274–296, 2001.

[6] Jochen Könemann, Ojas Parekh, and Danny Segev. A unified approach to
approximating partial covering problems. Algorithmica, 59(4):489–509, 2011.

17

[7] Jochen Könemann and R. Ravi. A matter of degree: Improved approximation
algorithms for degree-bounded minimum spanning trees. SIAM J. Comput.,
31(6):1783–1793, 2002.

[8] J. Mestre. Primal-Dual Algorithms for Combinatorial Optimization Problems.
PhD thesis, University of Maryland, 2007.

[9] J. Nieminen. Two bounds for the domination number of a graph. Journal of
the Institute of Mathematics and its Applications, 14:183–187, 1974.

[10] R. Ravi and Michel X. Goemans. The constrained minimum spanning tree
problem (extended abstract). In SWAT, pages 66–75, 1996.

[11] Mohit Singh and Kunal Talwar. Improving integrality gaps via chvátal-gomory
rounding. In APPROX-RANDOM, pages 366–379, 2010.

[12] Peng Zhang. Partial degree bounded edge packing problem. In Proceedings
of the 6th international Frontiers in Algorithmics, and Proceedings of the 8th
international conference on Algorithmic Aspects in Information and Manage-
ment, FAW-AAIM’12, pages 359–367. Springer-Verlag, 2012.

18

	Introduction
	Related Work
	Our Contribution

	Approximation Algorithms for (2,1)-PDBEP
	Edge Addition based Algorithm
	Edge Deletion based Algorithm

	Approximation Algorithm for (k,t)-PDBEP
	Integer Program
	Approximate Integer Program
	Algorithm for IP2

	Approximation Algorithm for Edge-Weighted (2,1)-PDBEP
	The Algorithm

	Exact Algorithm for Edge-Weighted Trees
	Conclusion

