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Abstract

We test whether people are able to reason based on inciden-
tally acquired probabilistic and context-specific magnitude in-
formation. We manipulated variance of values drawn from
two normal distributions as participants perform an unrelated
counting task. Our results show that people do learn category-
specific information incidentally, and that the pattern of their
judgments is broadly consistent with normative Bayesian rea-
soning at the cohort level, but with large individual-level vari-
ability. We find that this variability is explained well by a fru-
gal memory sampling approximation; observer models mak-
ing this assumption explain approximately 70% of the vari-
ation in participants’ responses. We also find that behavior
while judging easily discriminable categories is consistent with
a model observer drawing fewer samples from memory, while
behavior while judging less discriminable categories is better
fit by models drawing more samples from memory. Thus, our
model-based analysis additionally reveals resource-rationality
in memory sampling.

Introduction
Statistical inference offers a compelling normative criterion
for human judgments during perception and action. Strong
evidence of probabilistic reasoning is available for percep-
tual judgments (Ernst & Banks, 2002) and sensorimotor con-
trol (Körding & Wolpert, 2004), wherein human performance
in cue integration tasks has been shown to closely follow nor-
mative Bayesian principles (Pouget, Beck, Ma, & Latham,
2013). There is also some evidence suggesting how Bayesian
updates for such settings could be carried out by populations
of neurons (Ma, Beck, Latham, & Pouget, 2006).

Similar normative claims have also been advanced for hu-
man cognition, supported by evidence from a a wide vari-
ety of cognitive tasks (Oaksford, Chater, et al., 2007; Tenen-
baum, Kemp, Griffiths, & Goodman, 2011). However, crit-
ics contend that Bayesian analysis offers too many degrees
of freedom to the analyst in the design of appropriate priors
and likelihood, such that empirical fits with data can often be
attributed to environmental and psychological properties em-
bedded in the design of these entities (Jones & Love, 2011).

Properties of the environment and biophysical embodi-
ment can strongly constrain the nature of priors in perceptual
and motor control tasks and some language-related cognitive
tasks. However, it is harder to produce such constraints for
cognitive tasks wherein embodiment is weakly involved and
environmental statistics are variable. For instance, to accept
Griffiths and Tenenbaum (2006)’s contention that humans

are Bayes-optimal in making commonplace probability judg-
ments, we must believe that people incidentally keep track of
the distribution of a large variety of real-world events. Sim-
ilarly, to accept the explanation for risk aversion offered in
Stewart, Chater, and Brown (2006)’s decision-by-sampling
theory, we must believe that people incidentally track the dis-
tribution of money magnitudes.

While there is some evidence that people track inciden-
tal frequencies well (Hasher & Zacks, 1984), more direct
tests of incidental distribution learning have been discourag-
ing (Sailor & Antoine, 2005; Tran, Vul, & Pashler, 2017).
Given 180 samples from a bimodal distribution of stimulus
locations, for example, humans are effectively random in try-
ing to reproduce the distribution again via sampling (Tran et
al., 2017).

In summary, while there is considerable evidence to sup-
port the case that humans reason probabilistically given an
understanding of the appropriate generative model of the
world, it is less clear how they are incidentally able to acquire
and update these generative models and apply them to novel
situations. In this study, we tested peoples’ ability to inciden-
tally learn about context-specific distributions of magnitudes,
and reason with them retrospectively. We analyzed partici-
pants’ behavior with observer models fitted to observations
stochastically identical to the ones participants saw during
incidental learning to characterize the nature of mental rep-
resentations used in this retrospective probabilistic reasoning
task.

Experiment
We implemented our test for incidental learning of context-
specific probability distributions as a game where participants
were asked to assume the role of financial auditors and check
restaurant bills for correct total and tip values (tip values had
to be less than 10% of the sum of the items’ cost). This simple
arithmetic task allowed us to expose participants to the values
of the items on the bills, ensuring they paid attention to them
while remaining naive to the true purpose of the experiment.

There were two phases in the experiment: training and test-
ing. During training, participants were shown a number of
restaurant bills (see sample bill in Figure 1). Each bill had
three items listed with money values. These bills were ex-
plicitly identified as being from either “cheap” or “expensive”
restaurants. Restaurant category had no bearing on the audit-



Figure 1: Sample bill presented in the training phase of the
experiment.

ing task. The items were denominated in a fictional foreign
currency to reduce the influence of participants’ prior knowl-
edge of money magnitudes in this context.

The training phase was meant to instantiate the value distri-
butions p(money|context) and the probability of context oc-
currence p(context) in participants. During the testing phase,
on every trial, participants were presented with an item along-
side its price, and asked to assess how likely it was that the
item came from an expensive restaurant, thus asking them to
express p(context|money).

Participants
The study protocol was reviewed and approved by an IRB.
The study was conducted using a web interface. A total of 91
(mean age = 25.1years, females = 44) participants completed
the experiment. Seven participants with poor performance
(less than 80% accuracy) in the training phase were excluded
from the study. Unmotivated participants (8 such) who re-
sponded with identical responses for all the test phase prob-
lems were also excluded from analysis resulting in 76 partici-
pants. A priori sample size calculated was for 72 participants
(Cohen’s f = 0.4, power = 0.85). The hypothesis, sample size
and analysis plan were formally preregistered (link concealed
to preserve anonymity during peer review).

Stimuli
In the training phase of the experiment, we showed partic-
ipants values drawn from two normal distributions. Val-
ues from each distribution were shown as bills from restau-
rants with two category labels, “cheap” and “expensive” (See
Fig.1.). We manipulated the variance (low, medium, high) of
these distributions between participants with number of par-
ticipants being 25, 26 and 25 respectively. Cheap and expen-
sive labels each had their own distribution and we scaled the
variance by the mean (fixed means for cheap = 1600 and ex-
pensive = 2900, scaling variance factors: low = 0.25, medium
= 0.5 and high = 0.7).

Procedure
Training Phase Participants were randomly assigned to
one of three variance groups. Thus, a participant could see

values drawn in the training phase from either a distribution
with low, medium or high variance. The means of these value
distributions (for cheap and expensive restaurants) were kept
constant across all participants. We asked each participant to
audit 20 bills as part of the experiment, with each bill contain-
ing three money values sampled from the condition-specific
distribution. There were 10 bills each (30 samples; 3 x10)
for ’cheap’ and ’expensive’ restaurant bills. We provided
feedback (correct/incorrect) for their responses on each bill
as an attention check. Participants who performed poorly on
the arithmetic task (accuracy less than 80%) were eliminated
from analysis.

Testing Phase During the training phase conducted earlier,
participants were unaware that they would be tested on the
values given in the bills, i.e. they were tested retrospectively.
In this phase, participants were presented with 40 individual
items, each with a certain value. They were asked to indicate
how likely it is that these items were drawn from an expensive
restaurant on a seven point Likert scale. All participants were
tested on values generated from the same distribution with
variance factor 0.5. This allowed us to compare responses
between the three groups and investigate whether their priors
for “expensive” and “cheap” restaurants was biased by the
variance of the distribution they trained on.

Analysis and Results
We fit each participant’s responses from the testing phase
with a psychometric function,γ+ λ−γ

1+( x
c )

β
using the curve fit-

ting toolbox in MATLAB. Here γ was the upper asymptote
of the psychometric curve, λ was the lower asymptote, c was
the inflexion point of the curve and β was the steepness or the
slope of the curve. To fit the curves, we converted Likert rat-
ings to probability judgements by using a recently validated
mapping of verbal labels to assigned probabilities (Hancock
& Volante, 2020)1.

We ran a between subject Bayesian ANOVA with three
conditions of variance (high, medium, low) for all four pa-
rameters in JASP (0.13.1.0) with a default cauchy prior. The
alternate hypothesis that variance conditions would change
the slopes (β) of the fitted curves had strong evidence (BF10
= 7771000, error% = 0.001). Our Post-hoc tests for the same
showed that the slopes of the fitted curves for participants in
the low variance group were more likely to be higher than
the those in the medium (posterior odds = 66391, BF10U =
113025) and high variance group (posterior odds = 1054,
BF10U = 1795), while we found no evidence either way for
difference in slopes for medium and high variance groups
(posterior odds = 1.3, BF10U = 2.28). See figure 2 for the
slope differences between the groups. There was weak to
moderate evidence for the null for inflexion point (BF = 3.39)
and lower bound (BF = 6.26), and inconclusive evidence (BF

1Specifically, we mapped our 7-point Likert scale with labels
[very unlikely, unlikely, somewhat unlikely, undecided, somewhat
likely, likely, very likely] to the numbers [0.05, 0.20, 0.35, 0.50,
0.60, 0.70, 0.90] respectively.



= 0.53) for the upper bound.
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Figure 2: Psychometric function fit using averages of param-
eters estimated for participants for all three conditions. Shad-
ing indicates 95% CI for slope parameter estimates. Dashed
and dotted lines indicate mean and SD (one line per condi-
tion) for the three ’expensive’ and ’cheap’ distributions re-
spectively. The color for the shading and dotted lines indi-
cates the three variance conditions.

Discussion

Psychometric analysis of the data supports the hypothesis that
the spread of the distribution of numerical observations dur-
ing training will affect the posterior probability of category
judgments elicited during the surprise testing phase. While
our experiment is set up to determine whether people can
reason with numerical quantities acquired via experience in
a Bayesian manner, it can also be viewed as a categoriza-
tion task. We show observers instances of two categories
- cheap and expensive restaurants, and then (stochastically)
ask them to classify new instances into one of them. The
fact that greater within-category variance makes categoriza-
tion more challenging is well-documented for both super-
vised (Alfonso-Reese, Ashby, & Brainard, 2002) and unsu-
pervised category learning (Kloos & Sloutsky, 2008). It is
also modeled quite well by classic computational models of
categorization (Fried & Holyoak, 1984; Anderson, 1991).

However, incidental category learning of the nature we find
here has not been documented previously. Participants in our
experiment were asked to audit bills for totalling mistakes
during training, and were not given feedback about their re-
sponses during testing nor did they know that a testing phase
would follow. Given the retrospective nature of the design,
participants did not know that they had to learn or memo-
rize the values for different category labels. Studies show-
ing successful unsupervised learning of categories tend to use
highly separated categories, and any increase in within cate-
gory variance tends to make category learning very hard even
given 100s of training trials (Ell & Ashby, 2012). Viewed in
this light, the fact that people are able to incidentally learn
categories in this task from 30 examples per category is sig-

K=2

N(1,1)

Figure 3: Generative model for experimental task in plate no-
tation.

nificant2.Our primary interest in this experiment is to charac-
terize the extent to which participants’ behavior can be ex-
plained by a Bayesian observer model, which is described in
the next section.

Ideal observer model
Our observer model is straightforward. From the behavioral
results, it is evident that people are able to significantly track
the joint distribution p(K,Y ), where K is a discrete random
variable indexing restaurant category and Y is a continuous
random variable indexing natural numbers corresponding to
money magnitudes in our experiment. In the testing phase,
participants are asked to express pK|Y (k|y), the conditional
probability of k, given any particular numerical magnitude y.

The ideal observer will construct this quantity using Bayes
rule as follows,

pK|Y (k|y) =
pK(k) fY |K(y|k)

fY (y)
, (1)

where fY is the pdf of a mixture of the two components, and
fY |K is a single component’s pdf. To parameterize this model,
we model pK as a Bernoulli trial pK(θ), both pY |K as Gaus-
sian distributions fY |K(y|µk,(τk)−1), and pY as a mixture of
these Gaussians weighted by the Bernoulli distribution. The
distribution pK|Y remains without a concise parametric spec-
ification, and is simply readout in tabular form.

We assume that people enter the experiment with some
Gaussian fY |K and fY , and update these as they go along in the
experiment. We also assume they start with some Bernoulli

2See Experiment 4 in Fried and Holyoak (1984) for a historical
example of surprising incidental learning of category structure.



pK and an improper uniform prior of 0.5 on the positive half-
line for pK|Y . These initial conditions are specified by means
of hyper-parameters, following a generative model very sim-
ilar, but slightly different from a Bayesian Gaussian mixture
model (Bishop, 2006), as illustrated in Figure 3. The key dif-
ference is that the mixture component identity is co-observed
alongside numerical magnitudes on each observation rather
than being a latent variable.

When a new observation {yobs,kobs} appears, yobs updates
the pY |K distribution corresponding to K = kobs, and kobs
updates the pk distribution. We model the k update as a
Bernoulli update with a Bayes estimator using an uninforma-
tive Beta(1,1) prior.

We model the y|k update as sequential inference about a
Gaussian with unknown mean and precision using a normal-
inverse-Gamma conjugate prior (Murphy, 2007). The ideal
observer begins learning by updating hyperparameters θ for
pK and {α,β,µ0,n0} for fY |K . Then it updates the marginal
fY and finally uses Equation 1 to calculate pK|Y .

Model-based Analysis
As Jones and Love (2011) point out, it is important to justify
the psychological assumptions embedded in Bayesian models
to truly bring them into alignment with reality. In the context
of our task, the ideal observer assumes that, when asked to
express a probability judgment about category membership, a
human constructs this belief by retrieving all 60 training sam-
ples from memory to update their generative model. There-
fore, for our model-based analysis, we also consider two fru-
gal alternatives to this baseline observer model,

1. inspired by prototype models of categorization (Fried &
Holyoak, 1984; Minda & Smith, 2001), we consider a pro-
totype observer model which assumes that people retrieve
the mean of category distributions, and update an abstract
generative model of world situations like the given task
with just this pair of mental observations while construct-
ing probability judgments in our task.

2. inspired by recent Bayesian sampling proposals (Sanborn
& Chater, 2016; Zhu, Sanborn, & Chater, 2020), we con-
sider a memory sampling extension of the prototype ob-
server model, which assumes that people either encode or
retrieve a subset of training phase observations to construct
prototypes, which are then used to construct probability
judgments as in the prototype observer model.

We first analyzed all three models’ ability to account for
our data with a single set of pooled hyperparameters esti-
mated across all participants. We fit the observer models to
data by giving it sequential access to 60 observations emitted
by the same generative distributions as the original observa-
tions seen by each participant in each of the three conditions
and then using these three condition-specific trained models
to predict posterior probabilities for the 40 observations seen
by participants during the test phase. We obtained max likeli-
hood estimates for all parameters, and calculated BIC scores

Model/VF 0.25 0.5 0.7
Ideal -3085 (11) -3403 (12) -3055 (15)

Prototype -3176 -3434 -3296
Sampling (N=8) -3194 (6) -3441 (7) -3299 (8)

Table 1: BIC scores for observer models fit condition-wise.
SEM across multiple runs reported in brackets. All results
rounded to integers.

for all models’ predictions compared with our data. Since the
posteriors emitted by the ideal and sampling observers vary
because of the stochastic nature of their likelihoods, we report
median BIC scores obtained across 1000 simulations each for
these two models.

Both the alternative models are clearly superior to the ideal
observer across all three training conditions. Interestingly,
the sampling observer explains the data better than the ideal
observer, as measured by BIC, when implemented with more
than 8 samples. Thus, in an empirical sense at least, it is
evident that observers that compress incoming magnitude in-
formation into category prototype representations are better
models for participants’ judgments in our task than fully
Bayesian observers with perfectly individuated memory of
exemplars. The high correspondence between the prototype
model and our data (absolute goodness-of-fit RMSE = 0.15
across all three conditions) suggests that human observers
possess a normatively appropriate generative model applica-
ble for the task we asked them to do retrospectively and in-
vert it to obtain situation-specific probabilistic judgments by
drawing a few samples of past observations from memory.

We next considered model fits with hyperparameters es-
timated at the per participant level. Figure 4A-B summa-
rizes goodness-of-fit for the ideal observer making predic-
tions on the observations seen by each participant during the
test phase. Panel A plots the model’s predicted posterior
distribution pK|Y against one participant’s probabilistic re-
sponses. Panel B summarizes median goodness-of-fit, quan-
tified using adjusted R2 obtained for participants, training the
model using the same training distributions as each partic-
ipant in a given condition, and setting hyperparameters for
each participant using max likelihood estimation. The results
suggest that the ideal observer models variability in individ-
uals’ responses for easier discrimination judgments reason-
ably, but is increasingly less effective in modeling variability
in responses for harder discriminations.

Figure 4C-D summarizes goodness-of-fit for these two ob-
server models. Overall, they afford better descriptions of in-
dividuals’ data than the ideal observer model, because of the
extra modeling flexibility afforded them by the introduction
of two (prototype model - both prototype values) and one
(sampling model - sample count) additional parameters.

An additional analysis of the sampling observer model af-
fords additional insight into peoples’ behavior. Figure 5 plots
adjusted R2 values across all participants achieved by sam-
pling models restricted to drawing a fixed number of obser-
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Figure 4: Ideal observer model (A) fit to one participant’s
data, and (B) median goodness-of-fit measured across all par-
ticipants by condition. Median goodness of fit for a (C) pro-
totype observer model and a (D) sampling observer model.
Error bars represents ±1 s.e.m.

vations from memory per category. The value reported in the
graph is the median of 100 runs of the model for each sample
count level to account for the stochasticity of memory sam-
pling. We see that the model’s ability to explain behavioral
variation for participants exposed to high variance training
distributions continues to improve with the number of addi-
tional samples permitted. However, interestingly, drawing as
few as one to two samples per category is already sufficient
for the sampling observer model to explain more than 60% of
the variance in peoples’ behavior if they were assigned to the
low variance training condition.
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Figure 5: Median sampling observer model R2 measured
across 100 iterations each for different counts of observations
sampled. Iteration R2 value is calculated as the average R2 of
models with that sample count fit to each participants’ data.
Error bars show average 1 s.e.m. across iterations.

The general trend seen in Figure 5 suggests that people
might be constructing prototypes using fewer samples from
memory for categories that are less confusable, and more
samples for categories that are more confusable. This pat-
tern is consistent with people performing resource-rational
memory sampling - drawing fewer samples from memory to

construct prototypes needed to discriminate easily discrim-
inable categories, and drawing more samples to construct pro-
totypes needed to discriminate less discriminable categories.
Resource-rational meta-reasoning has several attractive theo-
retical properties (Griffiths, Lieder, & Goodman, 2015), but
opinion remains divided on the extent to which such resource-
rationality is simply a metaphor to add greater flexibility
to Bayesian models (Rahnev, 2020), or whether it can be
shown to have stronger ontic commitments (Griffiths et al.,
2015). The pattern of meta-reasoning in Figure 5 supports
the consideration of sampling as a concrete operationaliza-
tion of resource-rationality for Bayesian models of cogni-
tion (Srivastava & Schrater, 2014; Sanborn & Chater, 2016).

General Discussion
We make three contributions in this paper. One, we present
empirical evidence of incidental supervised category learning
from very few observations, consistent with a long-standing
assumption in Bayesian cognitive science that people intu-
itively even when not explicitly motivated store important
statistical information about events in the world (Griffiths &
Tenenbaum, 2006; Stewart et al., 2006). Two, we demon-
strate using computational modelling, that humans’ behav-
ior in tests of incidental category learning are consistent with
the behavior of a Bayesian observer that samples a subset
of event observations from memory to construct probability
judgments (Srivastava & Schrater, 2014; Zhu et al., 2020).
Three, we find that behavior while judging easily discrim-
inable categories is consistent with a model observer drawing
fewer samples from memory, while behavior while judging
less discriminable categories is better fit by models drawing
more samples. These observations are consistent with theo-
retical expectations of resource-rationality in memory sam-
pling (Griffiths et al., 2015; Sanborn & Chater, 2016).

Our work also demonstrates quite clearly that, whether
people are able to incidentally learn distributions correspond-
ing to real-world situations (Hasher & Zacks, 1984) or
not (Tran et al., 2017), they can certainly learn enough about
them well enough from as few as one sample per distribution
to reason probabilistically about them, as presupposed by ear-
lier work (Griffiths & Tenenbaum, 2006; Stewart et al., 2006).
Interestingly, the prototype observer model shows excellent
empirical fits with data across our three variance manipula-
tions, even though the model itself gains no access to variance
information. In short, incidental probability judgments are
consistent with a ‘one-and-known’ sampling heuristic sup-
porting peoples’ probabilistic causal inference.

Probabilistic accounts of cognition are sometimes ques-
tioned on grounds of neurobiological plausibility. Probabilis-
tic population codes can potentially encode and enable rea-
soning over distributions corresponding to invariant or slow-
changing priors and well-structured likelihoods (Ma et al.,
2006). It is possible to model important elements of per-
ceptual and motor tasks using such distributions, but not for
cognitive tasks of the nature we consider in this paper. Flex-



ible probabilistic reasoning in everyday cognition appears to
require operations incongruent with the extent to which and
timescales on which synaptic weights can change as a func-
tion of experience (Malinow, Madison, & Tsien, 1988). Our
results offer a possible resolution for this problem - sampling
a small number of observations from memory, is sufficient
to tune a generic situation model, potentially learned over
long experience, into expressing probabilistic judgments that
closely match human behavior.

Due to the key role played by the observer’s possession of
the correct generative model in explaining behavior with very
little further learning, this work also amplifies an important
open question. How can we characterize the set of situations
for which people possess such generative models, and situ-
ations for which they don’t? While proposals for learning
generative models by induction exist (Kemp & Tenenbaum,
2008; Tenenbaum et al., 2011), considerable work remains to
characterize the library of generative models that people carry
around in their heads.
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