Basic math/stats review

Nisheeth

Overview

- Probability
- Random variables, expected value
- Common distributions, sufficient statistics
- Conditional, marginal and joint distributions
- Bayes rule
- Correlations
- Linear correlations
- Rank correlations
- Entropy, mutual information
- Hypothesis testing
- Basic tests
- Cautions
- Bayes Factors
- Inference
- Estimation
- Conjugacy
- Applications

Introduction to Probability

Bonus question

Random Variable

- A random variable x takes on a defined set of values with different probabilities.
- Roughly, probability is how frequently we expect different outcomes to occur if we repeat the experiment over and over ("frequentist" view)

Random variables can be discrete or continuous

- Discrete random variables have a countable number of outcomes
- Continuous random variables have an infinite continuum of possible values.

Probability functions

- A probability function maps the possible values of x against their respective probabilities of occurrence, $p(x)$
- $p(x)$ is a number from 0 to 1.0 .
- The area under a probability function is always 1.

Discrete example: roll of a die

Probability mass function (pmf)

x	$p(x)$
1	$p(x=1)=1 / 6$
2	$p(x=2)=1 / 6$
3	$p(x=3)=1 / 6$
4	$p(x=4)=1 / 6$
5	$p(x=5)=1 / 6$
6	$p(x=6)=1 / 6$

Cumulative distribution function

x	$P(x \leq A)$
1	$P(x \leq 1)=1 / 6$
2	$P(x \leq 2)=2 / 6$
3	$P(x \leq 3)=3 / 6$
4	$P(x \leq 4)=4 / 6$
5	$P(x \leq 5)=5 / 6$
6	$P(x \leq 6)=6 / 6$

Cumulative distribution function (CDF)

Practice Problem:

- The number of patients seen in a clinic in any given hour is a random variable represented by x. The probability distribution for x is:

x	10	11	12	13	14
$P(x)$.4	.2	.2	.1	.1

Find the probability that in a given hour:
a. exactly 14 patients arrive

$$
p(x=14)=.1
$$

b. At least 12 patients arrive

$$
p(x \geq 12)=(.2+.1+.1)=.4
$$

C. At most 11 patients arrive $p(x \leq 11)=(.4+.2)=.6$

Continuous case

- The probability function that accompanies a continuous random variable is a continuous mathematical function that integrates to 1 .
- For example, recall the negative exponential function (in probability, this is called an "exponential distribution"):

$$
f(x)=e^{-x}
$$

- This function integrates to 1 :

$$
\int_{0}^{+\infty} e^{-x}=-\left.e^{-x}\right|_{0} ^{+\infty}=0+1=1
$$

Continuous case: "probability density function" (pdf)

The probability that x is any exact particular value (such as 1.9976) is 0 ; we can only assign probabilities to possible ranges of x .

For example, the probability of x falling within 1 to 2 :

$$
\begin{aligned}
& \text { We saw that train delay times are } \\
& \text { roughly exponential. This means } \\
& \text { that we can calculate how likely it is } \\
& \text { for the train to arrive between 1 } \\
& \text { and } 2 \text { hours late, say, if we learn } \\
& \text { the parameters of the distribution } \\
& \text { correctly. }
\end{aligned}
$$

$$
\mathrm{P}(1 \leq \mathrm{x} \leq 2)=\int_{1}^{2} e^{-x}=-\left.e^{-x}\right|_{1} ^{2}=-e^{-2}--e^{-1}=-.135+.368=.23
$$

Example 2: Uniform distribution

The uniform distribution: all values are equally likely. $f(x)=1$, for $1 \geq x \geq 0$

We can see it's a probability distribution because it integrates to 1 (the area under the curve is 1):

$$
\int_{0}^{1} 1=\left.x\right|_{0} ^{1}=1-0=1
$$

Example: Uniform distribution

What's the probability that x is between 0 and $1 / 2$?

$\mathrm{P}(1 / 2 \geq x \geq 0)=1 / 2$

Expected value

- Recall the following probability distribution of patient arrivals:

x	10	11	12	13	14
$P(x)$.4	.2	.2	.1	.1

$$
\sum_{i=1}^{5} x_{i} p(x)=10(.4)+11(.2)+12(.2)+13(.1)+14(.1)=11.3
$$

Example: the lottery

- The Lottery (also known as a tax on people who are bad at math...)
- A certain lottery works by picking 6 numbers from 1 to 49. It costs Rs 1 to play the lottery, and if you win, you win Rs 20 lakhs after taxes.
- If you play the lottery once, what are your expected winnings or losses?

Lottery

Calculate the probability of winning in 1 try:

$\frac{1}{\binom{49}{6}}=\frac{1}{49!}=\frac{1}{13,983,816}=7.2 \times 10^{-8}$	"49 choose $6 "$ Out of 49 numbers, this is the number of distinct combinations of 6.

The probability function (note, sums to 1.0):
"49 choose 6 "
Out of 49 numbers, this is the number of distinct combinations of 6 .

$R s x$	$p(x)$
-1	.999999928
+20 lakh	7.2×10^{-8}

Expected Value

The probability function

x	$p(x)$
-1	.999999928
+20 lakh	7.2×10^{-8}

Expected Value
$\mathrm{E}(\mathrm{X})=\mathrm{P}($ win $) * 20,00,000+\mathrm{P}(\text { lose })^{*}-\$ 1.00$
$=2.0 \times 10^{6} * 7.2 \times 10^{-8}+.999999928(-1)=.144-.999999928=-R s$
0.86

Negative expected value is never good!
You shouldn't play if you expect to lose money!

Gambling (or how casinos can afford to give so many free drinks...)

A roulette wheel has the numbers 1 through 36 , as well as 0 and 00 . If you bet Rs 1 that an odd number comes up, you win or lose Rs 1 according to whether or not that event occurs. If random variable X denotes your net gain, $X=1$ with probability $18 / 38$ and $\mathrm{X}=-1$ with probability 20/38.
$E(X)=1(18 / 38)-1(20 / 38)=-\$.053$
On average, the casino wins (and the player loses) 5 cents per game.
The casino rakes in even more if the stakes are higher:
$E(X)=10(18 / 38)-10(20 / 38)=-$ Rs 0.53

If the cost is Rs 10 per game, the casino wins an average of 53 cents per game. If 10,000 games are played in a night, that's Rs 5300 for simply spinning a colored wheel

Not all powerful

St. Petersburg paradox

Non-trivial discrete probabilities

Take the example of 5 coin tosses. What's the probability that you flip exactly 3 heads in 5 coin tosses?

A discrete distribution: binomial

- A fixed number of observations (trials), n
- e.g., 15 tosses of a coin; 20 patients; 1000 people surveyed
- A binary outcome
- e.g., head or tail in each toss of a coin; disease or no disease
- Generally called "success" and "failure"
- Probability of success is p, probability of failure is $1-p$
- Constant probability for each observation
- e.g., Probability of getting a tail is the same each time we toss the coin

Binomial distribution

Solution:

One way to get exactly 3 heads: HHHTT

What's the probability of this exact arrangement? P (heads) $x P$ (heads) $x P$ (heads) $x P($ tails $) \times P($ tails $)=(1 / 2)^{3} x$ $(1 / 2)^{2}$

Another way to get exactly 3 heads: THHHT Probability of this exact outcome $=(1 / 2)^{1} x(1 / 2)^{3} x$

$$
(1 / 2)^{1}=(1 / 2)^{3} \times(1 / 2)^{2}
$$

Binomial distribution

In fact, $(1 / 2)^{3} x(1 / 2)^{2}$ is the probability of each unique outcome that has exactly 3 heads and 2 tails.

So, the overall probability of 3 heads and 2 tails is: $(1 / 2)^{3} x(1 / 2)^{2}+(1 / 2)^{3} x(1 / 2)^{2}+(1 / 2)^{3} x(1 / 2)^{2}+$ for as many unique arrangements as there arebut how many are there??

$\therefore \mathrm{P}(3$ heads and 2 tails $)=\binom{5}{3}: P(\text { heads })^{3} \times P(\text { tails })^{2}=$

$$
10 \times(1 / 2)^{5=}=31.25 \%
$$

Binomial distribution function:

 $x=$ the number of heads tossed in 5 coin tosses

Binomial distribution, generally

Note the general pattern emerging \rightarrow if you have only two possible outcomes (call them $1 / 0$ or yes/no or success/failure) in n independent trials, then the probability of exactly X "successes"=

Today's Lecture

- General announcement
- Final registrations
- Dropbox file request system
- Audit requests
- Project announcements
- Both demos now online
- Deadlines
- $20^{\text {th }}$ Jan: tell me what you're doing (1 paragraph; optional)
- $31^{\text {st }}$ Jan: final submission (code+ 2-3 page summary)
- Project teams
- Possible novelty
- Conditional, marginal and joint probabilities
- How to calculate, how to interpret
- Derivation of Bayes' theorem
- Bayesian networks
- Construction and notation
- Estimation and inference
- Applications in human-computer interaction
- Reading: Russell \& Norvig 14.1 to 14.4
- Slides from Padhraic Smythe's 2007 talk

Joint probability

$$
\begin{array}{llll}
& y=1 & y=2 & y=3 \\
x=1 & 0.30 & 0.05 & 0.00 \\
x=2 & 0.05 & 0.20 & 0.05 \\
x=3 & 0.00 & 0.05 & 0.30
\end{array}
$$

Conditional probability

Marginalization

Law of Total Probability

$$
\mathrm{P}(\mathrm{~B})=\sum_{\mathrm{i}} \mathrm{P}\left(\mathrm{~B} \cap \mathrm{~A}_{\mathrm{i}}\right)=\sum_{\mathrm{i}} \mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{~A}_{\mathrm{i}}\right) \text { where }
$$

$\mathrm{A}_{\mathrm{i}} \cap \mathrm{A}_{\mathrm{j}}=\varnothing$ (Mutually Exclusive), and
$\cup \mathrm{A}_{\mathrm{i}}=\Omega$ (Collectively Exhaustive)

The joint distribution knows everything

Given a joint distribution (e.g., P(a,b,c,d)) we can obtain any "marginal" probability (e.g., P(b)) by summing out the other variables, e.g.,

$$
\mathrm{P}(\mathrm{~b})=\sum_{\mathrm{a}} \sum_{\mathrm{c}} \sum_{\mathrm{d}} \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})
$$

Less obvious: we can also compute any conditional probability of interest given a joint distribution, e.g.,

$$
\begin{aligned}
\mathrm{P}(\mathrm{c} \mid \mathrm{b}) & =\Sigma_{\mathrm{a}} \Sigma_{\mathrm{d}} \mathrm{P}(\mathrm{a}, \mathrm{c}, \mathrm{~d} \mid \mathrm{b}) \\
& =1 / \mathrm{P}(\mathrm{~b}) \Sigma_{\mathrm{a}} \Sigma_{\mathrm{d}} \mathrm{P}(\mathrm{a}, \mathrm{c}, \mathrm{~d}, \mathrm{~b})
\end{aligned}
$$ where $1 / P(b)$ is just a normalization constant

The joint distribution contains the information we need to compute any probability of interest.

Corollary: Bayes' theorem

FREQUENTIST STATISTCIAN:

BAYESIAN STATISTICAN:

- $P(a \mid b) P(b)=P(b \mid a) P(a)$
- Useful way of appearing wise to your friends
$\mathrm{P}($ extreme event |common trait $)=$ $P($ common trait | extreme event) x $p($ extreme event $) / p(c o m m o n$ event)
- Prior probabilities can be hard to specify objectively

We can always write

$$
\begin{aligned}
P(a, b, c, \ldots z)= & P(a \mid b, c, \ldots z) P(b, c, \ldots z) \\
& \text { (by definition of joint probability) }
\end{aligned}
$$

Repeatedly applying this idea, we can write

$$
P(a, b, c, \ldots z)=P(a \mid b, c, \ldots . z) P(b \mid c, . . z) P(c \mid . . z) . . P(z)
$$

This factorization holds for any ordering of the variables
This is the chain rule for probabilities

conditionatindenencence

- 2 random variables A and B are conditionally independent given C iff

$$
P(a, b \mid c)=P(a \mid c) P(b \mid c) \quad \text { for all values } a, b, c
$$

- More intuitive (equivalent) conditional formulation
- A and B are conditionally independent given C iff
$P(a \mid b, c)=P(a \mid c) \quad O R P(b \mid a, c) P(b \mid c)$, for all values a, b, c
- Intuitive interpretation:
$P(a \mid b, c)=P(a \mid c)$ tells us that learning about b, given that we already know c, provides no change in our probability for a,
i.e., b contains no information about a beyond what c provides
- Can generalize to more than 2 random variables
- E.g., K different symptom variables $\mathrm{X} 1, \mathrm{X} 2, \ldots \mathrm{XK}$, and $\mathrm{C}=$ disease
- $P(X 1, X 2, \ldots . \mathrm{XK} \mid \mathrm{C})=\Pi \mathrm{P}(\mathrm{Xi} \mid \mathrm{C})$
- Also known as the naïve Bayes assumption

Bayesian Networks

- A Bayesian network specifies a joint distribution in a structured form
- Represent dependence/independence via a directed graph
- Nodes = random variables
- Edges $=$ direct dependence
- Structure of the graph \Leftrightarrow Conditional independence relations

In general,

$$
\text { f(} \left.\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{N}}\right)=\Pi \mathrm{p}\left(\mathrm{X}_{\mathrm{i}} \mid \text { parents }\left(\mathrm{X}_{\mathrm{i}}\right)\right)
$$

- Requires that graph is acyclic (no directed cycles)
- 2 components to a Bayesian network
- The graph structure (conditional independence assumptions)
- The numerical probabilities (for each variable given its parents)

Example of a simple Bayesian

$$
\mathrm{p}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\mathrm{p}(\mathrm{C} \mid \mathrm{A}, \mathrm{~B}) \mathrm{p}(\mathrm{~A}) \mathrm{p}(\mathrm{~B}) \longleftrightarrow
$$

- Probability model has simple factored form
- Directed edges => direct dependence
- Absence of an edge => conditional independence
- Also known as belief networks, graphical models, causal networks
- Other formulations, e.g., undirected graphical models

Examples of 3-way Bayesian Networks

Marginal Independence:
$p(A, B, C)=p(A) p(B) p(C)$

Examples of 3-way Bayesian Networks

Conditionally independent effects:
$p(A, B, C)=p(B \mid A) p(C \mid A) p(A)$
B and C are conditionally independent Given A
e.g., A is a disease, and we model B and C as conditionally independent symptoms given A

Examples of 3-way Bayesian Networks

Independent Causes:
$p(A, B, C)=p(C \mid A, B) p(A) p(B)$
"Explaining away" effect:
Given C, observing A makes B less likely e.g., earthquake/burglary/alarm example
A and B are (marginally) independent but become dependent once \mathbf{C} is known

Examples of 3-way Bayesian Networks

Markov dependence:
$p(A, B, C)=p(C \mid B) p(B \mid A) p(A)$

Example

- Consider the following 5 binary variables:
$-B=$ a burglary occurs at your house
- $E=$ an earthquake occurs at your house
- A = the alarm goes off
- J = John calls to report the alarm
- M = Mary calls to report the alarm
- What is $P(B \mid M, J)$? (for example)
- We can use the full joint distribution to answer this question
- Requires $2^{5}=32$ probabilities
- Can we use prior domain knowledge to come up with a Bayesian network that requires fewer probabilities?

Construct a Bayesian Network: Step 1

- Order the variables in terms of causality

$$
\text { e.g., }\{E, B\}->\{A\}->\{J, M\}
$$

- $P(J, M, A, E, B)=P(J, M \mid A, E, B) P(A \mid E, B) P(E, B)$

$$
\begin{aligned}
& \sim P(J, M \mid A) \quad P(A \mid E, B) P(E) P(B) \\
& \sim P(J \mid A) P(M \mid A) P(A \mid E, B) P(E) P(B)
\end{aligned}
$$

These Cl assumptions are reflected in the graph structure of the Bayesian network

Graph structure of network

Constructing this Bayesian Network:

 Step 2- $\quad P(J, M, A, E, B)=$
$P(J \mid A) P(M \mid A) P(A \mid E, B) P(E) P(B)$

- There are 3 conditional probability tables to be determined:
$P(J \mid A), P(M \mid A), P(A \mid E, B)$
- Requiring $2+2+4=8$ probabilities
- And 2 marginal probabilities $\mathrm{P}(\mathrm{E}), \mathrm{P}(\mathrm{B})$-> 2 more probabilities
- Where do these probabilities come from?
- Expert knowledge
- From data (relative frequency estimates or regression analyses)

The Bayesian network

Intuitive display of conditional independence

A node is conditionally independent of all other nodes in the network given its Markov blanket (in gray)

Number of probabilities in Bayesian Networks

- Consider n binary variables
- Unconstrained joint distribution requires $\mathrm{O}\left(2^{n}\right)$ probabilities
- If we have a Bayesian network, with a maximum of k parents for any node, then we need $O\left(n 2^{k}\right)$ probabilities
- Example
- Full unconstrained joint distribution
- $n=30$: need 10^{9} probabilities for full joint distribution
- Bayesian network
- $\mathrm{n}=30, \mathrm{k}=4$: need 480 probabilities

Inference (Reasoning) in Bayesian Networks

- Consider answering a query in a Bayesian Network
- $\quad Q=$ set of query variables
- $\quad e=$ evidence (set of instantiated variable-value pairs)
- Inference = computation of conditional distribution $\mathrm{P}(\mathrm{Q} \mid \mathrm{e})$
- Examples
- P(burglary | alarm)
- P(earthquake \| JCalls, MCalls)
- P(JCalls, MCalls | burglary, earthquake)

- Can we use the structure of the Bayesian Network to answer such queries efficiently? Answer = yes
- Generally speaking, complexity is inversely proportional to sparsity of graph

Example: Tree-Structured Bayesian Network

$p(a, b, c, d, e, f, g)$ is modeled as $p(a \mid b) p(c \mid b) p(f \mid e) p(g \mid e) p(b \mid d) p(e \mid d) p(d)$

Example

Say we want to compute $\mathrm{p}(\mathrm{a} \mid \mathrm{c}, \mathrm{g})$

Example

Direct calculation: $\mathrm{p}(\mathrm{a} \mid \mathrm{c}, \mathrm{g})=\sum_{\text {bdef }} \mathrm{p}(\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{e}, \mathrm{f} \mid \mathrm{c}, \mathrm{g})$
Complexity of the sum is $\mathrm{O}\left(\mathrm{m}^{4}\right)$

Example

Reordering:

$$
\Sigma_{\mathrm{b}} \mathrm{p}(\mathrm{a} \mid \mathrm{b}) \Sigma_{\mathrm{d}} \mathrm{p}(\mathrm{~b} \mid \mathrm{d}, \mathrm{c}) \Sigma_{\mathrm{e}} \mathrm{p}(\mathrm{~d} \mid \mathrm{e}) \Sigma_{\mathrm{f}} \mathrm{p}(\mathrm{e} \mid \mathrm{f}, \mathrm{~g}) \mathrm{p}(\mathrm{f} \mid \mathrm{g})
$$

Example

Reordering:

$$
\Sigma_{b} p(a \mid b) \sum_{d} p(b \mid d, c) \sum_{e} p(d \mid e) \underbrace{\sum_{f} p(e, f \mid g)}_{p(e \mid g)}
$$

Example

Reordering:

$$
\sum_{b} p(a \mid b) \sum_{d} p(b \mid d, c) \underbrace{\sum_{e} p(d \mid e) p(e \mid g)}_{p(d \mid g)}
$$

Example

Reordering:

$$
\sum_{\mathrm{b}} \mathrm{p}(\mathrm{a} \mid \mathrm{b}) \sum_{\mathrm{p}(\mathrm{~b} \mid \mathrm{c}, \mathrm{~g})}^{\sum_{\mathrm{d}} \mathrm{p}(\mathrm{~b} \mid \mathrm{d}, \mathrm{c}) \mathrm{p}(\mathrm{~d} \mid \mathrm{g})}
$$

Example

Reordering:

Complexity is $\mathrm{O}(\mathrm{m})$, compared to $\mathrm{O}\left(\mathrm{m}^{4}\right)$

Example with numbers

General Strategy for inference

- Want to compute P(q\|e)

Step 1:

$$
\mathrm{P}(\mathrm{q} \mid \mathrm{e})=\mathrm{P}(\mathrm{q}, \mathrm{e}) / \mathrm{P}(\mathrm{e})=\alpha \mathrm{P}(\mathrm{q}, \mathrm{e}), \quad \text { since } \mathrm{P}(\mathrm{e}) \text { is constant wrt } \mathrm{Q}
$$

Step 2:

$$
P(q, e)=\Sigma_{a . z} P(q, e, a, b, \ldots . z), \text { by the law of total probability }
$$

Step 3:

$$
\begin{aligned}
\Sigma_{\text {a.z }} \mathrm{P}(\mathrm{q}, \mathrm{e}, \mathrm{a}, \mathrm{~b}, \ldots . \mathrm{z})=\Sigma_{\mathrm{a} . \mathrm{z}} & \Pi_{\mathrm{i}} \mathrm{P}(\text { variable } \mathrm{i} \mid \text { parents i) } \\
& \text { (using Bayesian network factoring) }
\end{aligned}
$$

Step 4: Distribute summations across product terms for efficient computation

Recommender system example

Can you calculate p (item/user) for a particular user?

$$
p(i \mid u)=\frac{1}{p(u)} \sum_{g, t} p(i \mid g) p(u \mid t) p(g) p(t)
$$

Recommender system example

