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Machine learners call this the ‘feature selection’ problem. We will 

focus on one particular way of solving it - regression analysis 



What we want - II 
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This is causality inference 



Regression model 

• Regression model estimates 
the nature of relationship 
between the independent 
and dependent variables.  

– Change in dependent 
variables that results from 
changes in independent 
variables, i.e. size of the 
relationship. 

– Strength of the relationship. 

– Statistical significance of the 
relationship. 



Bivariate and multivariate models 
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Bivariate or simple regression model 

Multivariate or multiple regression model 



Bivariate or simple linear regression 

• x is the independent 
variable 

• y is the dependent 
variable 

• The regression model is 

 
• Two parameters to 

estimate – the slope of 
the line w1 and the y-
intercept w0  

• ε is the unexplained, 
random, or error 
component.  
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Fitting the regression model 

• Any choice of w gives us predictions for the 
dependent variable fi  for each xi   

• Residual ei = yi – fi 

• Good fit = minimize  𝑒𝑖
2

𝑖   

• Easy to derive estimators for coefficients using 
basic calculus 

• min
𝒘
 (𝑦𝑖 − 𝑤0  −  𝑤1𝑥𝑖)

2
𝒊  

• 𝑤1 =
𝐶𝑜𝑣(𝑥,𝑦)

𝑉𝑎𝑟(𝑥)
 

• 𝑤0 = 𝑦  − 𝑤1𝑥  



Assessing goodness of fit 

• Sanity check E[e] = 0  E[f] = E[y] 

• 𝑆𝑆𝑇 =   (𝑦𝑖 − 𝑦  )
2

𝑖  

• 𝑆𝑆𝑅 =   (𝑦𝑖 − 𝑓𝑖)
2

𝑖  

• 𝑅2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
 

 

 



Uses of vanilla regression 

• Amount of change in a dependent variable that 
results from changes in the independent variable(s) – 

• Attempt to determine causes of phenomena. 

• Prediction and forecasting 

• Support or negate theoretical model.   

• Modify and improve theoretical models and 
explanations of phenomena. 

 

 

 

 



Used to tell stories that make a big 
difference 



Multiple regression 

• Everything works the same way as in simple regression 

• 𝑦 = 𝑤0 +𝑤1𝑥1 +𝑤2𝑥2 + …+ 𝑤𝑛 𝑥𝑛 

• Estimated as in the univariate case by minimizing  

 𝑦𝑖 − 𝑤0 −  𝑤𝑗𝑥𝑖𝑗

𝑝

𝑗=1

2
𝑛

𝑖=1

 

• Each independent variable affects the dependent variable 
linearly in isolation 

• Can also use modifications of the same variable, e.g. x2 in 
place of a new variable 
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Non-linear relationship 

Correlation = +0.12. 



All multiple linear regressions 



Example 

Infant mortality 

Regional wealth 
levels 

Medical 
resource 

availability 



Predictable relationship 



Regression result 



Looks decent too 

IMR = -0.0064*(NSDP per capita) + 6.11*(log(patients per bed)) + 5.51 



Interpreting the coefficients 



Technical caveats 

• Have to look at adjusted R2 to assess model fit 
• R2 can never decrease by adding an extra variable 

• Have to deflate it by number of variables used for fair 
comparison 

• 𝑅𝑎𝑑𝑗
2 = 𝑅2 −

𝑝

𝑛−𝑝−1
(1 − 𝑅2) 

• Have to watch out for problems 

– Omitted variable bias 

– Multicollinearity 

– Dummy variable trap 

– Outliers 



Omitted variable bias 

We omit a variable from the analysis that is  

• Correlated with at least one of the independent variables 

and 

• Determinative for the response variable mechanistically 



Multicollinearity 

• When two of the predictors are highly 
correlated 

• Parameter estimation becomes unstable 

• Results become suspect 

• Rule of thumb: correlations higher than 0.7 
between two variables  leave the less 
interesting one out of the analysis 



Dummy variable trap 

• How to handle categorical data? 

• Create n dummy variables for an n category 
variable 

• Never use all n in the analysis, leave one out 

• Why? Multicollinearity 
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Outliers 

• Rare, extreme values distort OLS fits. 

– Could be an error. 

– Could be a very important observation. 

• Outlier: more than 3 standard deviations from 
the mean. 

• Can discard, or use robust regression methods 

• Caveat emptor 



Pragmatic caveats 

• Spurious correlations 

• The kitchen sink problem 

• Regularization 



Spurious correlations 



Spurious correlations 



Spurious correlations 



Regularization in regression models 
• Regularization = trying to keep your model 

simple 

• Do this by adding a regularization term to the 
regression objective function, i.e. SSE + λR 

• Three basic forms in regression 

– Subset selection: R = |w|0 =  𝐼(𝑤𝑖)
𝑝
𝑖  

– Lasso regression: R = |w|1 =  |𝑤𝑖|
𝑝
𝑖  

– Ridge regression: R = |w|2 =  𝑤𝑖
2𝑝

𝑖  

• Larger λ  simpler model, with fewer non-
zero coefficients 

 



Probabilistic intuition 

• Assume that 𝑝 𝑦 𝑥, 𝑤, 𝜎2 =
𝑁 𝑦|𝑓 𝑥, 𝑤 , 𝜎2  

• Bayes inversion would gives us 
𝑝(𝑤|𝑥, 𝑦, 𝜎2)  

– If we have knowledge about the 
prior on w 

– Assume the prior is 

𝑁 𝑤|0, 𝛼 =  
1

𝜎𝑝
2  

• Find w by maximizing the 
posterior probability 

 

 



Probabilistic intuition 

• Equivalent to minimizing the negative log 
posterior 

• min − log 𝑝 𝑦 𝑥,𝑤, 𝜎2 − log 𝑝(𝑤|𝛼)  

• min
1

2𝜎2
 𝑦𝑖 − 𝑤𝑖𝑥𝑖

2
𝑖 + 

𝛼

2
 𝑤𝑗

2
𝑗  

• You could do a full Bayesian regression instead 

• How? Why? 

 
 



What we get 

Behavior 

Var1 Var2 Var3 Var4 Var5 
Var6 

Var7 


