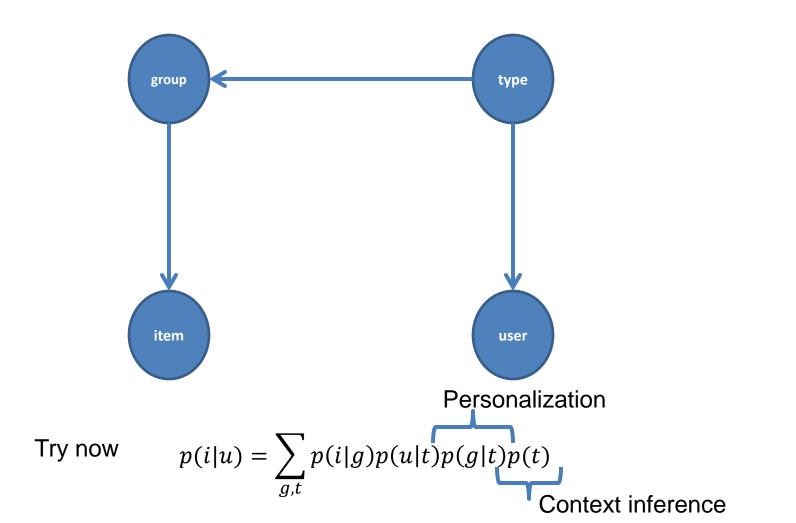
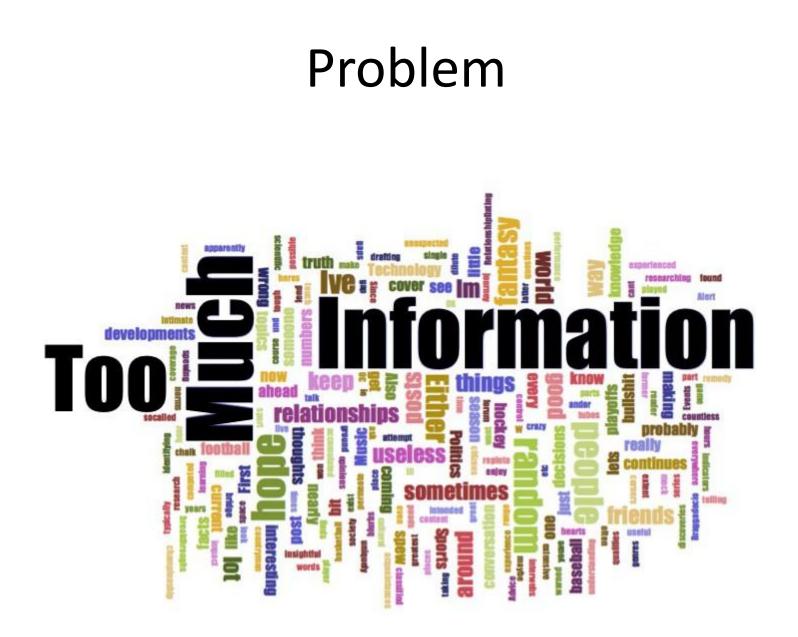
Regression analysis

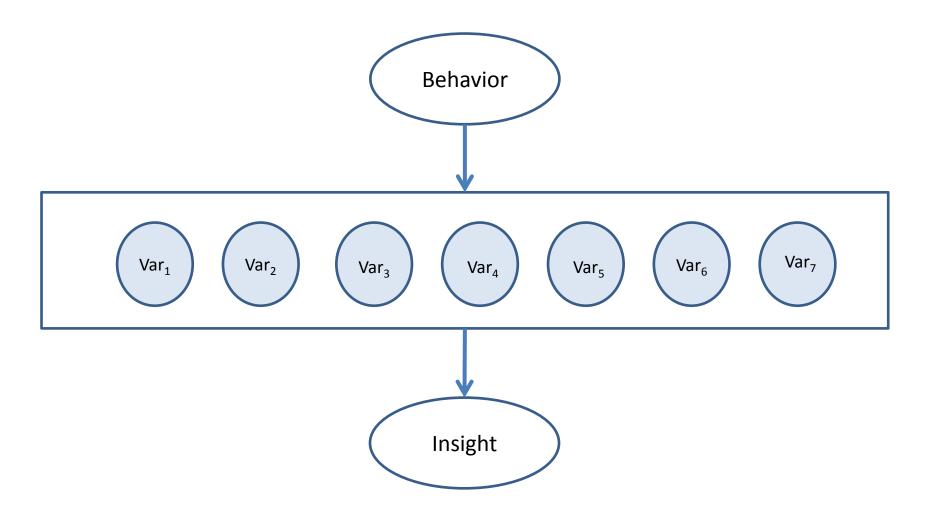
Nisheeth

Recommender system example





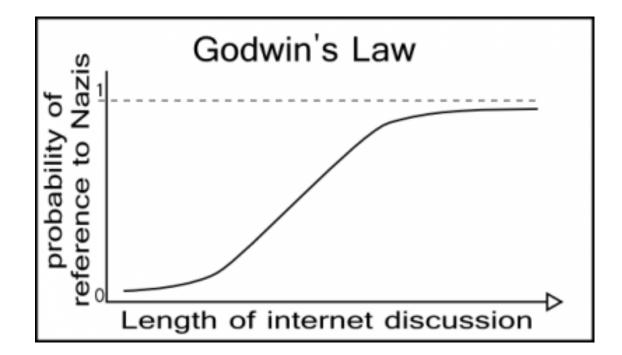
Typical human-computer interface



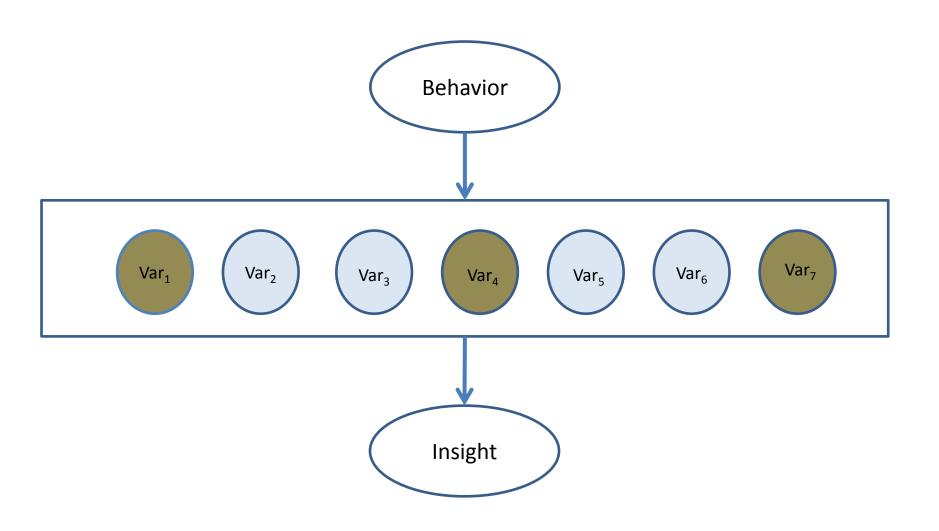
Stored variables are a function of business requirements

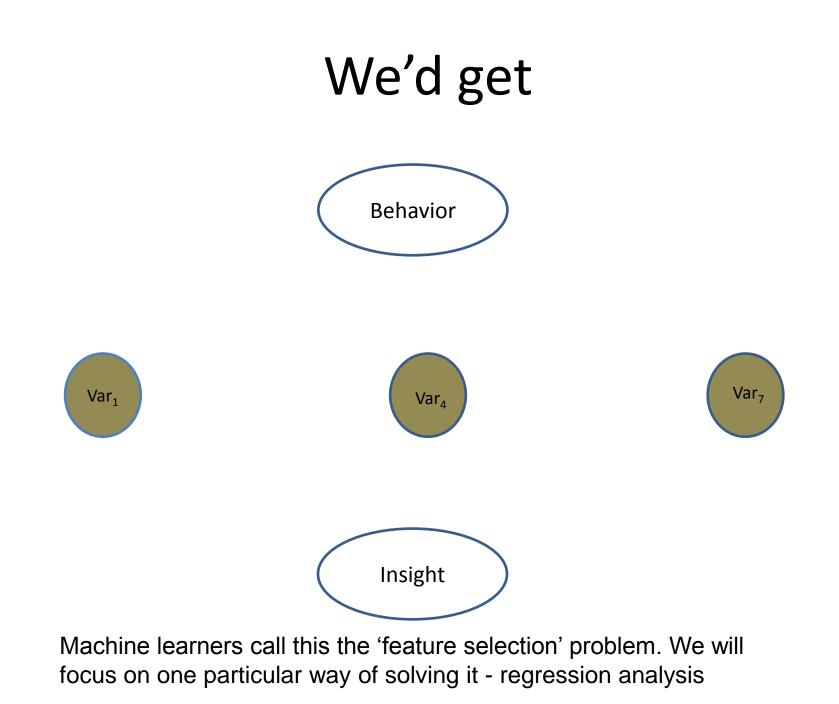
ow Does Facebook Choose /hat To Show In News Fee				
News Feed Visibility	=* C Crea	and the second se	$\mathbf{x} \mathbf{T}_{\text{Type}} \mathbf{x} \mathbf{R}_{\text{Recency}}$	

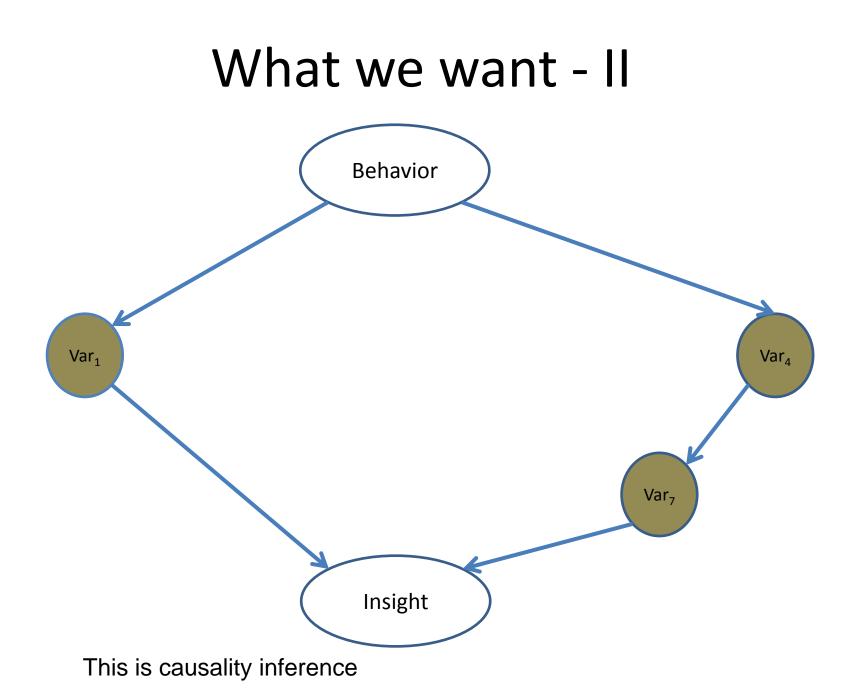
Important scientific discoveries made tangentially



What we want - I

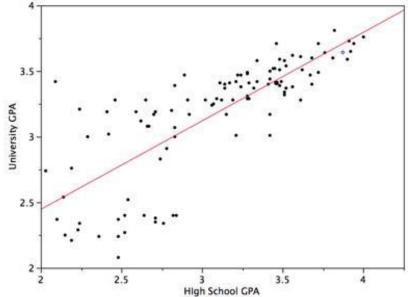


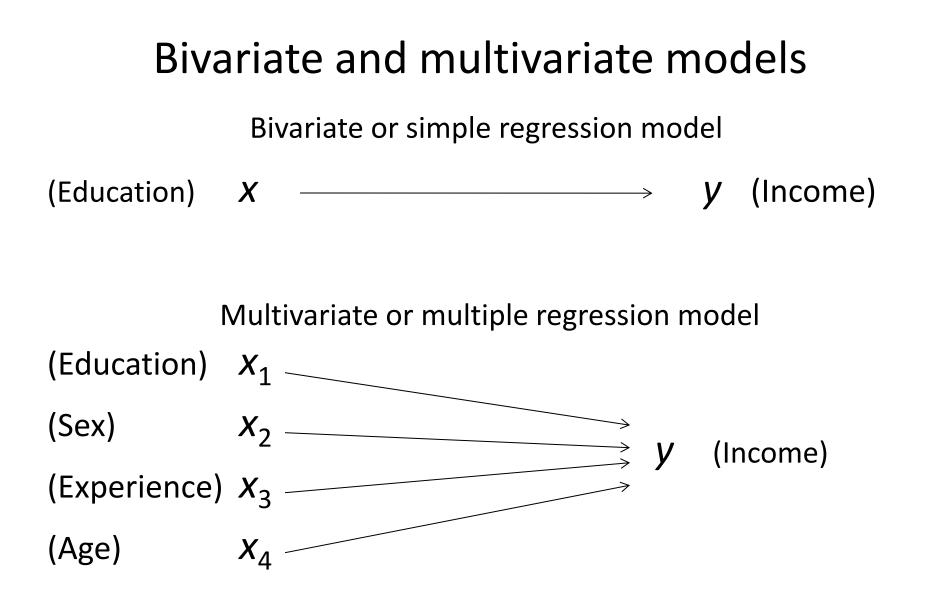




Regression model

- Regression model estimates the nature of relationship between the independent and dependent variables.
 - Change in dependent variables that results from changes in independent variables, i.e. size of the relationship.
 - Strength of the relationship.
 - Statistical significance of the relationship.



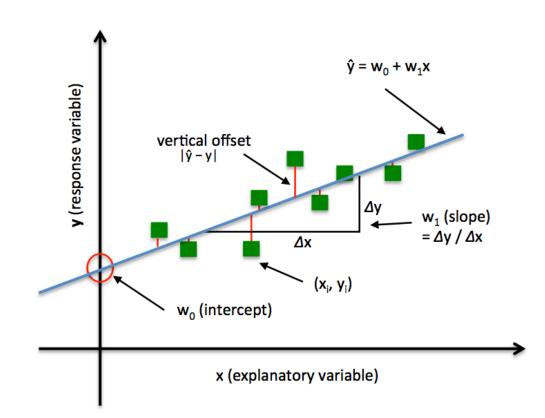


Bivariate or simple linear regression

- *x* is the independent variable
- y is the dependent variable
- The regression model is

 $y = w_0 + w_1 x + \varepsilon$

- Two parameters to estimate – the slope of the line w₁ and the yintercept w₀
- ε is the unexplained, random, or error component.



Fitting the regression model

- Any choice of w gives us predictions for the dependent variable f_i for each x_i
- Residual $e_i = y_i f_i$
- Good fit = minimize $\sum_i e_i^2$
- Easy to derive estimators for coefficients using basic calculus

•
$$\min_{w} \sum_{i} (y_i - w_0 - w_1 x_i)^2$$

•
$$w_1 = \frac{Cov(x,y)}{Var(x)}$$

•
$$w_0 = \overline{y} - w_1 \overline{x}$$

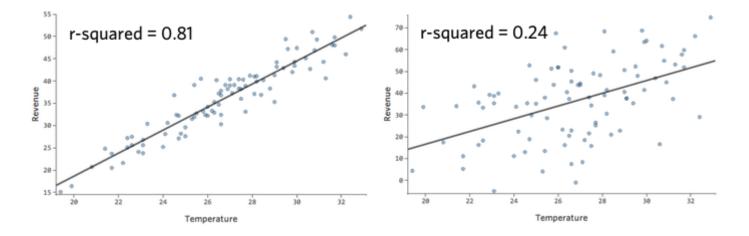
Assessing goodness of fit

• Sanity check $E[e] = 0 \rightarrow E[f] = E[y]$

•
$$SST = \sum_i (y_i - \overline{y})^2$$

•
$$SSR = \sum_i (y_i - f_i)^2$$

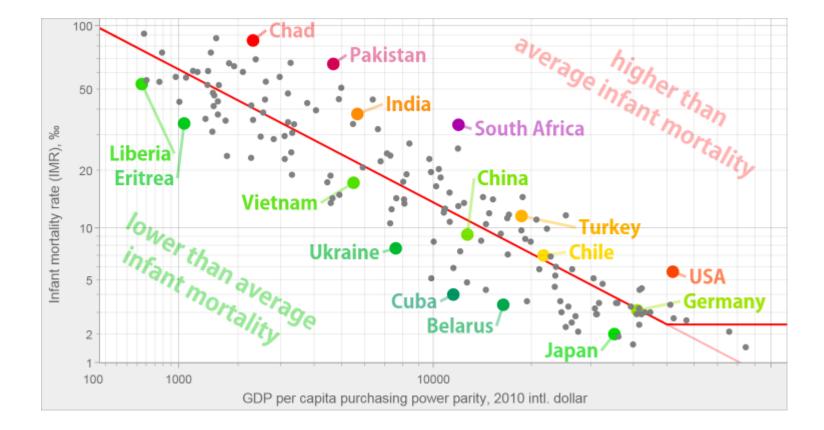
•
$$R^2 = 1 - \frac{SSR}{SST}$$



Uses of vanilla regression

- Amount of change in a dependent variable that results from changes in the independent variable(s) –
- Attempt to determine causes of phenomena.
- Prediction and forecasting
- Support or negate theoretical model.
- Modify and improve theoretical models and explanations of phenomena.

Used to tell stories that make a big difference

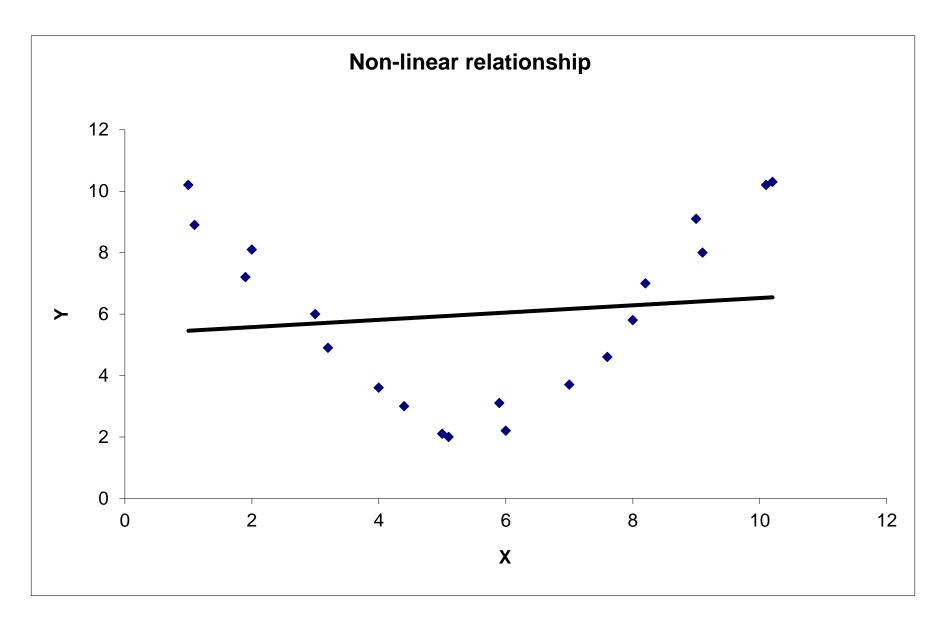


Multiple regression

- Everything works the same way as in simple regression
- $y = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$
- Estimated as in the univariate case by minimizing

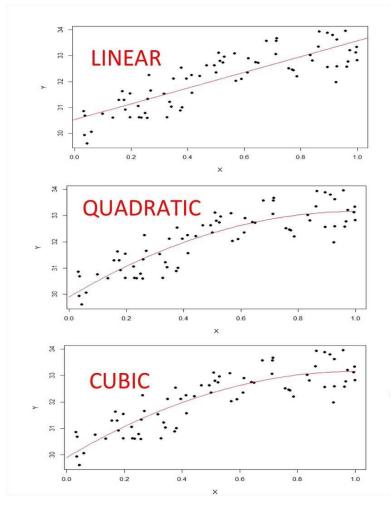
$$\sum_{i=1}^{n} \left(y_i - w_0 - \sum_{j=1}^{p} w_j x_{ij} \right)^2$$

- Each independent variable affects the dependent variable linearly in isolation
- Can also use modifications of the same variable, e.g. x² in place of a new variable



Correlation = +0.12.

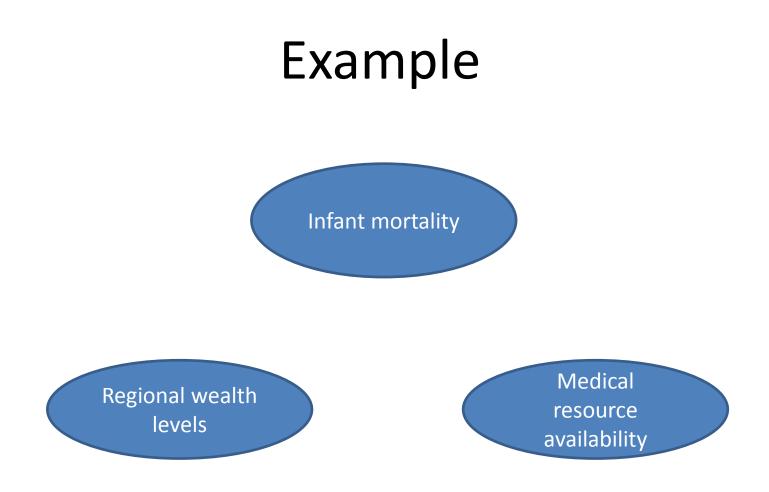
All multiple linear regressions



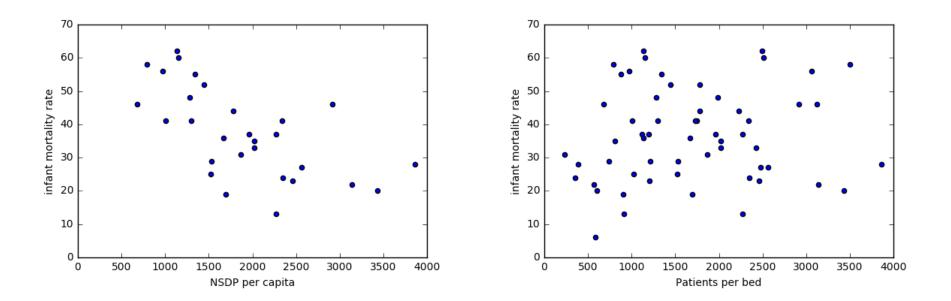
Multiple R-squared: 0.7044 Y = 30.53 + 3.05*X

Multiple R-squared: 0.7559 Y = 29.90 + $6.48^{\times}X - 3.22^{\times}X^{2}$

Multiple R-squared: 0.7623 Y = $30.17 + 3.61^{*}X + 3.71^{*}X^{2} - 4.48^{*}X^{3}$



Predictable relationship



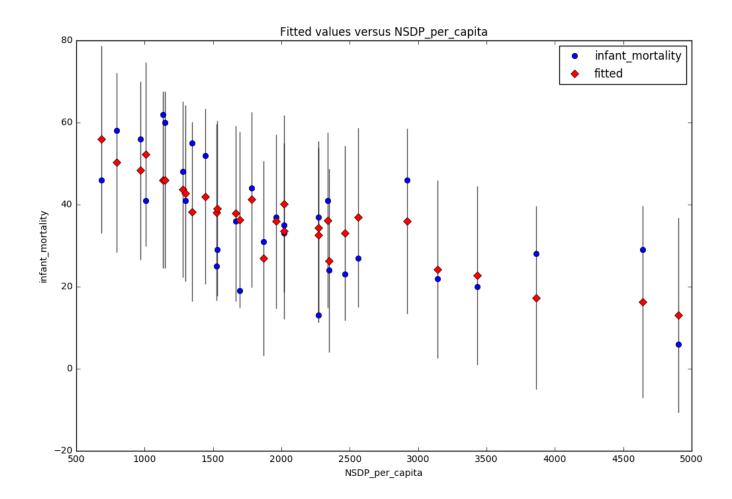
Regression result

Dep. Variable:	infant_mortality	R-squared:	0.524
Model:	OLS	Adj. R-squared:	0.490
Method:	Least Squares	F-statistic:	15.43
Date:	Wed, 11 Jan 2017	Prob (F-statistic):	3.04e-05
Time:	21:50:09	Log-Likelihood:	-114.39
No. Observations:	31	AIC:	234.8
Df Residuals:	28	BIC:	239.1
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	5.5161	23.306	0.237	0.815	-42.224 53.257
NSDP_per_capita	-0.0064	0.002	-2.936	0.007	-0.011 -0.002
np.log(patients_per_bed)	6.1056	2.825	2.162	0.039	0.320 11.892

Omnibus:	1.664	Durbin-Watson:	2.644
Prob(Omnibus):	0.435	Jarque-Bera (JB):	1.086
Skew:	-0.116	Prob(JB):	0.581
Kurtosis:	2.113	Cond. No.	2.97e+04

Looks decent too



IMR = -0.0064*(NSDP per capita) + 6.11*(log(patients per bed)) + 5.51

Interpreting the coefficients

Dep. Variable:	infant_mortality	R-squared:	0.524
Model:	OLS	Adj. R-squared:	0.490
Method:	Least Squares	F-statistic:	15.43
Date:	Thu, 12 Jan 2017	Prob (F-statistic):	3.04e-05
Time:	10:50:49	Log-Likelihood:	-114.39
No. Observations:	31	AIC:	234.8
Df Residuals:	28	BIC:	239.1
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	36.2581	1.831	19.801	0.000	32.507 40.009
st_NSDP	-6.5784	2.241	-2.936	0.007	-11.169 -1.988
st_ppb	4.8437	2.241	2.162	0.039	0.254 9.434

Omnibus:	1.664	Durbin-Watson:	2.644
Prob(Omnibus):	0.435	Jarque-Bera (JB):	1.086
Skew:	-0.116	Prob(JB):	0.581
Kurtosis:	2.113	Cond. No.	1.93

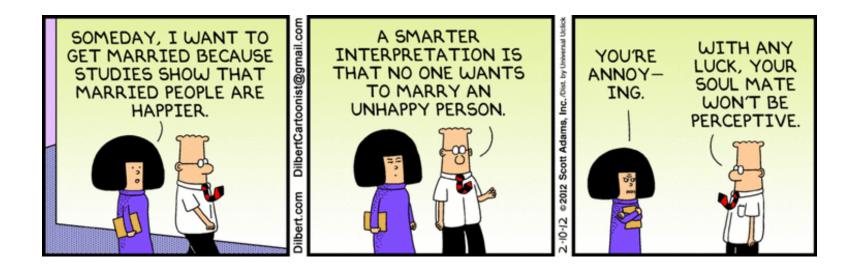
Technical caveats

- Have to look at adjusted R² to assess model fit
 - R2 can never decrease by adding an extra variable
 - Have to deflate it by number of variables used for fair comparison

•
$$R_{adj}^2 = R^2 - \frac{p}{n-p-1}(1 - R^2)$$

- Have to watch out for problems
 - Omitted variable bias
 - Multicollinearity
 - Dummy variable trap
 - Outliers

Omitted variable bias



We omit a variable from the analysis that is

- Correlated with at least one of the independent variables and
- Determinative for the response variable mechanistically

Multicollinearity

- When two of the predictors are highly correlated
- Parameter estimation becomes unstable
- Results become suspect
- Rule of thumb: correlations higher than 0.7 between two variables → leave the less interesting one out of the analysis

Dummy variable trap

- How to handle categorical data?
- Create n dummy variables for an n category variable
- Never use all n in the analysis, leave one out
- Why? Multicollinearity

Outliers

- Rare, extreme values distort OLS fits.
 - Could be an error.
 - Could be a very important observation.
- Outlier: more than 3 standard deviations from the mean.
- Can discard, or use robust regression methods
- Caveat emptor

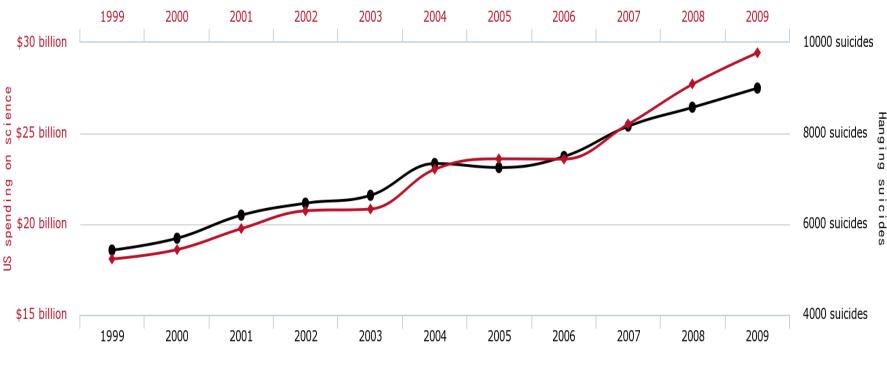
Pragmatic caveats

- Spurious correlations
- The kitchen sink problem
- Regularization

Spurious correlations

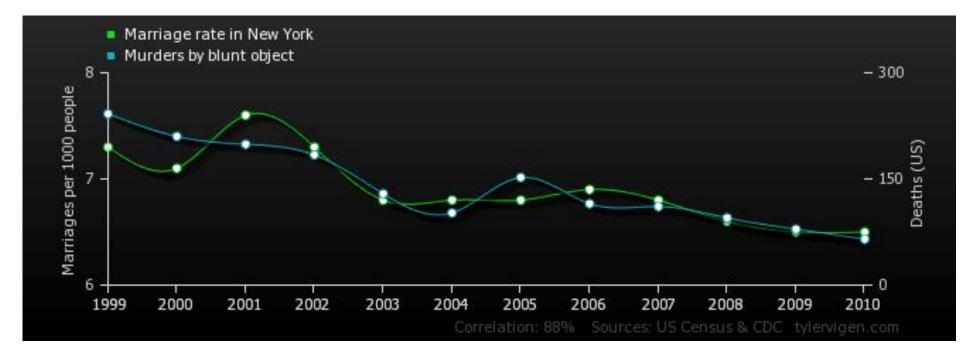
US spending on science, space, and technology correlates with

Suicides by hanging, strangulation and suffocation



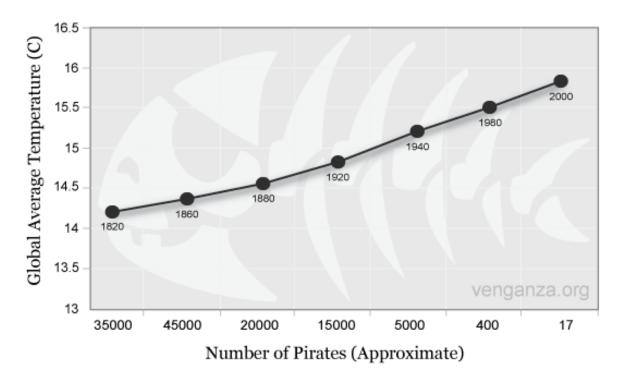
← Hanging suicides ← US spending on science

Spurious correlations



Spurious correlations

Global Average Temperature Vs. Number of Pirates



Regularization in regression models

- Regularization = trying to keep your model simple
- Do this by adding a regularization term to the regression objective function, i.e. SSE + λ R
- Three basic forms in regression
 - Subset selection: $R = |\mathbf{w}|_0 = \sum_i^p I(w_i)$
 - Lasso regression: $R = |\mathbf{w}|_1 = \sum_i^p |w_i|$

- Ridge regression: R = $|\mathbf{w}|_2 = \sum_i^p w_i^2$

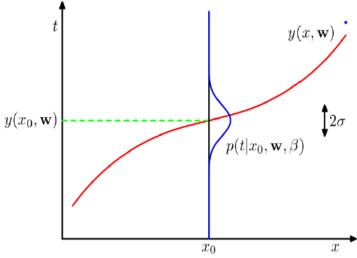
• Larger $\lambda \rightarrow$ simpler model, with fewer nonzero coefficients

Probabilistic intuition

- Assume that $p(y|x, w, \sigma^2) = N(y|f(x, w), \sigma^2)$
- Bayes inversion would gives us $p(w|x, y, \sigma^2)$
 - If we have knowledge about the y(x prior on w
 - Assume the prior is

$$N\left(w|0,\alpha=\frac{1}{{\sigma_p}^2}\right)$$

• Find w by maximizing the posterior probability



Probabilistic intuition

 Equivalent to minimizing the negative log posterior

• min{
$$-\log p(y|x, w, \sigma^2) - \log p(w|\alpha)$$
}

•
$$\min\left\{\frac{1}{2\sigma^2}\sum_i(y_i - w_i x_i)^2 + \frac{\alpha}{2}\sum_j w_j^2\right\}$$

- You could do a full Bayesian regression instead
- How? Why?

