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Graph partitioning is an important problem that has extensive applications in many

areas, including scientific computing, VLSI design, and task scheduling. The multi-level

graph partitioning algorithm reduces the size of the graph gradually by collapsing vertices

and edges over various levels, partitions the smallest graph and then uncoarsens it to

construct a partition for the original graph. Also, at each step of uncoarsening the

partition is refined as the degree of freedom increases. In this thesis we have implemented

the multi-level graph partitioning algorithm and used the Fiduccia Mattheyses algorithm

for refining the partition at each level of uncoarsening. Along with the few published

heuristics we have tried one of our own for handling dense nodes during the coarsening

phase. We present our results and compare them to those of the Metis software that is the

current state of the art package for graph partitioning.
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CHAPTER 1
INTRODUCTION

Given an un-weighted graph G with V vertices and E edges and given a number k,

the Graph Partitioning problem is to divide the V vertices into k parts such that the

number of edges connecting vertices in different parts is minimized given the condition

that each part contains roughly the same number of vertices. If the graph is weighted, i.e.

the vertices and edges have weights associated with them; the problem requires the sum

of the weights of the edges connecting vertices in different parts to be minimized given

the condition that the sum of the weights of the vertices in each part is roughly the same.

The problem can be reduced into that of bisection where the graph is split into two parts

and then each part is further bisected using the same procedure recursively. The problem

addressed in this thesis is that of bisecting the given graph according to a given ratio.

Also, the input graph is assumed to be un-weighted. However, this assumption is just at

the implementation level and does not in any way change the underlying algorithms.

It has been shown that the Graph Partitioning problem is NP-hard [1] and so

heuristic based methods have been employed to get sub-optimal solutions. The goal for

each heuristic method is to get the smallest possible cut in reasonable time. We discuss

some popular methods in the next chapter.

Graph Partitioning is an important problem since it finds extensive applications

in many areas, including scientific computing, VLSI design and task scheduling. One

important application is the reordering of sparse matrices prior to factorization. It has

been shown that the reordering of rows and columns of a sparse matrix can reduce the

amount of fill that is caused during factorization and thus result in a significant reduction

in the floating point operations required during factorization. Although the ideal thing

is to find a node separator rather than an edge separator, an edge separator can be

converted into a node separator using minimum cover methods.
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The multi-level graph partitioning algorithm reduces the size of the graph gradually

by collapsing vertices and edges over various levels, partitions the smallest graph and

then uncoarsens it to construct a partition for the original graph. Also, at each step of

uncoarsening the partition is refined as the degree of freedom increases. In this thesis we

have implemented the multi-level graph partitioning algorithm and used the Fiduccia

Mattheyses algorithm for refining the partition at each level of un-coarsening.

G

G

G

G

G

G

G

Figure 1-1. Multi-level Coarsening and Uncoarsening. The smallest graph is cut and the
partition gets projected and refined as it moves up to the original biggest
graph.

In the multi-level approach the coarsening phase is important. If a graph is folded in

such a way that the properties of the graph are preserved i.e. the coarse graph is a smaller

replica of the fine graph, a good cut of the coarse graph translates into a good cut of the

fine graph [2]. Using the general coarsening heuristics described in chapter 3, it is possible

that the properties of the graph are not preserved when handling dense nodes and may
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result in a very unbalanced coarse graph. We present a heuristic for handling dense nodes

that preserves the properties of the graph during coarsening and gives a more balanced

coarse graph in fewer coarsening steps.
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CHAPTER 2
REVIEW OF SOME GRAPH PARTITIONING METHODS

2.1 Kernighan and Lin

The KL algorithm [3] starts with an arbitrary partition and then tries to improve it

by finding and exchanging a set of nodes in one partition with a same size set in the other

partition such that the net effect is a reduction in the cut size. The set of nodes is found

incrementally starting with one node in each partition and adding one node in each step.

The algorithm starts by calculating the difference of external and internal costs for each

node and then selects that pair of nodes a and b, one in each partition, for which the gain

is maximum. Gain is defined as

G = Da + Db − cab, where Da = Ea − Ia and Db = Eb − Ib.

Nodes a and b are then kept aside and the D values are recalculated for the remaining

nodes assuming that nodes a and b have been swapped. The process is repeated and a

new pair of nodes is selected. This is repeated until all the nodes get set aside. Finally a

subset of k nodes is selected from each partition such that the net gain is the maximum

positive value. These nodes are exchanged and the new graph is again improved using the

same algorithm. The process stops when the maximum gain by exchanging any subset of

nodes is not more than 0.

XY

BA

Y X

A∗ = A−X + Y
B∗ = B − Y + X

A∗ B∗

Figure 2-1. Kernighan and Lin: subsets X and Y are swapped

2.2 Fiduccia and Mattheyses

The FM algorithm [4] is basically an efficient implementation of the KL algorithm

using special data structures that bring down the complexity from n2 to linear in terms
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of the size of the graph. Also, unlike KL, the FM algorithm moves one node at a time

instead of exchanging a set of nodes between the partitions. However, it uses the concept

of node gain and moves nodes even if the gain is negative in order to climb out of local

minima. This algorithm works by inserting nodes into various buckets according to their

gains and uses a doubly-linked list for nodes within the same gain bucket. This makes the

deletion and insertion of nodes into buckets a constant time operation. More details about

this algorithm are presented in the next chapter where we discuss our implementation of

this algorithm.

2.3 Quadratic Programming

Hager et al [5] have shown that the Graph Partitioning problem can be formulated as

the following continuous quadratic programming problem:

Minimize f(x) := (1− x)T (A + D)x

Subject to 0 ≤ x ≤ 1, l ≤ 1T x ≤ u,

where 1 is the vector whose entries are all 1. When x is a 0/1 vector, the cost

function f(x) is the sum of those aij for which xi = 0 and xj = 1. Hence, when x is a 0/1

vector, f(x) is the sum of the weights of edges connecting the sets V1 and V2 defined by

V1 = i : xi = 1 and V2 = i : xi = 0.

They have shown that for an appropriate choice of the diagonal matrix D, the min-cut

is obtained by solving the above minimization problem.
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CHAPTER 3
METHODS

3.1 Graph Compression

The sparse matrices resulting from some finite-element problems have many small

groups of nodes that share the same adjacency structure. We compress such graphs into

smaller graphs by coalescing the nodes with identical adjacency structures. As a result

of compression, the graph partitioning algorithm must process a smaller graph; this,

depending on the degree of compression achieved, can reduce the partitioning time.

3

2

1

4

BA

2

2

2

2

2

22

7

6

5

4

3

2

1hash(5)
= 36

= 36
hash(1)

8

7

6

5

Figure 3-1. Graph compression. A) Input graph having 13 edges and 8 nodes. Nodes 1
and 5 have the same adjacency structure. B) Compressed graph with 6 edges
and 7 nodes.

We used a hash value based technique for compression. For each node of the input

graph, a hash value is calculated as follows: hash(i) = i +
∑

(Adj(i)). For example for

node 2 with adjacency structure 1, 3, 5, 10, hash(2) = 2 + 1 + 3 + 5 + 10 = 21. Then

the hash value of each node is compared to that of its neighbors. If two nodes have the

same hash value, then their adjacency structures are compared. Having the same hash

value does not guarantee that the nodes have the same adjacency structure, although not

having the same hash value does guarantee that the nodes do not have the same adjacency
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structure. All the nodes having the same adjacency structure are then merged into one

node and the new node has a weight equal to the sum of the weights of the merged nodes.

All the edges from the merged nodes to the common neighbors are collapsed together and

their weights added up. In case the input graph is un-weighted, each edge and node is

assumed to have a weight of 1 and the output compressed graph is weighted. The time

taken to compress the input graph is proportional to its size.

3.2 Handling Disconnected Graphs

A lot of sparse matrices arising in practice have disconnected components. That is

the underlying graphs have more than one connected components. Such graphs during

coarsening cannot be folded beyond a certain size since there are no edges left to be

matched. We pre-process such graphs before passing them to the partitioning routine. For

all input graphs, we determine if they have one or more connected components by doing a

depth first search and marking all nodes that can be reached. If an input graph has more

than one connected components, we pick a random node from each component and add

zero weight edges joining these nodes. This results in a fully connected graph that can be

coarsened down to two nodes if required. However, the coarsening heuristics tend to avoid

folding these edges until there are no other edges left. This preserves the properties of the

original graph during coarsening and the cut of the coarsest graph is closer to that of the

input graph.

3.3 Multi-level Algorithm

The multi-level algorithm as implemented by us coarsens the input graph to the

required size but does not uncoarsen and refine it back to the original graph in one step.

Rather it uncoarsens it up to a certain intermediate level and then coarsens it back to the

lowest level. This process of uncoarsening and refining up to an intermediate level and

coarsening again to the lowest level is repeated a number of times. Each time the partition

vector is saved and the partition that gives the best cut is used when uncoarsening and

refining proceeds past the intermediate level to the top level graph. Since the coarsening
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heuristics use randomization, by repeating it several times we can get significantly

different results and use the best of them. Also, since this repetition is done only from an

intermediate level when the graph is much smaller, it does not account for a substantial

increase in the running cost.

selected
the best partition
a few times and
Cycle repeated

G

G

G

G

G

G

G

Figure 3-2. Multi-level with repeated coarsening and uncoarsening plus refining.

3.4 Coarsening

The input graph is coarsened over several levels to get the coarsest graph that is not

larger than a user defined size in terms of the number of vertices. To go from a fine graph

to a coarse graph at the next level, two steps are necessary. During the first, a maximal

matching of vertices of the fine graph is found and during the second, these matched

vertices are collapsed to get the coarse graph.

Based on a heuristic, an unmatched vertex is matched to one of its unmatched

neighbors. Maximal matching is obtained when there are no edges that are incident on
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two unmatched vertices. We use a total of four different heuristics to get the matchings.

These heuristics are employed at different times or sometimes a combination of two

different heuristics is used to find the matchings for the same graph.

3.4.1 Random Matching

A random permutation of the vertices of the graph is generated. The vertices are then

visited in this order and for every unmatched vertex another random permutation of its

adjacent vertices is generated. The neighbors are then visited in this random order and

the first unmatched vertex is selected to be matched.

3.4.2 Heavy Edge Matching

As with Random matching, first a random permutation of all vertices is generated.

The vertices are then visited in this order and for every unmatched vertex all its

unmatched neighbors are visited and the one that connects with the heaviest edge is

selected. The idea is to match the heavy edges so that they get collapsed and the resulting

coarse graph has only light edges that can be cut.

3.4.3 Heaviest Edge Matching

As the name suggests, the edges are sorted according to their weights and matching

begins by selecting the heaviest edge. All the edges are visited in descending order and

edges with unmatched end points are selected. This heuristic is used when the graph size

has been reduced substantially so that not much work is done in sorting the edges.

3.4.4 Zero Edge Matching

This heuristic is used to match the zero weight edges that are added when handling

dense nodes. It is similar to the heavy edge matching heuristic except that instead of

matching the heaviest edge, we match an edge of weight zero. In order to differentiate

these zero weight edges with the ones added to connect the disconnected components,

we match those vertices that have a common neighbor. Also, we match the second zero

weight edge instead of the first so that the last zero weight edge remaining after collapsing

17



all but two of the edges adjacent to a dense node is not selected for matching. The

heuristic for handling dense nodes is discussed in detail in the next section.

Once we have a maximal matching of the vertices of the fine graph, we create a

mapping vector that maps the vertices in the fine graph to those in the coarse graph.

Then using the matching and the mapping vectors, the coarse graph is constructed. For

every unmatched vertex, its adjacency structure is copied over to the coarse graph whereas

for matched vertices, the new vertex in the coarse graph that is mapped to these vertices

has a union of their adjacency structures minus the edge that connected them, as its

adjacency structure. The edge weights are copied over except when the matched vertices

have a common neighbor. In that case the edges to the common neighbor get merged

into one and the new edge has a weight equal to the sum of the weights of the merged

edges. Similarly, the new vertex gets the sum of the weights of the merged vertices. Any

duplicate edges resulting from the process are merged together with their weights added.

11

21
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11

222
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BA
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2
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Figure 3-3. Graph coarsening. A) The original graph showing a maximal matching. B)
Graph after one step of coarsening. C) A maximal matching of the coarse
graph. D) Graph after two steps of coarsening.
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3.5 Heuristic for Handling Dense Nodes

Graphs of some matrices arising from linear programming problems have a star-like

structure (Figure 3-5.(A)). Also, some graphs may have a few dense nodes that resemble

a star-like structure. The normal matching heuristics fail to preserve the properties of

such graphs during coarsening and may produce a highly unbalanced coarse graph. Also,

these heuristics can match only one of the star edges in one step and if the whole graph

has only a few of these star-like dense nodes the coarsening process can become extremely

slow (Figure 3-4). This implies a lot more levels of coarsening thus resulting in that many

more graphs to be stored with many consecutive graphs being roughly the same size.

Expectedly, this can use up all the memory resulting in a fatal error.

12

1
1

A B

Figure 3-4. Coarsening of dense nodes. A) A dense node with degree 12. B) Node balance
after 11 steps of coarsening using random or heavy edge matching.

Whenever we detect that the coarsening process is not reducing the size of the graph

by a reasonable amount, we call this routine to handle the dense nodes. The process starts

by calculating the degrees for all nodes and then sorting them according to degree. The

nodes are then visited from the highest degree to the lowest degree. However, if we reach

a node that has a degree less than the median degree or a degree less than three (default

value that can be overwritten by the user) times the average degree or a degree less than

one-fifth (default value that can be overwritten by the user) the maximum degree, the

process is terminated and the routine returns the graph obtained so far. Here is how a

dense node is handled. We add zero weight edges to connect the nodes adjacent to the

dense node. However, these edges are initially added to a new intermediate graph of
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the same size (Figure 3-5.(B)). This process is repeated for all the dense nodes that are

handled and all the edges are added to the same intermediate graph. So at the end of

the first step we have an intermediate graph that has only zero weight edges. In the next

step we run the random matching heuristic on the intermediate graph. Since all the edges

have the same weight, random matching heuristic is the obvious choice. Now we add this

intermediate graph to the graph being handled for dense nodes. Since the added edges

weigh zero, the internal degrees of the nodes are preserved in the original graph. Also,

adding an edge over an existing edge makes no difference since the added sum remains

unchanged. Either heavy edge matching or heaviest edge matching heuristic is now applied

to the resulting graph and it is coarsened (Figure 3-5.(C)). The idea behind this heuristic

is to pair-wise collapse the edges incident on a dense node so that coarsening proceeds

faster and the resulting coarser graph preserves the structure and the properties of the

original graph. Also, it results in a much more balanced coarsest graph and a good cut

of the coarsest graph transforms into a good cut of the original top level graph. Some

more processing is required in order to collapse the edges that still remain, since the first

round only reduces the maximum degree by half. For this we repeatedly do zero edge

matching (Figure 3-5.(C,D)) followed by heavy/heaviest edge matching until we reach

a stage when the coarsening produces a graph with size not in desired proportion of the

fine graph thus signaling the presence of dense nodes and a re-run of the handling routine

is required. Zero edge matching, as the name suggests matches only the zero weight

edges, thus enabling more pair-wise collapsing of the edges incident on a dense node. This

matching heuristic matches only the second neighbor that is connected via a zero weight

edge to a randomly chosen unmatched vertex. In Figure 3-5.(E) there is only one zero

weight edge connecting the two nodes, hence it does not get matched and the matching

shown is obtained using heavy/heaviest edge matching. Also, it distinguishes with the

zero weight edges added to connect the disconnected components in the top level graph.

By the nature of the edges added during dense node handling, these edges have endpoints
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that share a common neighbor that is the dense node, whereas the edges added to connect

disconnected components do not share this property, because if that is the case, then the

disconnected components would not be disconnected. This logic is used to select the edges

added for handling dense nodes while leaving out the ones that connect the disconnected

components.

The idea behind the selection of second zero weight node, is to avoid the situation

shown in Figure 3-5.(G). As shown in the figure, if the last zero weight edge is selected,

the resulting coarse graph would not be correctly balanced. However, if one of the other

edges is selected as shown in the figure, the resulting graph is more balanced (Figure

3-5.(F)).
3.6 Cutting the Coarsest Graph

We use the Greedy graph growing partitioning algorithm (GGGP) to cut the coarsest

graph. This algorithm is similar to the FM algorithm except that the gains are computed

incrementally unlike the FM algorithm where the gains are precomputed. Also, in this

implementation we need only one bucket array that represents the frontier between the

growing region and the rest of the graph. The graph is partitioned by selecting a node at

random and moving it to the growing region. The cut is represented by the edges crossing

over from the growing region to the other side of the graph. Based on this the gains for

the vertices adjacent to the moved node are computed and the nodes inserted into the

bucket array. Next, the node with the maximum gain that causes the smallest increase in

the edge-cut without violating the required balance is moved to the growing region. As is

done in the FM algorithm, this node is now deleted from the bucket array and the gains

of its neighbors that are already in the bucket are updated. However, unlike FM, gains for

those neighbors that are not already in the bucket or in the growing region are computed

and the vertices added to the bucket array. The above process is repeated until no move

maintains the required balance. Since this method is sensitive to the initial node selection,

the whole process is repeated with four randomly chosen initial vertices. The one that

gives the best cut-size is retained and the corresponding partition is returned. Since the
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Figure 3-5. Dense nodes handling heuristic. A) A dense node with degree 12. B) The
intermediate graph showing the dense node and the zero weight edges with a
maximal matching. C) The original dense node after one step of coarsening
also showing a maximal matching. D) After two steps of coarsening. E) After
three steps. F) The final node balance after four steps of coarsening. G) When
the zero weight edge in (E) is selected for matching.
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coarsest graph is not more than a few hundred nodes in size, running this algorithm four

times does not add much to the total partitioning cost.

3.7 Uncoarsening and Refining

During the uncoarsening and refining phase, the initial partition of the coarsest

graph is projected onto the next level fine graph and is subsequently refined using the FM

heuristic. This procedure is repeated until a partition is projected onto the top level graph

and is refined to obtain the final partition and cut-size for the graph. The mapping vector

is used to project the coarse graph partition onto the fine graph. During uncoarsening,

based on the initial partition of the fine graph, the gains for the vertices are computed and

the vertices inserted into the respective gain buckets. Two bucket arrays (Figure 3-6) are

used, one for the left partition vertices and the other for the right partition vertices.

. . .MAX
GAIN

+ pmax

− pmax

1 3 N2 . . .

pmax is the max degree of a node across all levels

Figure 3-6. Bucket list structure

The gains are computed using the following equation:

gain(i) = ed(i)− id(i),

where ed(i) is the external degree and id(i) is the internal degree for node i.

The internal degrees of the nodes are computed during the coarsening phase while

constructing a coarse graph. At this point the internal degree of a vertex is just the sum

of the edge weights of the edges incident on that vertex and the external degree is zero.
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When projecting a partition onto the fine graph, for every vertex, its internal degree is

subtracted by the weight of the edge connecting it to a neighbor on the other side of the

partition and its external degree is increased by the same amount. At this point the coarse

graph is deleted and the fine graph is passed to the FM algorithm routine for refining its

initial partition. The bucket arrays are also passed to the FM algorithm to be used during

refining.

a

A B

a

Figure 3-7. The FM algorithm. A) Graph showing a partition with three edges cut. Node
’a’ has a gain value of +1. B) Graph after one step of FM. Node ’a’ is moved
to the other side resulting in a reduction of 1 in the cut-size.

Refining of the initial cut is done by moving nodes from one partition to the other

such that it results in a decrease in the cut-size. A node to be moved is picked from

the bucket array that has a higher maximum gain bucket. However, if this move fails

to maintain the desired balance, the next node in the same gain bucket is tried. If none

of the nodes in that gain bucket could be moved while maintaining the desired balance,

the next lower gain bucket is tried. This could be from the other bucket array. If the

initial partition itself is not balanced, the first pass of the refining algorithm is used as

a balancing pass to get to the desired balance without caring for the cut-size. However,

nodes are still moved starting from the highest gain bucket of the heavier side. A slack

equal to the weight of the heaviest node (w) in the graph is provided such that each

partition is within r ∗ total weight ± w, where r is the desired balance. This ensures

that a balance can always be found especially in the case when r is 0.5. Once a balance

has been obtained, it is always maintained for that graph since any node affecting the
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balanced is not moved. However, later when this graph is projected onto the next fine

graph the balance may not hold since the weight of the heaviest node in the fine graph

can be less and hence the slack would be less. Subsequently, valid moves are made and

the improvement in the cut-size is recorded. Any node that is moved is removed from

its gain bucket and added to a free list that is used to re-initialize the buckets for the

next pass. When a node is moved, the gains of its neighboring vertices are recomputed

and the vertices moved to the new gain buckets. Nodes are moved even when they make

the partition worse in an attempt to climb out of local minima. When the partition does

not improve as compared to its previous best even after making around 50-100 moves,

the pass is terminated and the moves are undone. If the current pass produced any

improvement in the cut-size, another pass is initiated. All the nodes in the free list are

added to their new gain buckets after the new gains are computed taking into account

their new partition. More passes of the refinement algorithm are made until during a pass

there is no improvement in the cut-size. Our experiments have shown that on an average

3-4 passes are required (Table 4-7).
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CHAPTER 4
RESULTS

All the tests were run on Sun Solaris SPARC server using the MATLAB software

version 7.3. Mex functions were written to interface MATLAB with the C libraries. Metis

4.0 [6] and hmetis 1.5 [7] were used for comparisons. We refer to our graph partitioner as

GP when comparing with pmetis1 and hmetis2 .

Graph matrices were taken from the University of Florida Sparse Matrix Collection

[8]. All the square matrices in the collection were sorted by the number of non-zeros and

the first 1250 were selected for the various experiments. These matrices ranged in size

from 15 to 1014951 in terms of the number of non-zeros and 5 to 325729 in terms of the

number of rows/columns. Each un-symmetric matrix was made symmetric by adding its

transpose to itself. The numerical values were ignored when doing the partitioning and the

graphs were treated as undirected with no self-edges. Table 4-1 lists 10 graphs that were

randomly chosen from the ones used for the experiments. These graphs are used to show a

sample set of some of the results.

Various GP parameters and their values used across all experiments are listed in

Table 4-2. For pmetis and hmetis, we used the default parameter values.

We used the performance profile plot (Figure 4-3) to compare the results. When

comparing the cut sizes, for each graph the edge cut obtained using various methods/applications

was divided by the smallest of these values and the result saved as a vector for each

method/application. Finally these vectors were sorted and plotted against each other. The

same process was used for comparing the run times.

1 pmetis is the Metis interface used when not more than 8 partitions are required.

2 hmetis is the hypergraph partitioner that can be used for normal graphs.
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Figure 4-1. Performance Profile Definition: run times for methods a, b and c are being
compared. For 900 of the test cases the time taken by method a ≤ 1.5 times
the lowest run time obtained for the methods a, b and c, whereas for 800 of
the test cases the time taken by method b ≤ 1.5 times the lowest run time
obtained for the methods a, b and c and the number of test cases for which
method c takes ≤ 1.5 times the lowest run time obtained for the three
methods is only 200. Thus, here a is the best method, followed closely by b
and c is the worst of the three methods that are being compared.
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Table 4-1. Some of the graphs used

Name No. of No. of Kind
Vertices Non-zeros

GHS indef/bloweybl 30003 109999 materials problem
HB/bcsstm26 1922 1922 structural problem
GHS indef/aug2d 29008 76832 2D/3D problem
Bomhof/circuit 3 12127 48137 circuit simulation problem
Zitney/radfr1 1048 13299 chemical process simulation problem
Gset/G29 2000 39980 undirected weighted random graph
Sandia/fpga dcop 34 1220 5892 subsequent circuit simulation problem
GHS psdef/ford1 18728 101576 structural problem
GHS indef/tuma1 22967 87760 2D/3D problem
Schenk IBMNA/c-38 8127 77689 optimization problem

Table 4-2. Common parameters for GP

Parameter Description Value
Ratio of number of nodes in fine graph to number of nodes in coarse graph 1.05
when starting dense node detection
Level at which to resume repetitive Multi-level btotal levels/2c
Number of consecutive moves without improvement during FM refining 100
The number of times the degree of a node is to the average degree to 3
be classified as a dense node
Ratio of the degree of a node to the maximum degree when the handling of 0.2
dense nodes stops
The ratio of the number of nodes in the current coarse graph to the 0.01
number of nodes in the top level input graph until when heavy edge
matching heuristic is used
Seed value for generating random numbers 6101975

Table 4-3. Results for pmetis, hmetis and GP(Repetitive Multi-level with 9 repetitions)

Matrix pmetis hmetis GP
Cut Size Run Time Cut Size Run Time Cut Size Run Time

GHS indef/bloweybl 4520 0.2673 4502 6.5873 4579 0.6432
HB/bcsstm26 0 0.0097 0 0.0035 0 0.0307
GHS indef/aug2d 116 0.0831 98 4.5201 107 0.1505
Bomhof/circuit 3 1314 0.0541 1840 6.9645 2443 0.8656
Zitney/radfr1 554 0.0082 501 1.3391 501 0.0669
Gset/G29 6850 0.0274 6691 5.4964 6813 0.3033
Sandia/fpga dcop 34 26 0.0023 20 0.2421 18 0.0232
GHS psdef/ford1 131 0.0411 124 5.0167 133 0.1092
GHS indef/tuma1 167 0.0566 160 3.8550 199 0.1356
Schenk IBMNA/c-38 975 0.0362 898 5.1726 1030 0.2915
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Figure 4-2. Input Matrix: GHS psdef/ford1 displayed using cspy.m.

Table 4-4. Cut sizes for pmetis and GP(Repetitive Multi-level with 9 repetitions)

Matrix pmetis GP
r = 0.500 r = 0.499 r = 0.497 r = 0.495

GHS indef/bloweybl 5024 5038 5014 4993
HB/bcsstm26 0 0 0 0
GHS indef/aug2d 110 110 125 116
Bomhof/circuit 3 1377 2637 2453 2428
Zitney/radfr1 551 543 531 528
Gset/G29 6837 6865 6852 6849
Sandia/fpga dcop 34 20 18 18 18
GHS psdef/ford1 147 127 127 131
GHS indef/tuma1 169 202 199 202
Schenk IBMNA/c-38 1068 1024 1008 1141
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Figure 4-3. GHS psdef/ford1 permuted using the partition vector and displayed using
cspy.m; the entries in the second and fourth quadrant are the two partitions;
the entries in the first/third quadrant are the edges separating the two
partitions.

Table 4-5. Results for GP with simple and repetitive multi-level

Matrix No Repetition 4 Repetitions 9 Repetitions
Cut Size Run Time Cut Size Run Time Cut Size Run Time

GHS indef/bloweybl 5091 0.2334 5108 0.3903 5050 0.6183
HB/bcsstm26 0 0.0218 0 0.0263 0 0.0303
GHS indef/aug2d 136 0.1055 113 0.1258 113 0.1499
Bomhof/circuit 3 2747 0.2741 2575 0.5673 2575 0.9604
Zitney/radfr1 690 0.0181 690 0.0440 690 0.0737
Gset/G29 7294 0.0585 7294 0.1492 7294 0.2579
Sandia/fpga dcop 34 62 0.0063 19 0.0157 19 0.0252
GHS psdef/ford1 135 0.0699 135 0.0916 135 0.1206
GHS indef/tuma1 208 0.0950 208 0.1224 208 0.1731
Schenk IBMNA/c-38 1538 0.1398 1243 0.2144 1243 0.3400
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Figure 4-4. Performance Profile: comparing the edge cuts among hmetis, pmetis,
GP(Repetitive Multi-level with 9 repetitions) and GP(Simple Multi-level with
0 repetitions) at r = 0.45. hmetis does better than the other three whereas GP
does better than pmetis.

Table 4-6. Cut sizes for GP(Repetitive Multi-level with 9 repetitions) with and without
dense node heuristic (DNH)

Matrix No. of No. of Kind Cut Size
Vertices Non-zeros DNH Minus DNH

Bates/Chem97ZtZ 2541 7361 statistical/mathematical 2 9
Rajat/rajat22 39899 195429 circuit simulation 28 122
Rajat/rajat23 110355 555441 circuit simulation 186 533
Rajat/rajat19 1157 3699 circuit simulation 53 114
Bomhof/circuit 4 80209 307604 circuit simulation 2090 3576
Hamm/scircuit 170998 958936 circuit simulation 103 137
Grund/poli 4008 8188 economic problem 16 22
Schenk IBMNA/c-43 11125 123659 optimization problem 3141 4334
Pajek/Wordnet3 82670 132964 directed weighted graph 4957 6927
Schenk IBMNA/c-67b 57975 530583 subsequent optimization 1625 2323
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Figure 4-5. Performance Profile: comparing the run times among hmetis, pmetis,
GP(Repetitive Multi-level with 9 repetitions) and GP(Simple Multi-level with
0 repetitions) at r = 0.45. pmetis does better than the other three whereas GP
does much better than hmetis.

Table 4-7. Average number of passes of FM

Matrix Passes
GHS indef/bloweybl 2.9459
HB/bcsstm26 1.7778
GHS indef/aug2d 2.4167
Bomhof/circuit 3 3.4333
Zitney/radfr1 2.5833
Gset/G29 4.5385
Sandia/fpga dcop 34 2.5500
GHS psdef/ford1 2.6667
GHS indef/tuma1 2.8387
Schenk IBMNA/c-38 2.1837
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Figure 4-6. Performance Profile: comparing the edge cuts among Metis at r = 0.50 and
GP(Repetitive Multi-level with 9 repetitions) at r = 0.499, 0.497, 0.495. GP
almost matches Metis at r = 0.499 and does better in the the other two cases,
the best being at 0.495.

4.1 Conclusion

We have a robust software that has been thoroughly tested for any memory leaks.

Assertions were used at various points to assure the logical correctness of the software.

Our graph partitioning software can be run with the simple multi-level and with repetitive

multi-level options. These options give the user a flexibility to trade quality with time

depending on what is more critical.

4.2 Future Work

4.2.1 Interfacing with QP-Part

As mentioned in chapter 2, QP-Part solves the graph partitioning problem by

formulating it as a quadratic programming optimization problem. Hager et al have

shown [9] that their method gives cuts superior to those of METIS, though their method

is expensive when applied to the whole graph. We plan to interface QP-Part with the
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Figure 4-7. Performance Profile: comparing the edge cuts among simple Multi-level,
Multi-level with four repetitions of coarsening and uncoarsening plus refining
(middle) and Multi-level with nine repetitions of coarsening and uncoarsening
plus refining (top).

multi-level approach such that the expensive QP-Part is used to refine the partition when

the graph is small and the cheap FM algorithm is used when the graph is sufficiently large.

This should give us better partitions at reasonable cost.

4.2.2 Implementing Boundary KL

In boundary KL, during uncoarsening only the nodes at the boundary of the partition

are inserted into the gain buckets. Since the number of nodes at the boundary is a small

fraction of the total number of nodes in the graph, this saves a lot of time. However, it

is possible that this may reduce the quality of partition since some interior nodes can

have higher gain values than some boundary nodes and such interior nodes do not get

considered for move since they are not in either bucket list.
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Figure 4-8. Performance Profile: comparing the run times among simple Multi-level (top),
Multi-level with four repetitions of coarsening and uncoarsening plus refining
(middle) and Multi-level with nine repetitions of coarsening and uncoarsening
plus refining.
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CHAPTER 5
PSEUDO CODE FOR GP

5.1 Top Level

Read (GIN)
GSY M+SRT = transpose (GIN + transpose (GIN))
G = GSY M+SRT

GC = Compress Graph (G)
CC = Find Connected Components (GC)
G = GC

if size(CC) > 1
i = 0
for each CC do

rep (i + +) = Find Random Node (CC)
end
E = New Graph (size(GC))
for j = 0 to i− 1 do

if j < i− 1
Add Zero Wt Edge (E, rep (j), rep (j + 1))
Add Zero Wt Edge (E, rep (j + 1), rep (j))

end
if j > 0

Add Zero Wt Edge (E, rep (j − 1), rep (j))
Add Zero Wt Edge (E, rep (j), rep (j − 1))

end
end
G = GC + E

end
Read (DENSE RATIO, MIN SIZE, LEVEL, REPETITION COUNT)
PREV (G) = NULL
Coarsen: matchings = Get Matchings (G)
GCOARSE = Apply Matchings (G, matchings)
PREV (GCOARSE) = G
NEXT (G) = GCOARSE

if size(GCOARSE) ≤ MIN SIZE
G = GCOARSE

GOTO Cut
end
if size(G)/size(GCOARSE) < DENSE RATIO

G = Handle Dense Nodes (GCOARSE)
GOTO Coarsen

end
Cut: partition = Cut Graph (G)
if !GMARK
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GMARK = Get Graph From List (G, LEVEL)
end
UnCoarsen: GFINE = Uncoarsen (G, partition)
GREFINE = Refine FM(GFINE)
G = GREFINE

if G == GMARK and REPETITION COUNT > 0
REPETITION COUNT −−
if partition(G) < Best Partition

Best Partition = partition(G)
end
GOTO Coarsen

end
else if G == GMARK

partition(G) = Best Partition
end
if PREV (G) 6= NULL

GOTO UnCoarsen
end
Return (G)

5.2 Handling Dense Nodes
Read (GIN)
EPREV = NULL
n = size(GIN)
avg deg = nnz(GIN)/n
degrees = Compute Node Degrees (GIN)
perm = Quick Sort (degrees)
med deg = median(degrees)
max deg = degrees (0)
for i = 0 to n− 1 do

if degrees (i) < 3 ∗ avg deg or degrees (i) < 0.2 ∗max deg or degrees (i) < med deg
break

end
node = perm(i)
E = New Graph (n)
for each adj(node) do

Add Zero Wt Edge (E, adj(node), next(adj(node)))
Add Zero Wt Edge (E, adj(node), prev(adj(node)))

end
ENEW = E + EPREV

EPREV = ENEW

end
Get Random Matchings (EPREV )
Return (GIN + EPREV )
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