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Distinctions Between Parameters and 
Statistics 

Parameters Statistics  

Source Population Sample 

Notation Greek (e.g., μ) Roman (e.g., xbar) 

Vary No Yes 

Calculated No Yes 





The Bayesian’s universe 

World Data 

Params 

Lklhd 

Generates 

Model 

Prior 

Inference Inference 

Magic 



The statistician’s universe 

Population Data 

Params 

Stats 

Sample 

Statistics 

Approximate 



“The Reverend Bayes published posthumously. The field of statistics 

would greatly improve if all Bayesians were to follow his example” 



Sampling Distributions of a Mean 
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The sampling distributions of a mean (SDM)  
describes the behavior of a sampling mean 



Hypothesis Testing 

• Is also called significance testing 

• Tests a claim about a parameter using 
evidence (data in a sample 

• The technique is introduced by considering a 
one-sample z test  

• The procedure is broken into four steps 

• Each element of the procedure must be 
understood 



Hypothesis Testing Steps 

A. Null and alternative hypotheses 

B. Test statistic 

C. P-value and interpretation 

D. Significance level (optional) 



Null and Alternative Hypotheses 

• Convert the research question to null and 
alternative hypotheses  

• The null hypothesis (H0) is a claim of “no 
difference in the population”  

• The alternative hypothesis (Ha) claims “H0 is 
false” 

• Collect data and seek evidence against H0 as a 
way of bolstering Ha (deduction) 



Illustrative Example: “Body Weight” 



Reasoning 

 5,170~ Nx
Sampling distribution of xbar 

under H0: µ =  170 for n = 64  



Test Statistic 
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This is an example of a one-sample test of a 

mean when σ is known. Use this statistic to 

test the problem: 



Illustrative Example: z statistic 

• For the illustrative example, μ0 = 170 

• We know σ = 40 

• Take a random sample of n = 64. Therefore 

 
 

• If we found a sample mean of 173, then  
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Illustrative Example: z statistic 

If we found a sample mean of 185, then 
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What is a test statistic? 

𝑁 𝑥|𝜇, 𝜎2 → 𝑁(𝑧|0,1) Z-statistic 

𝑝 𝑥 ≤ 𝑥 |𝑁 𝑥|𝜇, 𝜎2 = 𝑝 𝑧 ≤  𝑧 |𝑁(𝑧|0,1) =  
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p-value 
• The P-value answer the question: What is the 

probability of the observed test statistic or one more 
extreme when H0 is true?  

• This corresponds to the AUC in the tail of the 
Standard Normal distribution beyond the zstat.  

• Convert z statistics to P-value :  
For Ha: μ > μ0  P = Pr(Z > zstat) = right-tail beyond zstat 

For Ha: μ < μ0  P = Pr(Z < zstat) = left tail beyond zstat 

For Ha: μ  μ0  P = 2 × one-tailed P-value 



One-sided P-value for zstat of 0.6 



One-sided P-value for zstat of 3.0 



Two-Sided P-Value 

• One-sided Ha  
AUC in tail beyond 
zstat  

• Two-sided Ha  
consider potential 
deviations in both 
directions  
double the one-
sided P-value 

Examples: If one-sided P 

= 0.0010, then two-sided 

P = 2 × 0.0010 = 0.0020. 

If one-sided P = 0.2743, 

then two-sided P = 2 × 

0.2743 = 0.5486. 



Interpretation  

• P-value answer the question: What is the 
probability of the observed test statistic … 
when H0 is true?   

• Thus, smaller and smaller P-values provide 
stronger and stronger evidence against H0 

• Small P-value  strong evidence 



α-Level (Used in some situations) 

• Let α ≡ probability of 
erroneously rejecting H0  

• Set α threshold (e.g., let α = .10, 
.05, or whatever) 

• Reject H0 when P ≤ α 

• Retain H0 when P > α 

• Example: Set α = .10. Find P = 
0.27  retain H0 

• Example: Set α = .01. Find P = 
.001  reject H0 



(Summary) One-Sample z Test 

A. Hypothesis statements  
H0: µ = µ0 vs.  
Ha: µ ≠ µ0 (two-sided) or  
Ha: µ < µ0 (left-sided) or 
Ha: µ > µ0 (right-sided)  

B. Test statistic 
 
 

C. P-value: convert z to p value 

D. Significance statement depending on α  
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Another example: IQ testing 

• Let X represent Weschler Adult Intelligence 
scores (WAIS) 

• Typically, X ~ N(100, 15) 

• Take i.i.d. samples of n = 9 from a population 

• Data  {116, 128, 125, 119, 89, 99, 105, 116, 
118} 

• Calculate sample mean = 112.8  

• Does sample mean provide strong evidence that 
population mean μ > 100? 



Example 
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A. Hypotheses:  
H0: µ = 100 versus  
Ha: µ > 100 (one-sided) 
Ha: µ  ≠ 100 (two-sided) 

B. Test statistic: 



C. P-value: P = Pr(Z ≥ 2.56) = 0.0052 

 

 

 

 

 

 

 

  

 
 

 
P =.0052  it is unlikely the sample came from this 

null distribution   strong evidence against H0 



Two-sided p-value 

• Ha: µ ≠100  

• Considers random 
deviations “up” and 
“down” from μ0 tails 
above and below ±zstat  

• Thus, two-sided P  
= 2 × 0.0052  
= 0.0104 



Conditions for z test 

• σ known (not from data) 

• Population approximately normal or large 
sample (n>30) 

• Data i.i.d. 



T tests 

• The z test conditions seldom hold in practice 

– We don’t often know the population variance 

– The sample size can be small 

• We use a T test instead 

– Assumes the sampling distribution is a t-
distribution 

– 𝑥 ~ 
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T distribution 

𝑇𝑛−1(𝑥 ) =  
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Can you say why? 



(Summary) T Test 

A. Hypothesis statements  
H0: µ = µ0 vs.  
Ha: µ ≠ µ0 (two-sided) or  
Ha: µ < µ0 (left-sided) or 
Ha: µ > µ0 (right-sided)  

B. Calculate Test statistic 
 
 

C. P-value: convert T to p value 

D. Significance statement depending on α  

𝑇𝑛−1(𝑥 ) =  
𝑥 −  𝜇

𝑆
𝑛 

 𝑆2 = 
1

𝑛 − 1
 𝑥𝑖 − 𝑥 2

𝑛

𝑖=1

 where, 



Test statistics 

Pooled 

Unpooled 



Test statistic construction 

• Proportions as random variables 

• What does the sampling distribution of the 
mean look like? 

• What will the test statistic look like? 

 



Different set of tests for variance 

• Sampling distribution for variance looks very 
different 

• Hypothesis testing logic stays the same 

– Hypothesize 

– Calculate 

– Interpret 



(Summary) Statistical hypothesis 
testing 

A. Hypothesis statements  
H0: µ = µ0 vs.  
Ha: µ ≠ µ0 (two-sided) or  
Ha: µ < µ0 (left-sided) or 
Ha: µ > µ0 (right-sided)  

B. Calculate Test statistic 

C. P-value: convert test statistic to p value 

D. Significance statement depending on α  



PRACTICAL CONSIDERATIONS 



Multiple comparisons 

• Let’s say we’re doing IQ testing department-
wise 
– 7 departments 

– α = 0.05 

– Run C(7,2) = 21 pairwise T-tests on the data 

– CSE > EE 

• How to interpret? 

• Bonferroni correction for FWER α* = 
α/#comparisons 



P-hacking 



Reading error bars 



Reading error bars 

Use SD when you want to describe the dataset 

Use SE when you want to describe the precision of your estimate of the mean 

Use CI when your SE is small enough for the CI to look impressive to the 

viewer! 

Use of CI is strongly encouraged to report estimate precision. Be brave and use it 



Confidence intervals 

• Statistical estimates of 
population parameters 
are typically presented 
with confidence intervals 

• 95% 𝐶𝐼 = 𝑍(𝑝 =
0.05) × 𝑆𝐸  

• Half the CI is sometimes 
called the margin of error  

• How to set up data 
collection for a known 
margin of error? 

 



Sample size calculation: simple 

• Simplest case: one sample Z test 

• Assume we want to find the population mean 
with margin of error at most W 

• p = 0.05 

• Then we want a CI of 2W and an SE of about W 

• 𝑊 = 
𝜎

𝑛
, solve for n 

• 𝑛 =  
𝜎2

𝑊2  



Cool trick: bootstrapping 

• Power calculations depend on knowing the population 
standard deviation 
– Fine for Z tests, but what about the others? 

• We use bootstrapping to estimate the population 
standard deviation from the data 
– Resample the data by drawing a dataset from the existing 

dataset randomly with replacement 
– Compute statistics 
– Repeat 1000 times 
– You get an empirical distribution on the statistic 
– Directly use the standard deviation of this distribution as 

the standard error of the statistic 



Is this enough? 

• Set up competing hypotheses 

• Specify significance level 

• Calculate confidence bound for test statistic  
– Use bootstrap if population variance is unknown 

• Calculate effective sample size 

• Collect data 

• Calculate test statistic 

• Output result 



Not enough 



Power 

Truth 

Decision H0 true H0 false 

Retain H0  Correct retention Type II error 

Reject H0 Type I error Correct rejection 

α ≡ probability of a Type I error 

β ≡ Probability of a Type II error  

Two types of decision errors: 

Type I error (FN) = erroneous rejection of true H0 

Type II error (FP) = erroneous retention of false H0 



Power 
• β ≡ probability of a Type II error 

β = Pr(retain H0 | H0 false) 
 

• 1 – β  “Power” ≡ probability of avoiding a 
Type II error 

1– β = Pr(reject H0 | H0 false) 

 



Power calculation 
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• Calculate probability of a Type II error 
– Pr(null is not rejected|null is false) 

– 𝑝 𝑧 < 𝑧𝑐𝑟𝑖𝑡 𝑧 =  
𝑥 − 𝜇1
𝜎
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, 𝑥~𝑁(𝜇1, 𝜎)) 

– Power is 1 – p(Type II error) 

• Calculate 𝑥𝑐𝑟𝑖𝑡 = 𝜇0 + 𝑧𝑐𝑟𝑖𝑡  
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– Power = 𝑝 𝑥 > 𝑥𝑐𝑟𝑖𝑡 𝑥~𝑁(𝜇1, 𝜎)) 
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Calculating Power: Example 
A study of n = 16 retains H0: μ = 170 at α = 0.05 

(two-sided); σ is 40. What is the power of test’s 

conditions to identify a population mean of 190? 

𝑥𝑐𝑟𝑖𝑡 = 170 + 1.96 ×
40

16
= 189.6  

𝑃𝑜𝑤𝑒𝑟 = 1 −  Φ −0.04 = 0.5160 

Can you find the power if we used 100 samples instead? 

𝑥𝑐𝑟𝑖𝑡 = 170 + 1.96 ×
40

100
= 177.68  

𝑃𝑜𝑤𝑒𝑟 = 1 −  Φ −3.08 = 0.999 





Illustration: conditions 

for 90% power. 



Effect size 

• Frequently measured using Cohen’s d 

•  𝑑 =  
𝜇1−𝜇0

𝑠
 

• Bigger effect sizes easier to discriminate 

• Estimate via pilots 



Summary of statistical calculations 

• Given any 3 of α, β, d and n, we can calculate 
the fourth 

– Can calculate expected margin of error a test 

– Can calculate expected power of a test 

– Can calculate minimum discriminable effect size of 
a test 

– Can calculate required sample size of a test 

 



Sample size calculation: complex 

• We know α, β, d 

• Calculate n 

• Need to know values for the normal quantile 
function 

• 𝑛 =  
Φ−1 𝛽 − 𝑧𝑐𝑟𝑖𝑡

2

𝑑2  

• Very important 
– Science experiments 

– Costly data collection 
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Review: statistics 

• The language of statistics 
– Describes a universe where we sample datasets from 

a population 

• Interesting properties are proved for sampling 
distributions of parameter estimates 

• Statistical hypothesis testing 
– Helps us decide if a sample belongs to a population 

• A priori calculation of important statistical 
properties can help design better studies 
– Power, sample size, effect size 

 


