Basic math/stats review



Overview

Probability
— Random variables, expected value
— Common distributions, sufficient statistics
— Conditional, marginal and joint distributions
— Bayesrule
Correlations
— Linear correlations
— Rank correlations
— Entropy, mutual information

Hypothesis testing

— Basic tests

— Cautions

— Bayes Factors
Inference

— Estimation

— Conjugacy

— Applications



Introduction to Probability



Bonus question




Random Variable

e A random variable x takes on a defined set of
values with different probabilities.

e Roughly, probability is how frequently we expect
different outcomes to occur if we repeat the
experiment over and over (“frequentist” view)




Random variables can be discrete or
continuous

 Discrete random variables have a countable
number of outcomes

e Continuous random variables have an infinite
continuum of possible values.



Probability functions

e A probability function maps the possible values of
x against their respective probabilities of
occurrence, p(x)

* p(x)is a number from O to 1.0.
 The area under a probability function is always 1.



Discrete example: roll of a die

p(x)
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Probability mass function (pmf)

X p(x)

1 p(x=1)=1/6
2 p(x=2)=1/6
3 p(x=3)=1/6
4 p(x=4)=1/6
5 p(x=5)=1/6

6 D(x=6)=1/6




Cumulative distribution function

X P(x<A)

1 P(x<1)=1/6
2 P(x<2)=2/6
3 P(x=<3)=3/6
4 P(x=4)=4/6
3) P(x<5)=5/6

6 P(x<6)=6/6



Cumulative distribution function
(CDF)

1.0 —
5/6 —
213 —
1/2 —
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Practice Problem:

The number of patients seen in a clinic in any given hour is a random
variable represented by x. The probability distribution for x is:

X 10 11 12 13 14
Px) 4 2 2 1 1

Find the probability that in a given hour:

a. exactly 14 patients arrive p(x=14)= .1
b. Atleast 12 patients arrive p(x>12)=(2+.1+1)=4

C. Atmost 11 patients arrive p(x<Ill)=(4+.2)=.6



Continuous case

= The probability function that accompanies
a continuous random variable is a
continuous mathematical function that
integrates to 1.
= For example, recall the negative exponential

function (in probabillity, this is called an
“exponential distribution”): . (X) =&

= This function integrates to 1.:

+00

Ie‘X::—e‘X

0

+00
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0




Continuous case: “probability
density function” (pdf)

p(x)=e™
1 \\

The probability that x is any exact particular value (such as 1.9976) is 0;
we can only assign probabilities to possible ranges of x.

X




For example, the probability of x falling within 1 to 2:

We saw that train delay times are
roughly exponential. This means

that we can calculate how likely it is p(X)ZE'X
for the train to arrive between 1
and 2 hours late, say, if we learn
the parameters of the distribution 1
correctly.

2

=—e?——et=-135+.368=.23

1

2
P(1<x < 2):‘[e‘X =—e
1



Example 2: Uniform distribution

The uniform distribution: all values are equally likely.
f(x)=1, for 1>x >0

p(x)

1

We can see 1t’s a probability distribution because it integrates
to 1 (the area under the curve is 1): .




Example: Uniform distribution

What’s the probability that X Is between 0 and Y27

p(x)

P(¥s >x> 0)= %



Expected value

« Recall the following probability distribution of
patient arrivals:

X 10 11 12 13 14
Px) 4 2 2 1 1

25: X; p(X) =10(.4) +11(.2) +12(.2) +13(.1) + 14(.1) =11.3

=1




Example: the lottery

 The Lottery (also known as a tax on people who are
bad at math...)

* A certain lottery works by picking 6 numbers from 1
to 49. It costs Rs 1 to play the lottery, and if you win,
you win Rs 20 lakhs after taxes.

* [fyou play the lottery once, what are your expected
winnings or losses?



Lottery

Calculate the probability of winning in 1 try:

11 1 _ « »
IR TRar _79%10° 49 choose 6
( %-—‘—‘~L~“§‘N‘_‘§‘§\N‘N“_Ouuﬁ49numba&
o) 430 “this is the number
of distinct
combinations of 6.
The probability function (note, sums to 1.0):

Rs x p(x)
-1 999999928

+ 20 lakh 7.2x 107



Expected Value

The probability function

X p(x)
-1 .999999928
+ 20 lakh 7.2x 108

Expected Value
E(X) = P(win)*20,00,000 + P(lose)*-$1.00
=2.0x10%* 7.2 x 108+ .999999928 (-1) = .144 - .999999928 = - Rs

0.86
Negative expected value iIs never good!

You shouldn’t play 1f you expect to lose money!




Gambling (or how casinos can afford to give so many free
drinks...)

A roulette wheel has the numbers 1 through 36, as well as 0 and 00. If you bet Rs
1 that an odd number comes up, you win or lose Rs 1 according to whether or not
that event occurs. If random variable X denotes your net gain, X=1 with
probability 18/38 and X= -1 with probability 20/38.

E(X) =1(18/38) — 1 (20/38) = -5.053

On average, the casino wins (and the player loses) 5 cents per game.
The casino rakes in even more if the stakes are higher:

E(X) = 10(18/38) — 10 (20/38) = -Rs 0.53

If the cost is Rs 10 per game, the casino wins an average of 53 cents per game. If
10,000 games are played in a night, that’s Rs 5300 for simply spinning a colored
wheel



Not all powerful

St. Petersburg
paradox

Utility




Non-trivial discrete probabilities

Take the example of 5 coin tosses. What's the
probability that you flip exactly 3 heads in 5
coin tosses?



A discrete distribution: binomial

= A fixed number of observations (trials), n

» e.g., 15 tosses of a coin; 20 patients; 1000 people
surveyed

= A binary outcome

= e.g., head or tail in each toss of a coin; disease or no
disease

» Generally called “success” and “failure”
» Probability of success is p, probability of failureis 1 — p

= Constant probability for each observation

= e.g., Probability of getting a tail is the same each time
we toss the coin



Binomial distribution

Solution:
One way to get exactly 3 heads: HHHTT

What’s the probability of this exact arrangement?

P(heads)xP(heads) xP(heads)xP(tails)xP(tails) =(1/2)° x
(1/2)*

Another way to get exactly 3 heads: THHHT

Probability of this exact outcome = (1/2)! x (1/2)° x
(1/2)' = (1/2)° x (1/2)?



Binomial distribution

In fact, (1/2)° x (1/2)? is the probability of each
unigue outcome that has exactly 3 heads and 2
tails.

So, the overall probability of 3 heads and 2 tails is:

(1/2)° x (1/2)* +(1/2)° x (1/2)> + (1/2)° x (1/2)* +
..... for as many unique arrangements as there are—
but how many are there??



5\ Wwaysto
arrange 3
heads In

3 /) 5trials

Qutcome Probability

THHHT (1/2)} x (1/2)?
HHHTT (1/2)3 x (1/2)?
TTHHH (1/2)3 x (1/2)?
HTTHH (1/2)3 x (1/2)?
HHTTH (1/2)3 x (1/2)?
HTHHT (1/2)3 x (1/2)?
THTHH (1/2)3 x (1/2)?
HTHTH (1/2)3 x (1/2)?
HHTHT (1/2)3 x (1/2)?
THHTH (1/2)3 x (1/2)?

-C, =51/3121 =10

10 arrangements x (1/2)3 x (1/2)?

~

/

The probability
of each unique
outcome (note:
they are all
equal,



5

-.P(3 heads and 2 tails) = ( j: P(heads)’ x P(tails)’ =

3

10 x ()5-31.25%



Binomial distribution function:

X=the number of heads tossed in 5 coin tosses
p(x)

0O 1 2 3 4 5

number of heads



Binomial distribution, generally

Note the general pattern emerging = if you have only two possible
outcomes (call them 1/0 or yes/no or success/failure) in » independent
trials, then the probability of exactly X “successes”™=

n = number of trials
n

p” (1-p)"”
£Xj \ p\\ 1-p = probability
/ of failure

X = # 0=
S“‘Ecefsses probability of
outorn SUCCesSS

trials
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Today’s Lecture

General announcement
— Final registrations
— Dropbox file request system
— Audit requests
Project announcements
— Both demos now online
— Deadlines
¢ 20t Jan: tell me what you’re doing (1 paragraph; optional)
* 315t Jan: final submission (code+ 2-3 page summary)
— Project teams
* Possible novelty
Conditional, marginal and joint probabilities
— How to calculate, how to interpret
— Derivation of Bayes’ theorem

Bayesian networks
— Construction and notation
— Estimation and inference
— Applications in human-computer interaction

Reading: Russell & Norvig 14.1 to 14.4
— Slides from Padhraic Smythe’s 2007 talk



Joint probability




Conditional probability

N
ANB

P(ANB)

P(AIB) = 55




Marginalization

Law of Total Probability
P(B) =2, P(B n Aj) =2 P(B| A)) P(A;) where
AnA; = (Mutually Exclusive), and

A, = Q (Collectively Exhaustive)




The joint distribution knows everything

Given a joint distribution (e.g., P(a,b,c,d)) we can obtain any “marginal” probability (e.g., P(b)) by
summing out the other variables, e.g.,

P(b) = Za ZC Zd P(a, b, c, d)

Less obvious: we can also compute any conditional probability of interest given a joint distribution, e.g.,

P(c|b) =2,%,4P(a, c,d | b)
=1/P(b) 2, Z,P(a, c, d, b)

where 1 / P(b) is just a normalization constant

The joint distribution contains the information we need to compute any probability of interest.



Corollary:

DID THE SUN JUST EXPLODE?
(ITS NIGHT, 50 WERE NOT SURE,)

THIS NEUTRINO DETECTOR MEASURES
WHETHER THE SUN HAS GONE NOVA.,

( THEN, ITROWS TWO DICE. |F THEY

BOTH COME UP Six, ITUES TOUS.
OTHERWISE, rrm-rm:m
LETS TRY.
DETECTOR! HAS THE
awmnaa?

%/A\

FREQUENTIST STATSTICIAN: BAYESIAN STATISTIOAN:

THE PROBABILITY OF THIS RESULT

HAPPENING BY CHANCE 15 30027 BET YOU $50
SNCE p<0.05, T CONCLUDE IT HANT
THAT TE SUN HAS EXPLODED. )

faa

Bayes’ theorem

* P(a|b)P(b) = P(b]a)P(a)

* Useful way of appearing
wise to your friends

P(extreme event |common trait) =

P(common trait| extreme event) x
p(extreme event)/p(common
event)

* Prior probabilities can
be hard to specify
objectively



Computing with Probabilities: The Chain Rule or Factoring

We can always write
P(a,b,c,..z) =P(a|b,c,...2)P(b,c, ..2)
(by definition of joint probability)

Repeatedly applying this idea, we can write
P(a, b,c,..z) =P(a]|b,c,...z2) P(b]c,..2z)P(c]| .. z)..P(2)

This factorization holds for any ordering of the variables

This is the chain rule for probabilities



Conditional Independence

« 2random variables A and B are conditionally independent given C iff

P(a,b|c)=P(a| c)P(b|c) forallvaluesa,b,c

* More intuitive (equivalent) conditional formulation

— A and B are conditionally independent given C iff
P(@a|b,c)=P(alc) OR P(b|a,c)P(b]|c), forallvaluesa,b,c

— Intuitive interpretation:

P(a | b, c) =P(a | c) tells us that learning about b, given that we already know c, provides no
change in our probability for a,

i.e., b contains no information about a beyond what c provides

* Can generalize to more than 2 random variables
— E.g., Kdifferent symptom variables X1, X2, ... XK, and C = disease
— P(X1,X2,...XK | ) =11 P(xi | C)
— Also known as the naive Bayes assumption



Bayesian Networks

A Bayesian network specifies a joint distribution in a structured form

Represent dependence/independence via a directed graph
— Nodes = random variables
— Edges = direct dependence

Structure of the graph <~ Conditional independence relations
In general,

P(Xy, X5,....XN) = L1 p(X; | parents(X; ) )

/ O

The full joint distribution The graph-structured approximation

Requires that graph is acyclic (no directed cycles)

2 components to a Bayesian network
— The graph structure (conditional independence assumptions)
— The numerical probabilities (for each variable given its parents)



Example of a simple Bayesian

network
()

p(A,B,C) = p(C|A,B)p(A)p(B) +—

e Probability model has simple factored form

e Directed edges => direct dependence

e Absence of an edge => conditional independence

e Also known as belief networks, graphical models, causal networks

e Other formulations, e.g., undirected graphical models



Examples of 3-way Bayesian
Networks

@ @ Marginal Independence:
p(A,B,C) = p(A) p(B) p(C)



Examples of 3-way Bayesian
Networks

Conditionally independent effects:
p(A,B,C) = p(B|A)p(C|A)p(A)

° B and C are conditionally independent
Given A

e.g., Ais a disease, and we model
B and C as conditionally independent
symptoms given A



Examples of 3-way Bayesian

Networks
@ ° Independent Causes:
\ p(A,B,C) = p(C| A,B)p(A)p(B)

“Explaining away” effect:
Given C, observing A makes B less likely
e.g., earthquake/burglary/alarm example

A and B are (marginally) independent
but become dependent once C is known



Examples of 3-way Bayesian
Networks

®__, Markov dependence:
p(A,B,C) = p(C|B) p(B|A)p(A)



Example

* Consider the following 5 binary variables:
— B =a burglary occurs at your house
— E = an earthquake occurs at your house
— A =the alarm goes off
— J =John calls to report the alarm
— M = Mary calls to report the alarm

— Whatis P(B | M, J) ? (for example)

— We can use the full joint distribution to answer this question
* Requires 2° = 32 probabilities

* Can we use prior domain knowledge to come up with a Bayesian
network that requires fewer probabilities?



Construct a Bayesian Network: Step 1

* Order the variables in terms of causality
e.g., {E, B} -> {A} ->{J, M}
* P(J, M,A,E,B)=P(J,M | A E, B)P(A| E, B) P(E, B)
~ P(J, M | A) P(A| E, B) P(E) P(B)

~ P(J | A)P(M | A) P(A| E, B) P(E) P(B)

These Cl assumptions are reflected in the graph structure
of the Bayesian network



Graph structure of network

Burglary Earthquake




Constructing this Bayesian Network:

Step 2 E Qo=
P(J, M, A, E, B) =

P(J|A) P(M|A) P(A|E, B) P(E) P(B)

L .
k=3
=

A P(M)
f 70
7 o

There are 3 conditional probability tables to be determined:
PU [ A), P(M|A), P(A|E,B)
— Requiring 2 + 2 + 4 = 8 probabilities

And 2 marginal probabilities P(E), P(B) -> 2 more probabilities
Where do these probabilities come from?

— Expert knowledge
— From data (relative frequency estimates or regression analyses)



The Bayesian network

Burglary

P(E)
002

A P(M)

.70

.,
—




Intuitive display of conditional independence

A node is conditionally independent
of all other nodes in the network
given its Markov blanket (in gray)




Number of probabilities in Bayesian
Networks

Consider n binary variables

Unconstrained joint distribution requires O(2") probabilities

If we have a Bayesian network, with a maximum of k parents for
any node, then we need O(n 2¥) probabilities

Example
— Full unconstrained joint distribution
* n=30: need 10° probabilities for full joint distribution

— Bayesian network
* n=30, k=4: need 480 probabilities



Inference (Reasoning) in Bayesian
Networks

Consider answering a query in a Bayesian Network
— Q-=setof query variables

e = evidence (set of instantiated variable-value pairs)

Inference = computation of conditional distribution P(Q | €)

Examples =

— P(burglary | alarm)

— P(earthquake | JCalls, MCalls)

~ =~~~y
o
e

P(JCalls, MCalls | burglary, earthquake)

PE)

002

P

01

Can we use the structure of the Bayesian Network
to answer such queries efficiently? Answer = yes

Generally speaking, complexity is inversely proportional to sparsity of graph




Example: Tree-Structured Bayesian
Network

p(a, b, ¢, d, e, T, g) Is modeled as p(alb)p(clb)p(fle)p(gle)p(bld)p(eld)p(d)



Example

Say we want to compute p(a|c, g)



Example

Direct calculation: p(alc,g) = Zbdefp(a,b,d,e,f | c,0)

Complexity of the sum is O(m?)



Example

Reordering:
21, p(alb) 2 p(bld.c) ¢ p(dle) ¢ p(elf,0)p(flg)



Example

Reordering:
2y, p(alb) 24 p(bld,c) 2q p(dle)



Example

Reordering:
2y, p(alb) 24 p(bld,c) e p(dle) p(elo)

p(djg)



Example

Reordering:
21, p(alb)(2q p(bld,c) p(dlg)

p(b|c,9)



Example

Reordering;
b P(alb) p(blc,g)

p(alc,g) Complexity is O(m), compared to O(m?)



Example with numbers

Smokes
T F
0.2 0.8

Lung Disease

Smokes| T -
T
F
Shortness
of Breath Chest Pain
lung | T F lung | T F
Disease Disease
T 0.208 | 0.792 T 0.208 [ 0.792
F 0.01 | 0.99 F 0.01 | 0.99

F
0.98
Sough Fever
lung | Cold | T F Cold | T :
Disease
T T [0.7525(0.2475 T |0.307 [0.693
T F |0.505]|0.495 F | 001|099
F T |0.505 | 0.495
3 F | 001 | 099




General Strategy for inference
 Want to compute P(q | e)

Step 1:
P(g | e) =P(qg,e)/P(e) =a P(q,e), since P(e)is constant wrt Q

Step 2:
P(g,e) = =,, P(qg, e, a, b, ...z), bythelaw of total probability

Step 3:
%, P(a,e, a,b,...z) =3, 1. P(variable i | parents i)
(using Bayesian network factoring)

Step 4: Distribute summations across product terms for efficient
computation



Recommender system example

O
O

O

Can you calculate p(item/user) for a particular user?

(i) = == plilg)plp(@)p(®)
plju —p(u)g’tplgpu p\g)p




Recommender system example

°

O

1
Try now p(i|u)=mzp(i|g)p(u|t) (g1 ()
gt

Context inference

O

Personalization



