
Coloring 3-colorable Graphs

Pawan Kumar Aurora
Advised by Prof. Shashank K Mehta

Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur

State of the Art Seminar

k -coloring

I A mapping f : V (G)→ {1, . . . , k} s.t. f (u) 6= f (v) if
(u, v) ∈ E(G)

I The chromatic number of a graph is the smallest k s.t. G
can be k -colored

I It is NP-Hard to color a graph using optimal number of
colors [1]

I The same is true also for graphs of constant chromatic
number atleast 3

k = 3

I We will focus on 3-colorable graphs
I Objective: to color such a graph using as few colors as

possible
I It is NP-Hard to color such a graph using 4 colors [2]
I Nothing better in terms of lower bounds is known
I Best upper bounds of the order of |V |ε for ε > 0
I Gap is HUGE

3-colorable Graphs

Applications

I Compiler Optimization: Assigning variables to registers
I Scheduling: Assigning jobs to time slots

Wigderson’s Algorithm [3]

I Based on the following facts:
1. The subgraph induced by the neighborhood of any vertex is

2-colorable
2. 2-coloring is polynomial time solvable
3. ∆ + 1 colors suffice to color any graph having maximum

degree ∆

I Using facts 1 and 2, 2-color N(v) for a vertex v having
deg(v) ≥ d

√
ne; remove colored vertices and iterate

I The remaining graph has ∆ < d
√

ne; color it using d
√

ne
colors using fact 3

I Total number of colors used: O(
√

n)

Blum’s Algorithm [4]

I Consider the following recurrence for some ε > 0:
C(n) ≤ 2 + C(n − εn/f (n))

I Solving first for n′ in the range [n/2,n] we get:
C(n) ≤ 2f (n)/ε+ C(n/2)

I Solving the above recurrence gives C(n) = O(f (n))

I Repeatedly finding a 2-colorable set of size εn/f (n) gives
O(f (n))-coloring

Blum’s Algorithm: How to get a set of desired size?

I Either directly find a set of desired size
I For e.g. N(v) for a vertex v having degree atleast n/f (n)

I Or combine several small sets to get a set of desired size
I Find a 2-colorable set S having |N(S)| ≤ f (n)|S|

I For e.g. N(v) for a vertex v having degree atmost f (n)

I Remove both S and N(S) from the graph while collecting S
in a bucket

I Repeat until the graph is reduced to less than half its
original size

I The bucket contains a 2-colorable set of size Ω(n/f (n))

Blum’s Algorithm: A simple Case

I For all pairs of vertices u, v ∈ V (G), consider the
2-colorable set S = N(u) ∩ N(v)

I For the case where |S| ≥ n
f (n)2 , one of the following always

holds:
1. |N(S)| ≤ n/f (n) (same as f (n)|S|)⇒ Collect S
2. |N(S)| > n/f (n) and N(S) is 2-colorable⇒ N(S) is the

desired set
3. |N(S)| > n/f (n) and N(S) is not 2-colorable⇒ Next slide

Blum’s Algorithm: |N(S)| > n
f (n) and N(S) is not

2-colorable

I The first condition is inconsequential, the second condition
alone is enough

I N(S) is not 2-colorable⇒ S is not monochromatic⇒ u
and v belong to the same color class

I Merge u and v to w :
V = V − {u, v} ∪ {w}, N(w) = N(u) ∪ N(v)

I Results in a graph having one less vertex without using
any new color

Blum’s Algorithm: Input Graph

I We can assume the following about our input graph:
1. It has minimum degree atleast f (n)
2. It has maximum degree atmost n/f (n)
3. No two vertices share more than n/f (n)2 neighbors

I The above can be enforced for any arbitrary f (n)

I However, the value of f (n) is determined by how best we
can handle the above graph

Blum’s Algorithm: High Level Idea

I Remember that our aim is still to find a 2-colorable set of
size Ω(n/f (n))

I We will find a set that contains a large enough independent
set

I Using an approximate vertex cover algorithm we will
extract an independent set

I The size of the independent set obtained will determine the
value of f (n)

Blum’s Algorithm: Using Vertex Cover

I I is an independent set in a graph G⇒ V (G)− I is a vertex
cover in G and vice versa

I An algorithm for vertex cover can be used to find an
independent set

I Since both the problems are NP-Hard, we can only hope
for an approximate result

I If VC is an optimal vertex cover in G, then we can find a
vertex cover of size atmost

(
2− log log|V |

2 log|V |

)
|VC| in G [5]

Blum’s Algorithm: Using Vertex Cover

I |I| ≥ 1
2

(
1− 1

log|T |

)
|T | ⇒ |VC| ≤ 1

2

(
1 + 1

log|T |

)
|T |

I We find a vertex cover of size atmost
1
2

(
1 + 1

log|T |

)(
2− log log|T |

2 log|T |

)
|T | <

[
1− Ω

(
1

log|T |

)]
|T |

I That gives an independent set of size Ω
(
|T |

log|T |

)
I Note: It would be useless to find a subset T that contains

an independent set of size atleast 1
2+ε

(
1− 1

log|T |

)
|T |

Blum’s Algorithm: Motivation

I Consider three sets red, blue and green of roughly the
same size

I For all pairs of vertices in different sets, add an edge with
probability p

I The resulting graph is 3-colorable and has all the edges
distributed uniformly at random

I For a vertex v ∈ red, N(v) is nearly half blue and half
green

I So N(N(v)) is almost half red

Blum’s Algorithm: Reality

I But worst-case graphs are not random
I Can we atleast find a subset of N(N(v)) for some v that

contains an independent set nearly half its size?
I The answer is YES

I This exercise is useful only when the subset size is
sufficiently larger than f (n)

I Every vertex has a neighborhood of size atleast f (n) which
trivially contains an independent set atleast half its size

Blum’s Algorithm: Finding desired subset-Step 1

I Consider a vertex v ∈ red
I Find a subset S of N(v) s.t. nearly half of the edges

incident on S enter into red
I Let red be the color with the most edges incident

I Implies Dred (blue ∪ green) ≥ 1
2 D(blue ∪ green)

I However, it is not true that Dred (N(v)) ≥ 1
2D(N(v)) for any

v ∈ red
I Vertices can have wildly varying degrees

I Solution lies in restricting the vertex degrees extremely
tightly

Blum’s Algorithm: Counter-example

I D(red) = 5m, D(green) = D(blue) = (4 + 1
2)m

I ∀ v ∈ red: Dred (N(v)) = 8 + m
2 , DV−red (N(v)) = 4 + m

I D(N(v)) = 12 + 3
2m. So, Dred (N(v)) ≈ 1

3D(N(v))

Blum’s Algorithm: First Neighborhood

I S = N(v)∩{v ∈ V | d(v) ∈ [(1 + δ)j , (1 + δ)j+1)}, δ = 1
5 log n

I For some j , Dred (S) ≈ 1
2D(S)

Blum’s Algorithm: Finding desired subset-Step 2

I Having obtained the set S, we now look at N(S)

I Even though Dred (S) ≈ 1
2D(S), it is possible that many of

the edges are incident on a few red vertices
I The same trick is used again and this time N(S) is

partitioned into bins
I Each bin has vertices lying in a close range in terms of

their degree into S
I One of these bins is our desired subset

Blum’s Algorithm: Second Neighborhood

I T = {v ∈ N(S) | dS(v) ∈ [(1 + δ)i , (1 + δ)i+1)}
I For some i , |T | = Ω̃

(
f (n)4

n

)
; |T∩ red|

|T | ≥ 1
2

(
1− 1

log n

)

Blum’s Algorithm: So what is our f (n)?

I Applying vertex cover to the set T , we get an independent
set of size Ω

(
|T |

log|T |

)
= Ω̃

(
f (n)4

n

)
I In order to be useful, we need

Ω̃
(

f (n)4

n

)
= Ω

(
n

f (n)

)
I That gives an Õ

(
n0.4)-coloring

I An Õ
(
n0.375)-coloring can be obtained by handling certain

dense regions differently

Karger-Motwani-Sudan’s Algorithm [6]: High Level
Idea

Consider the following embedding of a 5-cycle on the surface of
a unit sphere:

Vertices are mapped to points on the unit sphere in such a
manner that adjacent vertices get mapped to far away points

KMS Algorithm: High Level Idea

Consider cutting the unit sphere via the randomly chosen
planes P1 and P2:

That divides the vertices into four groups. Giving each group a
distinct color we get a legal approximate coloring.

KMS Algorithm: Finding the desired Embedding

I Let v1, v2, . . . , vn be unit vectors in <n

I Vector vi corresponds to vertex i
I Minimizing 〈vi , vj〉 will keep vi and vj far apart
I Consider the following optimization problem:

minimize α

subject to 〈vi , vj〉 ≤ α if (i , j) ∈ E(G)

〈vi , vi〉 = 1
vi ∈ <n.

I An optimal solution to the above program will give us the
desired embedding

KMS Algorithm: Finding the desired Embedding

I Unfortunately the program cannot be solved as is
I Good news is there is a way around

I Consider a n × n symmetric positive semidefinite matrix M
I Fact: M can be decomposed into UUT

I From the above, M[i , j] = 〈ui ,uj〉 where ui = U[i , :] and
uj = U[j , :]

KMS Algorithm: Finding the desired Embedding

I Consider the following optimization problem:

minimize α

where {mij} is positive semidefinite
subject to mij ≤ α if (i , j) ∈ E(G)

mij = mji

mii = 1.

I An optimal solution to the above program can still give us
the desired embedding

I And the above program can be solved efficiently

KMS Algorithm: Bounding the Optimal Value of α

I Consider the following k vectors in <n:
I Each vector has 0 in the last n − k positions
I Vector i has −

√
k−1

k in the i th position and 1√
k(k−1)

in the

remaining k − 1 positions
I Clearly each vector has unit length and inner product of

any two distinct vectors is − 1
k−1

I For a k -colorable graph, the k colors coincide with the k
vectors defined above

I So we have α ≤ − 1
k−1 for a k -colorable graph

KMS Algorithm: Obtaining a coloring

I For a 3-colorable graph, the optimal value is atmost −1
2

I Vectors corresponding to adjacent vertices are atleast
2π/3 radians (120 degrees) apart

I Using this fact, we can obtain a coloring via the following
two methods:

1. Hyperplane Partitions
2. Vector Projections

KMS Algorithm: Hyperplane Partitions

I Random hyperplanes passing through the origin are used
to cut the n-dimensional unit sphere

I Using h hyperplanes, we can obtain 2h distinct regions
I Associate a distinct color with each region, giving each

vertex the color of the region containing its vector
I It is possible that two adjacent vertices are given the same

color (though with small probability)
I Legally colored vertices are removed and the algorithm is

repeated on the graph remaining

KMS Algorithm: Hyperplane Partitions

I Given two vectors at an angle of θ, the probability that they
are separated by a random hyperplane is θ/π

I We have θ ≥ 2π/3 as the angle between the vectors
corresponding to the endpoints of an edge

I We say that an edge is cut by a hyperplane if these vectors
are separated by the hyperplane

I So the probability of an edge being cut is atleast 2/3
I A cut edge implies its endpoints belonging to different

regions and hence getting different colors

KMS Algorithm: Hyperplane Partitions

I Pick 2 + dlog3 ∆e random hyperplanes independently
I Probability that an edge is not cut by any of these is atmost

(1− 2/3)2+dlog3 ∆e ≤ 1/9∆

I Let m′ be the number of uncut edges
I E [m′] ≤ m/9∆ ≤ n/18 < n/8, since m ≤ n∆/2
I By Markov’s Inequality, Pr{m′ > n/4} ≤ 1/2
I Thus, with probability atleast 1/2 we have atmost n/4

uncut (monochromatic) edges

KMS Algorithm: Hyperplane Partitions

I Deleting one endpoint of each of the n/4 uncut edges
leaves a set of atleast 3n/4 legally colored vertices

I The number of colors used is 22+dlog3 ∆e = O(∆log3 2)

I That translates to O(n0.387) colors using Wigderson’s
technique

I Iterating on the deleted vertices we get an O(n0.387)-
coloring

I No improvement over Blum’s O(n0.375)-coloring

KMS Algorithm: Vector Projections

I Fix a parameter c and choose a random n-dimensional
vector r

I Compute a subset S of vertices i with 〈vi , r〉 ≥ c
I Let the subgraph induced on S have n′ vertices and m′

edges
I Delete one endpoint of each edge to leave an independent

set on n′ −m′ vertices
I For sufficiently large c, n′ � m′ and we get an independent

set of size roughly n′

KMS Algorithm: Vector Projections

I r = (r1, . . . , rn), where ri are independent random variables
having the standard normal distribution

I The distribution function for r has density

f (y1, . . . , yn) =
n∏

i=1

1√
2π

e−y2
i /2 =

1
(2π)n/2 e−

1
2

P
i y2

i

I Note that the density function depends only on the
distance of the point from the origin

I Therefore the distribution of r is spherically symmetric

KMS Algorithm: Vector Projections

I For any unit vector u ∈ <n, 〈u, r〉 is distributed according to
the standard normal distribution

Shaded area corresponds to N(t) = P[〈u, r〉 ≥ t]

KMS Algorithm: Vector Projections

I We have P[〈vi , r〉 ≥ c] = N(c), so E [n′] = nN(c)

I P[〈v1, r〉 ≥ c and 〈v2, r〉 ≥ c] ≤ P[〈(v1 + v2), r〉 ≥ 2c]

= P
[
〈 v1+v2
‖v1+v2‖ , r〉 ≥

2c
‖v1+v2‖

]
= N

(
2c

‖v1+v2‖

)
.

I ‖v1 + v2‖ =
√

v2
1 + v2

2 + 2〈v1, v2〉 ≤
√

2− 2/2 = 1

I P[〈v1, r〉 ≥ c and 〈v2, r〉 ≥ c] ≤ N(2c)

I So, E [m′] ≤ mN(2c) ≤ n∆N(2c)/2 (∆ is max degree)
I Thus, E [n′ −m′] ≥ nN(c)− n∆N(2c)/2

KMS Algorithm: Vector Projections

I For every x > 0, φ(x)
(1

x −
1
x3

)
< N(x) < φ(x). 1x

I From the above, we have N(c)
N(2c) ≥ 2

(
1− 1

c2

)
e3c2/2

I Solving for c so that ∆N(2c) < N(c), we get c =
√

2
3 ln ∆

I For the above value of c, E [n′ −m′] ≥ Ω̃
(

n
∆1/3

)
I Repeatedly coloring and removing independent sets of the

above size gives an Õ(∆1/3)-coloring
I Using Wigderson’s technique we get an Õ(n0.25)-coloring

Blum & Karger’s Algorithm [7]

I The ideas of Blum and KMS are combined to get an
Õ(n3/14)-coloring of a 3-colorable graph

I Similar in spirit to Wigderson’s algorithm
I Blum’s coloring tools are used to color a graph with large

average degree
I When the remaining graph has a small average degree,

KMS ideas are used to extract an independent set of
reasonable size

Blum & Karger’s Algorithm

I Consider a graph with average degree atmost cn9/14

I So atleast half the vertices in the graph have degree less
than 2cn9/14

I The subgraph induced by those vertices has maximum
degree atmost 2cn9/14

I Using KMS algorithm, we can color the subgraph with
Õ(n3/14) colors

I From the coloring we can find an independent set of size
Ω̃(n11/14)

I Using the independent set we can make progress towards
an Õ(n3/14)-coloring of the original graph

Directions for Future Work

I One idea constant in all the algorithms is finding a large
set that can be colored using a constant number of colors

I Taking this idea forward, we would like to explore the
possibility of finding large planar induced sub-graphs

I Fact: Planar graphs are 4-colorable [8]
I An interesting problem in its own right
I One Approach:

I The subgraph induced by the vertices that lie along the
diameter is clearly planar

I Planarity testing is polynomial time solvable
I Can we use the above facts to obtain a provably large

induced planar subgraph?

Directions for Future Work

I There exist graphs having chromatic number atleast nΩ(1)

that can be embedded on the unit sphere s.t. 〈vi , vj〉 ≤ −1
2

∀ (i , j) ∈ E(G)

I So, having obtained an embedding as above, it is not
possible to guarantee a coloring with no(1) colors

I Can we add more constraints that are not satisfied by the
class of graphs mentioned above?

I In that case, can we get an no(1)-coloring?

Directions for Future Work

I The graph obtained by removing the feedback vertex set is
an induced forest which is 2-colorable

I Can we show that the size of a feedback vertex set in a
3-colorable graph is not too large?

I How about a partial feedback vertex set that removes only
the odd cycles?

I Graphs that are both C3-free and C5-free have N(v) and
N(N(v)) as independent sets for any vertex v

I How well we can do for such graphs? Can we extend the
same to general graphs?

I C4-free graphs: |N(u) ∩ N(v)| ≤ 1 ∀ u, v ∈ V (G); Using
Blum’s algorithm we get Õ(n1/3); Can we do better?

References I

M. R. Garey and David S. Johnson.
The complexity of near-optimal graph coloring.
J. ACM, 23(1):43–49, 1976.

Sanjeev Khanna, Nathan Linial, and Shmuel Safra.
On the hardness of approximating the chromatic number.
Combinatorica, 20(3):393–415, 2000.

Avi Wigderson.
Improving the performance guarantee for approximate
graph coloring.
J. ACM, 30(4):729–735, 1983.

Avrim Blum.
New approximation algorithms for graph coloring.
J. ACM, 41(3):470–516, 1994.

References II

Reuven Bar-Yehuda and Shimon Even.
A linear-time approximation algorithm for the weighted
vertex cover problem.
J. Algorithms, 2(2):198–203, 1981.

David R. Karger, Rajeev Motwani, and Madhu Sudan.
Approximate graph coloring by semidefinite programming.
J. ACM, 45(2):246–265, 1998.

Avrim Blum and David R. Karger.
An Õ(n3/14)-coloring algorithm for 3-colorable graphs.
Inf. Process. Lett., 61(1):49–53, 1997.

K. Appel and W. Haken.
Every planar map is four colorable.
Illinois Journal of Mathematics, 21(3):429–490, 1977.

