Coloring 3-colorable Graphs
Pawan Kumar Aurora
Advised by Prof. Shashank K Mehta

Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur

State of the Art Seminar



k-coloring

» Amapping f: V(G) — {1,... .k} s.t. f(u) # f(v) if
(u,v) € E(G)

» The chromatic number of a graph is the smallest k s.t. G
can be k-colored

» It is NP-Hard to color a graph using optimal number of
colors [1]

» The same is true also for graphs of constant chromatic
number atleast 3



v

We will focus on 3-colorable graphs

Objective: to color such a graph using as few colors as
possible

It is NP-Hard to color such a graph using 4 colors [2]
Nothing better in terms of lower bounds is known
Best upper bounds of the order of | V| fore > 0

» Gap is HUGE

v

v

v

v



3-colorable Graphs




Applications

» Compiler Optimization: Assigning variables to registers
» Scheduling: Assigning jobs to time slots



Wigderson’s Algorithm [3]

» Based on the following facts:
1. The subgraph induced by the neighborhood of any vertex is
2-colorable
2. 2-coloring is polynomial time solvable
3. A + 1 colors suffice to color any graph having maximum
degree A
» Using facts 1 and 2, 2-color N(v) for a vertex v having
deg(v) > [v/n]; remove colored vertices and iterate

» The remaining graph has A < [/n]; color it using [v/n]
colors using fact 3

» Total number of colors used: O(v/n)



Blum’s Algorithm [4]

» Consider the following recurrence for some ¢ > 0:
C(n) <2+ C(n—en/f(n))

» Solving first for " in the range [n/2, n] we get:
C(n) <2f(n)/e+ C(n/2)

» Solving the above recurrence gives C(n) = O(f(n))

» Repeatedly finding a 2-colorable set of size en/f(n) gives
O(f(n))-coloring



Blum’s Algorithm: How to get a set of desired size?

» Either directly find a set of desired size

>

For e.g. N(v) for a vertex v having degree atleast n/f(n)

» Or combine several small sets to get a set of desired size

>

Find a 2-colorable set S having |N(S)| < f(n)|S]

» For e.g. N(v) for a vertex v having degree atmost f(n)
Remove both S and N(S) from the graph while collecting S
in a bucket
Repeat until the graph is reduced to less than half its
original size
The bucket contains a 2-colorable set of size Q(n/f(n))



Blum’s Algorithm: A simple Case

» For all pairs of vertices u, v € V(G), consider the
2-colorable set S = N(u) N N(v)
» For the case where |S| > W one of the following always
holds:
1. |[N(S)| < n/f(n) (same as f(n)|S|) = Collect S
2. [N(S)| > n/f(n) and N(S) is 2-colorable =~ N(S) is the
desired set
3. |N(S)| > n/f(n) and N(S) is not 2-colorable = Next slide



Blum’s Algorithm: |N(S)| > f y and N(S) is not
2-colorable

» The first condition is inconsequential, the second condition
alone is enough

» N(S) is not 2-colorable = S is not monochromatic = u
and v belong to the same color class

» Merge u and v to w:
V=V-—{uviu{w}, N(w)= N(u)uN(v)

» Results in a graph having one less vertex without using
any new color



Blum’s Algorithm: Input Graph

» We can assume the following about our input graph:

1. It has minimum degree atleast f(n)
2. It has maximum degree atmost n/f(n)
3. No two vertices share more than n/f(n)? neighbors

» The above can be enforced for any arbitrary f(n)

» However, the value of f(n) is determined by how best we
can handle the above graph



Blum’s Algorithm: High Level Idea

» Remember that our aim is still to find a 2-colorable set of
size Q(n/f(n))

» We will find a set that contains a large enough independent
set

» Using an approximate vertex cover algorithm we will
extract an independent set

» The size of the independent set obtained will determine the
value of f(n)



Blum’s Algorithm: Using Vertex Cover

» [is an independent set in a graph G = V(G) — | is a vertex
cover in G and vice versa

» An algorithm for vertex cover can be used to find an
independent set

» Since both the problems are NP-Hard, we can only hope
for an approximate result
» If VC is an optimal vertex cover in G, then we can find a

vertex cover of size atmost (2 - ";ﬂé‘;ﬂ,‘f') |VC|in G[5]




Blum’s Algorithm: Using Vertex Cover

1 1
> 1125 (1= ggm) ITI= VO < § (1+ g ) IT

» We find a vertex CO\I/erI orT:T,ize atmost
1 1 og log 1
3 <1 + ‘|og|T|) (2_ 21og|T] ) IT| < [1 - Q (logm” 7|

» That gives an independent set of size (Io‘g7\-|7'|>

» Note: It would be useless to find a subset T that contains

an independent set of size atleast 51 (1 — Iog1|T|) IT|




Blum’s Algorithm: Motivation

» Consider three sets red, blue and green of roughly the
same size

» For all pairs of vertices in different sets, add an edge with
probability p

» The resulting graph is 3-colorable and has all the edges
distributed uniformly at random

» For a vertex v € red, N(v) is nearly half blue and half
green

» So N(N(v)) is almost half red



Blum’s Algorithm: Reality

» But worst-case graphs are not random
» Can we atleast find a subset of N(N(v)) for some v that
contains an independent set nearly half its size?
» The answer is YES
» This exercise is useful only when the subset size is
sufficiently larger than f(n)
» Every vertex has a neighborhood of size atleast f(n) which
trivially contains an independent set atleast half its size



Blum’s Algorithm: Finding desired subset-Step 1

Consider a vertex v € red
Find a subset S of N(v) s.t. nearly half of the edges
incident on S enter into red
Let red be the color with the most edges incident

» Implies Dyeq(blue U green) > 1 D(blue U green)
However, it is not true that Dyeg(N(v)) > SD(N(v)) for any
v € red

» Vertices can have wildly varying degrees
Solution lies in restricting the vertex degrees extremely
tightly

v

v

v

v

v



Blum’s Algorithm: Counter-example

typical red vertex
..... /rmfl.fl rm [T rm_l

» D(red) = 5m, D(green) = D(blue) = (4 + 1)m
> Vvered: Deg(N(v)) =8+ 7, Dy_reg(N(v)) =4+ m
> D(N(v)) =12+ 3m. S0, Dreg(N(v)) ~ D(N(V))



Blum’s Algorithm: First Neighborhood

BLUE| U GREEN

\/

gakk z N

> S=N(v)n{ve V|dVv)e[(1+5),(1+6))} 6 = 5557
> For some j, Dyeq(S) ~ 3D(S)



Blum’s Algorithm: Finding desired subset-Step 2

» Having obtained the set S, we now look at N(S)

» Even though Dyeq(S) ~ %D(S), it is possible that many of
the edges are incident on a few red vertices

» The same trick is used again and this time N(S) is
partitioned into bins

» Each bin has vertices lying in a close range in terms of
their degree into S

» One of these bins is our desired subset



Blum’s Algorithm: Second Neighborhood

> T={veN(S)|ds(v)€[(1+0).(1+0)"")}
> Forsomei,|T\:Q(ﬂ> MZEO_L)

n

7l



Blum’s Algorithm: So what is our f(n)?

» Applying vertex cover to the set T, we get an independent

set of size Q <|0|gT||T|> e (f(z):x)

» In orde4r to be useful, we need
& (fm*) _ _n_
Q (") =2 (xm)

> That gives an O (n®#)-coloring

» An O (n®375)-coloring can be obtained by handling certain
dense regions differently



Karger-Motwani-Sudan’s Algorithm [6]: High Level
ldea

Consider the following embedding of a 5-cycle on the surface of

a unit sphere:

'4 "I

!

Vertices are mapped to points on the unit sphere in such a
manner that adjacent vertices get mapped to far away points



KMS Algorithm: High Level Idea

Consider cutting the unit sphere via the randomly chosen
planes P; and Ps:

That divides the vertices into four groups. Giving each group a
distinct color we get a legal approximate coloring.



KMS Algorithm: Finding the desired Embedding

» Let vy, vo,..., v, be unit vectors in R
» Vector v; corresponds to vertex i
» Minimizing (v;, v;) will keep v; and v; far apart
» Consider the following optimization problem:
minimize Q@
subjectto (v, vj) < a if (i,j) € E(G)
(vi,vi) =1
vi e R".
» An optimal solution to the above program will give us the
desired embedding



KMS Algorithm: Finding the desired Embedding

» Unfortunately the program cannot be solved as is
» Good news is there is a way around

» Consider a n x n symmetric positive semidefinite matrix M
» Fact: M can be decomposed into UUT

» From the above, M[/, ] = (u;, u;) where u; = UJi,:] and
up = U[j,]



KMS Algorithm: Finding the desired Embedding

» Consider the following optimization problem:
minimize o
where  {mj} is positive semidefinite
subjectto  my < a if(i,j) € E(G)
m,-j = m/-,-
m;=1.

» An optimal solution to the above program can still give us
the desired embedding

» And the above program can be solved efficiently



KMS Algorithm: Bounding the Optimal Value of o

» Consider the following k vectors in R":
» Each vector has 0 in the last n — k positions

» Vector i has —,/ %1 in the ith position and ——— in the
k k(k—1)

remaining k — 1 positions
» Clearly each vector has unit length and inner product of
any two distinct vectors is — 1+

» For a k-colorable graph, the k colors coincide with the k
vectors defined above

» So we have a < —ﬁ for a k-colorable graph



KMS Algorithm: Obtaining a coloring

» For a 3-colorable graph, the optimal value is atmost —%

» Vectors corresponding to adjacent vertices are atleast
27 /3 radians (120 degrees) apart

» Using this fact, we can obtain a coloring via the following
two methods:

1. Hyperplane Partitions
2. Vector Projections



KMS Algorithm: Hyperplane Partitions

» Random hyperplanes passing through the origin are used
to cut the n-dimensional unit sphere

» Using h hyperplanes, we can obtain 2" distinct regions

» Associate a distinct color with each region, giving each
vertex the color of the region containing its vector

» It is possible that two adjacent vertices are given the same
color (though with small probability)

» Legally colored vertices are removed and the algorithm is
repeated on the graph remaining



KMS Algorithm: Hyperplane Partitions

» Given two vectors at an angle of 4, the probability that they
are separated by a random hyperplane is 0 /=

» We have 0 > 27 /3 as the angle between the vectors
corresponding to the endpoints of an edge

» We say that an edge is cut by a hyperplane if these vectors
are separated by the hyperplane

» So the probability of an edge being cut is atleast 2/3

» A cut edge implies its endpoints belonging to different
regions and hence getting different colors



KMS Algorithm: Hyperplane Partitions

» Pick 2 4 [logz A] random hyperplanes independently

» Probability that an edge is not cut by any of these is atmost
(1 —2/3)%*Mlgs A1 < 1 /9A

» Let m’ be the number of uncut edges

» E[m'] < m/9A < n/18 < n/8, since m < nA/2

» By Markov’s Inequality, Pr{m’ > n/4} <1/2

» Thus, with probability atleast 1/2 we have atmost n/4
uncut (monochromatic) edges



KMS Algorithm: Hyperplane Partitions

» Deleting one endpoint of each of the n/4 uncut edges
leaves a set of atleast 3n/4 legally colored vertices

» The number of colors used is 22*11093 A1 — O(Al09% 2)

» That translates to O(n°387) colors using Wigderson'’s
technique

» lterating on the deleted vertices we get an O(n%387)-
coloring

» No improvement over Blum’s O(n®37%)-coloring



KMS Algorithm: Vector Projections

» Fix a parameter ¢ and choose a random n-dimensional
vector r

» Compute a subset S of vertices i/ with (v;,r) > ¢

» Let the subgraph induced on S have rn’ vertices and m’
edges

» Delete one endpoint of each edge to leave an independent
seton n’ — m’ vertices

» For sufficiently large ¢, ' >> m’ and we get an independent
set of size roughly r’/



KMS Algorithm: Vector Projections

» r=(n,...,rn), where r; are independent random variables
having the standard normal distribution

» The distribution function for r has density

1 1,2
(1o yo) H—e fas 1 eiv

» Note that the density function depends only on the
distance of the point from the origin

» Therefore the distribution of r is spherically symmetric



KMS Algorithm: Vector Projections

» For any unit vector u € R", (u, r) is distributed according to
the standard normal distribution

0 t
Shaded area corresponds to N(t) = P[(u,r) > {]



KMS Algorithm: Vector Projections

» We have P[(v;,r) > c] = N(c), so E[n’] = nN(c)
> P[{vy,r) > cand (vo,r) > c] < P[{(vy + W), r) > 2c]
= P |(pue

2c
ry >
Tatvel 7 2 el

= N (2%7)-

> [lvi + vall = /VE + VE+2(n,vp) < \/2-2/2 =1

» P[(vi,r) > cand (vo,r) > c] < N(2c)

» So, E[m'] < mN(2c) < nAN(2c)/2 (A is max degree)
» Thus, E[n" — m'] > nN(c) — nAN(2c)/2




KMS Algorithm: Vector Projections

> Forevery x >0, ¢(x) (1 — %) < N(x) < ¢(x).+

X x3

» From the above, we have A’)’((ch) >2 (1 - é) e3¢*/2

» Solving for ¢ so that AN(2¢) < N(c), we getc = 4/3InA

v

For the above value of ¢, E[’ — m'] > Q (ﬁ)

v

Repeatedly coloring and removing independent sets of the
above size gives an O(A'/3)-coloring
Using Wigderson’s technique we get an O(n®25)-coloring

v



Blum & Karger’s Algorithm [7]

» The ideas of Blum and KMS are combined to get an
O(n®/1*)-coloring of a 3-colorable graph

» Similar in spirit to Wigderson’s algorithm

» Blum’s coloring tools are used to color a graph with large
average degree

» When the remaining graph has a small average degree,
KMS ideas are used to extract an independent set of
reasonable size



Blum & Karger’s Algorithm

» Consider a graph with average degree atmost cn®/ 4

» So atleast half the vertices in the graph have degree less
than 2cn®/14

» The subgraph induced by those vertices has maximum
degree atmost 2¢n®/14

» Using KMS algorithm, we can color the subgraph with
O(n®/1%) colors

» From the coloring we can find an independent set of size
Q(n11/14)

» Using the independent set we can make progress towards
an O(n®/'*)-coloring of the original graph



Directions for Future Work

» One idea constant in all the algorithms is finding a large
set that can be colored using a constant number of colors

» Taking this idea forward, we would like to explore the
possibility of finding large planar induced sub-graphs

» Fact: Planar graphs are 4-colorable [8]

» An interesting problem in its own right
» One Approach:
» The subgraph induced by the vertices that lie along the
diameter is clearly planar
» Planarity testing is polynomial time solvable
» Can we use the above facts to obtain a provably large
induced planar subgraph?



Directions for Future Work

» There exist graphs having chromatic number atleast n(1)
that can be embedded on the unit sphere s.t. (v;, v;) < —%
v (i.j) € E(G)

» So, having obtained an embedding as above, it is not
possible to guarantee a coloring with n°") colors

» Can we add more constraints that are not satisfied by the
class of graphs mentioned above?

» In that case, can we get an n°(")-coloring?



Directions for Future Work

» The graph obtained by removing the feedback vertex set is
an induced forest which is 2-colorable

» Can we show that the size of a feedback vertex set in a
3-colorable graph is not too large?

» How about a partial feedback vertex set that removes only
the odd cycles?

» Graphs that are both C3-free and C5-free have N(v) and
N(N(v)) as independent sets for any vertex v

» How well we can do for such graphs? Can we extend the
same to general graphs?

» C4-free graphs: [N(u) N N(v)
Blum’s algorithm we get O(n’

| <1Vu,ve V(G); Using
/3); Can we do better?



References |

[ M. R. Garey and David S. Johnson.
The complexity of near-optimal graph coloring.
J. ACM, 23(1):43-49, 1976.

El Sanjeev Khanna, Nathan Linial, and Shmuel Safra.
On the hardness of approximating the chromatic number.
Combinatorica, 20(3):393—415, 2000.

@ Avi Wigderson.
Improving the performance guarantee for approximate
graph coloring.
J. ACM, 30(4):729-735, 1988.

[ Avrim Blum.
New approximation algorithms for graph coloring.
J. ACM, 41(3):470-516, 1994.



References Il

[@ Reuven Bar-Yehuda and Shimon Even.
A linear-time approximation algorithm for the weighted
vertex cover problem.
J. Algorithms, 2(2):198—203, 1981.

[§ David R. Karger, Rajeev Motwani, and Madhu Sudan.
Approximate graph coloring by semidefinite programming.
J. ACM, 45(2):246-265, 1998.

[§ Avrim Blum and David R. Karger.

An O(n3/1*)-coloring algorithm for 3-colorable graphs.
Inf. Process. Lett., 61(1):49-53, 1997.

[§ K. Appel and W. Haken.
Every planar map is four colorable.
lllinois Journal of Mathematics, 21(3):429-490, 1977.



