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Abstract

We characterize difficulties with both absolute and relative ac-
counts of magnitude representation in the absolute identifica-
tion paradigm and present a resolution for these difficulties.
We postulate that people store neither long-term internal refer-
ents for stimuli nor operate simply using binary comparisons
of size between successive stimuli. Rather, they obtain proba-
bilistic judgments of size differences between successive stim-
uli and encode these for future use, within the course of iden-
tification trials. We set up a Bayesian ideal observer model
for the absolute identification task using this memory-based
representation of magnitude and propose a memory-sampling
algorithm for solving it. Simulations suggest that this model
captures complex human behavior patterns in absolute iden-
tification. Specifically, it reproduces empirically documented
crossover effects, practice effects, effects from the use of over-
lapping stimuli and stimuli with uneven spacing.
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Introduction
While it is possible for humans to make fine-grained percep-
tual judgments about magnitudes, it is not yet clear at what
granularity judgments about magnitudes experienced previ-
ously are stored. Theoretical opinion currently lies on a spec-
trum conceptually defined by two strongly divergent posi-
tions: one camp assumes that people have direct psychophys-
ical access to the magnitude of entities in the world (how big
was this stimulus on the scale I’m interested in?) (Brown,
Marley, Donkin, & Heathcote, 2008); the other claims that
people store only the relative results of comparative eval-
uations (which stimulus was bigger?) (Stewart, Brown, &
Chater, 2005).

A classic problem for the absolute magnitude camp is that
of absolute identification. Across a range of sensory modal-
ities like line lengths, sound frequency, and sound loudness,
observers are quicker and more accurate in identifying stimuli
at the extremes of the presented stimulus set than those in the
middle (Lacouture & Marley, 2004). In addition to identifi-
cation, it is also possible to ask participants to categorize per-
ceptual stimuli into one of two groups, in which case a similar
pattern of results is seen to hold. The same ‘bow-tie’ seen in
identification experiments is also seen in perceptual catego-
rization experiments, with extreme stimuli within the stim-
uli set categorized more accurately and rapidly (Lacouture &
Marley, 2004; Ratcliff & Rouder, 1998). Why should the
range of stimuli presented in a set affect observers’ responses
to individual stimuli, if each stimulus has its own independent
internal magnitude representation?

A classic challenge posed to the relative magnitude camp
is the distance effect seen in closely related experiments. Dis-
tance effects are seen when people are asked to identify which
of two presented stimuli is larger (Ratcliff & Rouder, 1998).

Participants were more accurate and quicker to respond when
pairs of presented stimuli were far apart in actual brightness
in a brightness discrimination experiment (Ratcliff & Rouder,
1998). The distance effect in perceptual choice finds an ex-
act counterpart in the distance effect observed in economic
experiments, where participants are more inconsistent and
late in responding when the values of competing options are
close (Dickhaut, Smith, Xin, & Rustichini, 2013). If people
are not storing absolute magnitude information, why do they
find stimuli farther apart easier to categorize and differenti-
ate?

While explanations for subsets of these phenomena have
been previously proposed, the ubiquity of these effects in per-
ception and cognition demands a universal explanation, one
equally applicable to both simple perceptual identification
and cognitive preference judgment tasks. Sophisticated mod-
els of absolute identification place the source of these effects
in the process by which observers map their internal repre-
sentations of perceived stimuli magnitude onto discrete num-
ber labels. For instance, Lacouture & Marley showed that
treating the magnitude-label mapping problem as an encoder
problem, to be solved by a feed-forward network, yields map-
pings for response strengths quadratic in the stimulus order,
immediately yielding the bowtie effect (Lacouture & Marley,
1995) when coupled with a DDM (Brown et al., 2008).

Assuming that long-term absolute internal representations
of stimuli magnitude are noisy, the efficient encoding hypoth-
esis holds that when confronted with a specific stimulus set,
humans will respond to the specific task challenge of map-
ping stimuli to labels by comparing the presented stimulus
to all available internal referents. The strength of the evi-
dence for the mapping is information-theoretically stronger
for stimuli corresponding to fewer overlapping internal refer-
ents, thus privileging points closer to the extremes, since they
will have less interference from stimuli representations from
one side of the scale.

A prominent empirical challenge to such accounts comes
from the finding that stimuli of the same length are responded
to differently when they are members of stimuli sets of dif-
ferent lengths, even within the same subject. If long-term
stimulus magnitude representations exist, then they should be
indifferent to the impact of adding more stimuli to an exist-
ing stimuli set, and the pattern of response should not change
for the side of the stimulus order where new stimuli are not
added. However, empirical evidence shows that it does (Sims,
2016). One solution to this problem is to adjust the noise
levels in the internal stimuli representations ‘adaptively’ as a
function of the set of stimuli to be represented (Sims, 2016).
Such solutions, while mathematically feasible, call into ques-
tion exactly how long-term the internal representations are, if



they are to be so responsive to extraneous context.
Adopting a representation of stimuli that stores only local

comparisons, it has been argued that observers, once given
feedback about the previous trial, and comparing the cur-
rent stimulus to the immediately previous one, can restrict
the range of possible responses by using the previous stim-
ulus as an upper or lower bound for the new one (Stewart
et al., 2005). This range restriction naturally proves to be
more informative for stimuli closer to the edge of the stimu-
lus set range, making responses to these stimuli more accu-
rate. Thus, a convex relationship between response strength
and stimulus order, specific to the presented stimuli set, is
obtained.

Prominent challenges to such relative comparison-based
accounts include the fact that they do not provide easy expla-
nations for differences in response patterns induced as a func-
tion of unequal distances between stimuli in absolute identi-
fication tasks. When a large gap was included in the middle
of an otherwise linear in log space stimuli range, people find
stimuli surrounding this gap easier to identify. However, rel-
ative judgment models find it hard to even fit such data with-
out detracting from predictive performance for the other stim-
uli (Brown, Marley, Dodds, & Heathcote, 2009). The core
problem is that the model in question, the relative judgment
model (RJM) uses a hard threshold in inter-stimulus distance
to determine if a stimulus is larger or smaller than its prede-
cessor, and fits this threshold as a parameter (Stewart et al.,
2005). Changes in spacing end up compromising the quality
of the model fit.

It is intriguing to note that what is hard to explain using
one family of models is easy using the other. Relative judg-
ment models would have no difficulty explaining the effect of
multiple stimuli sets on the response pattern, since there are
no long-term response strength mappings to expect consis-
tent responses from. Absolute magnitude models would find
it straightforward to explain heightened accuracy across large
gaps - assuming the same variance for each internal represen-
tation, shifts in the mean by adding a gap increases the dis-
criminability of neighboring stimuli, increasing the response
strength for the corresponding stimuli.

Finally, both classes of models find it hard to explain prac-
tice effects in absolute identification - the fact that partici-
pants in these experiments actually get better at the task given
practice (Rouder, Morey, Cowan, & Pealtz, 2004). Since nei-
ther class of model posits any form of learning mechanism
for observers, they fail to explain the actual learning curves
seen in real experimental subjects (Dodds, Donkin, Brown, &
Heathcote, 2011).

Judgments are formed from memories
The striking complementarity of the strengths and weak-
nesses of absolute and relative models of absolute identifi-
cation suggest an opportunity to formulate an intermediate
account that bridges this theoretical divide. We make an ef-
fort to do so in this paper.

We make three assumptions about the process by which
observers perform absolute identification and related tasks.

• First, we assume that the mental representation actually
used by people in such tasks is a judgment of relative mag-
nitude made using comparison to the immediately preced-
ing stimulus during the experiment.

• Second, we assume that observers learn the stimulus-label
mapping via a process well-described as an approximately
Bayesian learning algorithm that explicitly samples mem-
ory engrams corresponding to the internal representations
of stimulus magnitude learned during earlier trials of the
experiment.

• Finally, we assume that this memory sampling self-
terminates according to an information-gain criterion dur-
ing each trial, and that the learned distribution of stimuli
ranks at the time of termination is what the observer uses
to emit an overt label response.

The relative magnitude representation. We use the
same relative judgment assumption as Stewart’s RJM
model (Stewart et al., 2005), that observers calculate a rel-
ative magnitude judgment comparing the immediate stimulus
to the one immediately preceding it. This probabilistic repre-
sentation of the pairwise difference between successive stim-
uli may, in principle, contain more information than a sim-
ple binary judgment. For any pair of successive observations
{xt−1,xt}, we denote this probabilistic container of relative
magnitude p(r|x,o = {xt−1,xt}), where r takes on the inter-
pretation of magnitude. For all the demonstrations in this pa-
per, we use binary judgments.

Bayesian stimulus-label mapping. Given this assump-
tion about the nature of the long-term internal referent, an
observer’s goal in absolute identification is to extract a rel-
ative magnitude judgment across stimuli in the stimulus set
given access to a history of pairwise relative magnitude ob-
servations, and to do so using their own history of stimulus
exposure within the task. We model the stimulus-label map-
ping process in the absolute identification task as Bayesian
marginalization over relative magnitude judgments seen in
pairwise comparisons (Srivastava, Vul, & Schrater, 2014).
The mathematical machinery of sequential Bayesian updating
allows us to formalize this learning process sequentially on a
trial-by-trial, instead of treating the stimulus-label mapping
and experimental responding as separate events as is classi-
cally done.

The relative magnitude of each stimulus, as we describe
above, takes on a probabilistic interpretation formally ex-
pressed as p(r|x,o), where r is the relative magnitude judg-
ment, x is the currently visible stimulus, and o = {xt−1,xt} is
the relevant comparison observation. The ideal Bayesian ob-
server learns p(r|x,o) by combining comparison information
from all previously observed comparisons. Thus, this quan-
tity is obtained by marginalizing over the set of previously
seen unique observations in memory C = P (X ),s.t.∀c ∈



C , |c| = 2 which we denote the memorized comparisons.
Then,

D(x) = p(r|x,o) = ∑
C
c p(r|x,c)p(x|c)p(c|o)

∑
C
c p(x|c)p(c|o)

, (1)

where it is understood that the comparison probability
p(c|o) = p(c|{o1,o2, · · · ,ot−1}) is a distribution on the set
of all comparisons available from observation history. Here,
p(r|x,c) encodes the probability that the item x was found to
be larger in the comparison c, p(x|c) encodes the probability
that the item x was present in the context c and p(c) encodes
the frequency with which the observer encounters these com-
parisons during the experiment. This frequency is updated
via recursive Bayesian estimation,

p(c(t)|o(1:t)) =
p(o(t)|c)p(c|o(1:t−1))

∑
C
c p(o(t)|c)p(c|o(1:t−1))

. (2)

This completes the computational description of the task an
ideal Bayesian observer would perform in service of absolute
identification, given access to local relative magnitude judg-
ments. The practical approximation arises when we explicitly
model the act of accessing previous relative magnitude judg-
ments as memory sampling.

Self-terminating memory sampling. Evidence accumu-
lation influences the shape of the distribution p(c|o) via mem-
ory sampling. We model the process of memory recall as
the activation of a subset Q of decision-relevant memory en-
grams. Using this notation, a general memory accumulation
model could be expressed as,

p(c) = ∑
q∈Q

p(c|q)p(q), (3)

where c∈ C are stimuli comparisons available in memory and
q ∈ Q are memory engrams corresponding to past relative
magnitude judgments. Here, the probability distribution p(q)
- which we call the memory prior - encodes the likelihood of
recalling the memory of experience q, while the distribution
p(c|q) encodes the knowledge of having seen c and its corre-
sponding relative magnitude judgment stored in the memory
engram q. For simplicity, we assume a trivial bijective map-
ping between c and q - each memory engram is assumed to
be associated with a unique stimuli pair.

This memory-sampling variant of p(c|o) plugs directly as
the prior in the Bayesian comparison probability update for
p(c|o) in Equation 2, which then itself plugs into the two
computations in Equations 1 and 2 that define the ideal ob-
server model. This replacement is facilitated by one addi-
tional assumption: that the comparison-specific memories
recalled are episodic, and therefore convey all comparison-
relevant information once the comparison episode itself has
been activated in memory1.

1This assumption simplifies our analysis by ignoring the memory
dependence of our other intermediate probability terms. While it is
likely that such dependence exists, its effects will work in the same
direction as the basic results of our approach, since it would further
impoverish the preference representation we are already imposing
sampling constraints on.

Finally, we formalize our information-theoretic criterion
for terminating memory sampling and emitting an identifica-
tion response. We assume that observers continue to sample
memory engrams until the rate at which these provide new
information subsides below a threshold. Additional informa-
tion gained by adding an additional engram qn to the existing
set can be expressed as,

IG(qn) = ∑
i

p(ci|q1:n−1) log
p(ci|q1:n−1)

p(ci|q1:n)
, (4)

so our sampling termination rule is,

argmin
n

IG(qn)< T, (5)

where T is the termination threshold, potentially informed by
exogenous influences.

Stimulus rank decoding. At each time step t the model
uses the differential internal representation between the cur-
rent and one-back stimulus (Dt−Dt−1), and the previous rank
obtained from post-trial feedback to estimate the current stim-
ulus’ rank according to the formula:

RANKt = RANKt−1 +

(
Dt −Dt−1

αt

)
(6)

The parameter α in turn is updated at each time step t as:

αt =
1
t ∑

t

[
Dt −Dt−1

RANKt −RANKt−1

]
(7)

The observer’s choice is determined from the relative mag-
nitude judgments across all x available at the time memory
sampling is terminated. We count instances where the ob-
server’s decision variable predicts the correct rank of the stim-
ulus introduced on individual trials as accurate responses.
Samples to termination are directly interpreted as linearly
scaled response times. Notice that the parameter α control-
ling the rank-magnitude mapping relies entirely on local one-
back comparisons between magnitude judgments D, as in the
RJM (Stewart et al., 2005).

Simulation Results
Modelling our in silico experiment design after the design
reported in (Lacouture & Marley, 2004), we showed 20 in-
stances of the model 40 copies each of N stimuli, asking them
to assign number labels 1 · · ·N to them. On each trial, agents
updated their estimates for p(r|xt ,o = {xt ,xt−1}) following
the model described above. Since we assumed equal spacing
on a log scale for stimuli as in the original experiment, we
kept the relative magnitude judgments as 1 for simplicity, and
used a threshold value T = 10e−7 across all our experiments
unless specified otherwise.

Our model reproduces the absolute identification results
of (Lacouture & Marley, 2004), which are the baseline bench-
mark for absolute identification models (Brown & Heathcote,
2008). Accuracy exhibits a convex relationship with stimulus
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Figure 1: Replication of the crossover effect in perceptual
choice.The x-axis plots the rank distance between compared
stimuli on a given trial, and the y-axis plots the average num-
ber of samples drawn before responding during 20 model
runs. Error bars represent ±1 s.e.m. across these model runs.

order, and the response time distribution is concave, matching
the profiles observed by (Lacouture & Marley, 2004). We do
not explicitly demonstrate these results in the interest of suc-
cinctness, focusing on demonstrating more complex patterns
of behavior.

Then, we show how it can replicate a harder pattern of be-
havior - the crossover effect in RT (Luce, Nosofsky, Green,
& Smith, 1982; Brown & Heathcote, 2008).

Reproducing the crossover effect
The crossover effect describes a complicated pattern of be-
havior typically seen in perceptual choice experiments. When
choice is easy and speed is emphasized, incorrect responses
are quicker than correct responses; when choices are harder
and accuracy is emphasized, the opposite is true (Brown &
Heathcote, 2008). This pattern of response time (RT) behav-
ior has proved very challenging for several models of choice
RT to fit, and is a challenging benchmark for models in this
field.

Perceptual choice fits into our framework without affect-
ing the formalism in the slightest. The only difference is that
the observations o now represent two stimuli seen together
instead of sequentially. All the other interpretations remain
identical to those in the identification setting. We conducted
in silico experiments using the same simulation setup as
above. As Figure 1 illustrates, our model displays a crossover
effect even ignoring the effect of the speed-accuracy trade-
off.

Further, our model offers a straightforward parameter-free
explanation for the crossover effect. Simple choices corre-
spond to situations where most samples in memory point in
the same direction for a particular stimulus. In such cases,
the only way the model could fail to produce the correct re-
sponse is if the sampling was terminated prematurely. Thus,
incorrect responses for simple choices have to be fast. Given

sufficient time for integration, it would be impossible for the
model to be incorrect. Hard choices correspond to situations
where both options have memory samples supporting their
case for being bigger. In such cases, the model is biased
towards terminating when the marginal information gain is
low. Thus, the model will fail to terminate when memory
sampling fails to resolve to a modal response, which is more
likely when the sampling has failed to discover the true mode
of the relative magnitude judgment distribution, resulting in
bigger response times for errors.

Reproducing practice effects
By varying the number of history samples, i.e. the samples
that the model is exposed to before the start of the trials, our
model can reproduce the differential conditions observed in
experiments documenting practice effects in absolute identi-
fication (Dodds et al., 2011). We ran 5 iterations of the model
for practice/no practice conditions with number of stimuli
N = 6. For the no practice case, the model was exposed to 30
history samples, whereas in the practice case it was exposed
to 300 history samples before we started taking the model’s
predictions into account. The information threshold was kept
at T = 10E − 4.The results of the simulation are shown in
Figure 2 alongside data from (Dodds et al., 2011). A clear
qualitative reproduction of the pattern of results seen in the
experiment is seen - accuracy for end-points starts out high,
while responses for stimuli in between start out with greater
error, and then improve. The explanation is intuitive: fewer
unique samples are needed to clearly differentiate the rank
order of endpoint stimuli.

Reproducing overlapping stimuli effects
The overlapping stimuli effect in which the same stimulus
elicits different responses when presented as part of different
stimulus sets poses a challenge to absolute accounts of mag-
nitude representation. We ran 30 iterations of the model, for
each of the cases with number of stimuli N = 5, N = 8, and
N = 11. To work around the large compute times necessitated
by the combinatorial explosion in the number of contexts to
be sampled with increase in N, the empirical data presented
in (Sims, 2016) for the cases N = 13, N = 20, and N = 30
were down sampled to N = 5, N = 8, and N = 11 respectively.
The down-sampling was done by taking every 3rd data point
and extrapolating the last point, if necessary. We observe a
strong qualitative and quantitative reproduction of the empir-
ical effect with a single parameter fit across all conditions in
the experiment.

Reproducing the uneven spacing effect
When a large central gap is introduced into the stimuli set, the
accuracy profile significantly deviates from the bowtie curve,
with the stimuli near the gap having higher accuracy com-
pared to the ones away from the gap. The uneven spacing
effect presents a major challenge to relative accounts of mag-
nitude representation, including ours. To capture this effect,
our model requires an additional augmentation - we assume
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Figure 2: Demonstrating practice effects in absolute identification. (Left) Simulation results run by varying the number of
history samples to which the model is initially exposed. (Right) Empirical data re-plotted from data in article (Dodds et al.,
2011).
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Figure 3: Reproducing the overlapping stimuli effect. The x-
axis plots the stimulus length and the y-axis plots the accuracy
of the model. Empirical data re-plotted from (Sims, 2016)

that the observer first seeks to identify when a stimulus from
one side of the gap is presented versus the other, and then tries
to identify its rank.
Rank decoding across gaps. Our model’s estimate of α as
a simple running average makes sense when it expects per-
ceptually even spacing between successive stimuli. Where
spacing is uneven, ranks estimated using such an estimate
would be faulty. To accommodate the effect of uneven spac-
ing, after each trial, the decoder in our model calculates and
stores the ordinal difference between the perceived rank, as
estimated using α, and the real rank, obtained from feedback
post trial. This rank difference is denoted by RD and is up-
dated at every trial involving a jump across the gap.

RDt = (PerceivedRank)t − (RealRank)t (8)

Rank prediction occurs as follows here

RANKt = RANKt−1 +

(
Dt −Dt−1

α

)
−RDt , (9)

such that the evenly spaced stimulus set decoding (as spec-
ified in Equation 6) arises as a special case of the unevenly
spaced stimuli. If the gap tracks the constant inter-stimulus
interval, RD goes to 0 in Equation 9, yielding Equation 6.

We ran 30 iterations of the model with number of stim-
uli N=10 with a large central gap, 9 times the size of the
even spacing gap, introduced between stimuli 5 and 6. The
threshold parameter was held at the same value as in the other
demonstrations. The model’s results (Figure 4) match the ’w’
shaped accuracy profile observed in the empirical data.

Discussion
In this paper, we have presented a model of absolute identi-
fication based on three basic principles: one, that observers
store 1-back relative magnitude judgments in memory; two,
that observers solve the computational problem implicit in
absolute identification (stimulus-rank mapping) using an ap-
proximately Bayesian calculation that can be stylized as sam-
pling engrams from memory; three, that this memory sam-
pling procedure terminates using an information-gain crite-
rion.

Our model’s capacity to identify absolute stimuli arises
from differences in the informativeness of memory samples
corresponding to various stimuli. Because the evidence from
comparisons involving extreme stimuli consistently points
the same way, the marginal information gain from sampling
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Figure 4: Reproducing the uneven spacing effect. The x-axis
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the model. Empirical data replotted from (Brown et al., 2009)

saturates rapidly and the model terminates memory retrieval
sooner, leading to faster and accurate responses. On the
other hand, for stimuli closer to the middle, samples will be
split between comparisons where the stimulus is larger and
ones where it is smaller, resulting in greater decision variable
volatility, and hence, more sampling. This interaction then
manifests summarily as slower and noisier responses.

The representational flexibility provided by our encoding
stimulus-rank mapping information in memory, in conjunc-
tion with the fact that we model the process by which the rep-
resentation is actually learned trial-by-trial from stimulus ob-
servations, allows our model to reproduce practice effects in
absolute identification (Dodds et al., 2011), as well as repro-
duce both the shift in response patterns as a function of stim-
ulus set (Rouder et al., 2004) and the heightened response to
unequal spacing (Brown et al., 2009) without committing to
long-term storage of magnitude estimates for arbitrary stim-
uli, and using only two explicit free parameters. Our account
also predicts that the uneven spacing effect should also prop-
agate to the RT distribution - an easily testable prediction.

In addition to these direct results, sequentially modelling
the mapping process, in conjunction with the use of an
information-based stopping criterion, also sheds new light
on the relationship between the psychophysical bowtie effect
(Lacouture & Marley, 2004) and the economic distance ef-
fect (Dickhaut et al., 2013). Extreme choice valence (dis-
tance in utility) appears to be correlated with lower error rate,
response times and interestingly, levels of neuronal activation
as measured by fMRI (Dickhaut et al., 2013). According to
our model, constructing a decision variable using conflicting
evidence requires more samples to breach the information-
based threshold, resulting in greater effort, which is corre-
lated with higher RT and brain activation for both perceptual
and economic choices with greater mutual confusability, as

determined by their history of pairwise comparisons.
In summary, the model we have proposed appears to have

robust empirical fits to challenging data within the absolute
identification literature, and interesting theoretical connec-
tions with other strands in the literature on choice process
modeling.
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