
Basic math/stats review 
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Overview 

• Probability 
– Random variables, expected value 
– Common distributions, sufficient statistics 
– Conditional, marginal and joint distributions 
– Bayes rule 

• Correlations 
– Linear correlations 
– Rank correlations 
– Entropy, mutual information 

• Hypothesis testing 
– Basic tests 
– Cautions 
– Bayes Factors 

• Inference 
– Estimation 
– Conjugacy 
– Applications 



 
 

Introduction to Probability 



Bonus question 



Random Variable 

• A random variable x takes on a defined set of 
values with different probabilities. 

 

• Roughly, probability is how frequently we expect 
different outcomes to occur if we repeat the 
experiment over and over (“frequentist” view)  

 



Random variables can be discrete or 
continuous 

• Discrete random variables have a countable 
number of outcomes 
 

• Continuous random variables have an infinite 
continuum of possible values.  
 

 

  



Probability functions 

• A probability function maps the possible values of 
x against their respective probabilities of 
occurrence, p(x)  

• p(x) is a number from 0 to 1.0. 

• The area under a probability function is always 1. 



 
Discrete example: roll of a die 
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Probability mass function (pmf) 
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Cumulative distribution function 
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Cumulative distribution function 
(CDF) 
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Practice Problem: 

• The number of patients seen in a clinic in any given hour is a random 
variable represented by x. The probability distribution for x is: 
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Find the probability that in a given hour: 

a.    exactly 14 patients arrive 

b.    At least 12 patients arrive 

c.    At most 11 patients arrive  

 p(x=14)= .1  

p(x12)= (.2 + .1 +.1) = .4  

p(x≤11)= (.4 +.2) = .6  



Continuous case  

 The probability function that accompanies 

a continuous random variable is a 

continuous mathematical function that 

integrates to 1.   

 For example, recall the negative exponential 

function (in probability, this is called an 

“exponential distribution”):   
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   This function integrates to 1: 



Continuous case: “probability 

density function” (pdf) 

x 

p(x)=e-x 

1 

The probability that x is any exact particular value (such as 1.9976) is 0; 

we can only assign probabilities to possible ranges of x.   



For example, the probability of x falling within 1 to 2: 
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We saw that train delay times are 
roughly exponential. This means 
that we can calculate how likely it is 
for the train to arrive between 1 
and 2 hours late, say, if we learn 
the parameters of the distribution 
correctly. 



Example 2: Uniform distribution 

The uniform distribution: all values are equally likely. 

f(x)= 1 ,  for 1 x 0  

x 

p(x) 

1 

1 

We can see it’s a probability distribution because it integrates 

to 1 (the area under the curve is 1): 
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Example: Uniform distribution 

 What’s the probability that x is between 0 and ½?  

P(½ x 0)= ½   
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p(x) 
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Expected value 

• Recall the following probability distribution of 

patient arrivals: 
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Example: the lottery 

• The Lottery (also known as a tax on people who are 
bad at math…) 

• A certain lottery works by picking 6 numbers from 1 
to 49.  It costs Rs 1 to play the lottery, and if you win, 
you win Rs 20 lakhs after taxes.   

 

• If you play the lottery once, what are your expected 
winnings or losses?  
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Rs x 

 

p(x) 
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.999999928 

 

+ 20 lakh 

 

 7.2 x 10--8 

 

Calculate the probability of winning in 1 try: 

The probability function (note, sums to 1.0): 

“49 choose 6” 

Out of 49 numbers, 

this is the number 

of distinct 

combinations of 6. 



Expected Value 

x 

 

p(x) 
 

-1 

 

.999999928 

 

+ 20 lakh 

 

 7.2 x 10--8 

 

The probability function 

Expected Value 

E(X) = P(win)*20,00,000   +  P(lose)*-$1.00   

= 2.0 x 106 * 7.2 x 10-8+ .999999928 (-1) = .144 - .999999928 = - Rs 

0.86   
  Negative expected value is never good!   

You shouldn’t play if you expect to lose money!   

 



 
Gambling (or how casinos can afford to give so many free 

drinks…) 

 A roulette wheel has the numbers 1 through 36, as well as 0 and 00.  If you bet Rs 
1 that an odd number comes up, you win or lose  Rs 1 according to whether or not 
that event occurs.  If random variable X denotes your net gain, X=1 with 
probability 18/38 and X= -1 with probability 20/38.   

  
E(X) = 1(18/38) – 1 (20/38) = -$.053 
  
On average, the casino wins (and the player loses) 5 cents per game.   
  
The casino rakes in even more if the stakes are higher: 
  
E(X) = 10(18/38) – 10 (20/38) = -Rs 0.53 
  
If the cost is Rs 10 per game, the casino wins an average of 53 cents per game.  If 

10,000 games are played in a night, that’s Rs 5300 for simply spinning a colored 
wheel 



Not all powerful 



 
Non-trivial discrete probabilities 

  Take the example of 5 coin tosses.  What’s the 
probability that you flip exactly 3 heads in 5 
coin tosses?  



A discrete distribution: binomial 

 A fixed number of observations (trials), n 
 e.g., 15 tosses of a coin; 20 patients; 1000 people 

surveyed 

 A binary outcome 

 e.g., head or tail in each toss of a coin; disease or no 
disease 

 Generally called “success” and “failure” 

 Probability of success is p, probability of failure is 1 – p 

 Constant probability for each observation 

 e.g., Probability of getting a tail is the same each time 
we toss the coin 



Binomial distribution 

Solution: 

One way to get exactly 3 heads:  HHHTT 

 

What’s the probability of this exact arrangement? 

P(heads)xP(heads) xP(heads)xP(tails)xP(tails) =(1/2)3 x 
(1/2)2 

 

Another way to get exactly 3 heads:  THHHT 

Probability of this exact outcome = (1/2)1 x (1/2)3 x 
(1/2)1  =  (1/2)3 x (1/2)2 

 



Binomial distribution 

 In fact, (1/2)3 x (1/2)2 is the probability of each 
unique outcome that has exactly 3 heads and 2 
tails.  

 

 So, the overall probability of 3 heads and 2 tails is: 

 (1/2)3 x (1/2)2  + (1/2)3 x (1/2)2 + (1/2)3 x (1/2)2  + 

….. for as many unique arrangements as there are—
but how many are there??  



  

 

 

Outcome  Probability  

THHHT  (1/2)3 x (1/2)2   

HHHTT              (1/2)3 x (1/2)2 

TTHHH   (1/2)3 x (1/2)2 

HTTHH  (1/2)3 x (1/2)2   

HHTTH  (1/2)3 x (1/2)2   

HTHHT  (1/2)3 x (1/2)2   

THTHH  (1/2)3 x (1/2)2   

HTHTH  (1/2)3 x (1/2)2   

HHTHT  (1/2)3 x (1/2)2   

THHTH  (1/2)3 x (1/2)2   

10 arrangements x (1/2)3 x (1/2)2   

  

 

The probability 

of each unique 

outcome  (note: 

they are all 

equal) 
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P(3 heads and 2 tails) =       x P(heads)3 x P(tails)2 =  

 

10 x (½)5=31.25%  








 5

3



x 

 

p(x) 
 

 

 

0 

 

3 

 

4 

 

5 

 

1 

 
2 

 

Binomial distribution function: 
X= the number of heads tossed in 5 coin tosses 

number of heads 

p(x) 
 

number of heads 



Binomial distribution, generally 
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1-p = probability 

of failure 

p = 

probability of 

success 

X = # 

successes 

out of n 

trials 

n = number of trials 

Note the general pattern emerging   if you have only two possible 

outcomes (call them 1/0 or yes/no or success/failure) in n independent 

trials, then the probability of exactly X “successes”=  





Today’s Lecture 
• General announcement  

– Final registrations 
– Dropbox file request system 
– Audit requests 

• Project announcements 
– Both demos now online 
– Deadlines 

• 20th Jan: tell me what you’re doing (1 paragraph; optional) 
• 31st Jan: final submission (code+ 2-3 page summary) 

– Project teams 
• Possible novelty 

• Conditional, marginal and joint probabilities 
– How to calculate, how to interpret 
– Derivation of Bayes’ theorem 

 

• Bayesian networks  
– Construction and notation 
– Estimation and inference 
– Applications in human-computer interaction 
 

• Reading: Russell & Norvig 14.1 to 14.4 
– Slides from Padhraic Smythe’s 2007 talk 

 
 

 



Joint probability 



Conditional probability 



Marginalization 



The joint distribution knows everything 

  

    Given a joint distribution (e.g., P(a,b,c,d)) we can obtain any “marginal” probability (e.g., P(b)) by 
summing out the other variables, e.g., 

                   

                 P(b)  = Sa Sc Sd P(a, b, c, d)  

 
Less obvious: we can also compute any conditional probability of interest given a joint distribution, e.g., 

                

              P(c | b)  = Sa Sd P(a, c, d | b)  

                        = 1 / P(b)  Sa Sd P(a, c, d, b) 

                          where 1 / P(b) is just a normalization constant 

 

The joint distribution contains the information we need to compute any probability of interest. 
 

 

 

 



Corollary: Bayes’ theorem 

• P(a|b)P(b) = P(b|a)P(a) 

• Useful way of appearing 
wise to your friends 

P(extreme event |common trait) =  

P(common trait| extreme event) x 
p(extreme event)/p(common 
event) 

• Prior probabilities can 
be hard to specify 
objectively 



Computing with Probabilities: The Chain Rule or Factoring 

We can always write 
      P(a, b, c, … z)   = P(a | b, c, …. z) P(b, c, … z) 
                                       (by definition of joint probability) 
 
 
Repeatedly applying this idea, we can write 
       P(a, b, c, … z)   = P(a | b, c, …. z) P(b | c,.. z) P(c| .. z)..P(z) 
 
 
This factorization holds for any ordering of the variables 
 
This is the chain rule for probabilities 
 



Conditional Independence 

• 2 random variables A and B are conditionally independent given C iff 

                     P(a, b | c) = P(a | c) P(b | c)     for all values a, b, c 

 

• More intuitive (equivalent) conditional formulation 
– A and B are conditionally independent given C iff 

             P(a | b, c) = P(a | c)     OR   P(b | a, c) P(b | c),   for all values a, b, c 

 

– Intuitive interpretation: 

             P(a | b, c) = P(a | c) tells us that learning about b, given that we already know c, provides no 
change in our probability for a,  

    i.e., b contains no information about a beyond what c provides 

 

• Can generalize to more than 2 random variables 
– E.g., K different symptom variables X1, X2, … XK, and C = disease 

– P(X1, X2,…. XK | C) = P  P(Xi | C) 

– Also known as the naïve Bayes assumption 

 

 



Bayesian Networks 
• A Bayesian network specifies a joint distribution in a structured form 

 
• Represent dependence/independence via a directed graph   

– Nodes = random variables 
– Edges = direct dependence 

 
• Structure of the graph  Conditional independence relations 

 
 
 
 
 
 
 
 

• Requires that graph is acyclic (no directed cycles) 
 

• 2 components to a Bayesian network 
– The graph structure (conditional independence assumptions) 
– The numerical probabilities (for each variable given its parents) 

 

In general, 

   p(X1, X2,....XN) = P p(Xi | parents(Xi ) ) 

The full joint distribution The graph-structured approximation 



Example of a simple Bayesian 
network 

A B 

C 

  

•  Probability model has simple factored form 

• Directed edges =>  direct  dependence  

• Absence of an edge  => conditional independence 

• Also known as belief networks, graphical models, causal networks 

• Other formulations, e.g., undirected graphical models 

p(A,B,C) = p(C|A,B)p(A)p(B) 



Examples of 3-way Bayesian 
Networks 

A C B Marginal Independence: 
p(A,B,C) = p(A) p(B) p(C) 



Examples of 3-way Bayesian 
Networks 

A 

C B 

Conditionally independent effects: 
p(A,B,C) = p(B|A)p(C|A)p(A) 
 
B and C are conditionally independent 
Given A 
 
e.g., A is a disease, and we model  
B and C as conditionally independent 
symptoms given A 
 



Examples of 3-way Bayesian 
Networks 

A B 

C 

Independent Causes: 
p(A,B,C) = p(C|A,B)p(A)p(B) 
 
 
“Explaining away” effect: 
Given C, observing A makes B less likely 
e.g., earthquake/burglary/alarm example 
 
A and B are (marginally) independent  
but become dependent once C is known 
  



Examples of 3-way Bayesian 
Networks 

A C B Markov dependence: 
p(A,B,C) = p(C|B) p(B|A)p(A) 



Example 

• Consider the following 5 binary variables: 
– B = a burglary occurs at your house 
– E = an earthquake occurs at your house 
– A = the alarm goes off 
– J  = John calls to report the alarm 
– M = Mary calls to report the alarm 

 
– What is P(B | M, J) ?  (for example) 

 
– We can use the full joint distribution to answer this question 

• Requires 25 = 32 probabilities 
 

• Can we use prior domain knowledge to come up with a Bayesian 
network that requires fewer probabilities? 



Construct a Bayesian Network: Step 1 

• Order the variables in terms of causality 
            e.g., {E, B} -> {A} -> {J, M} 
 
 
• P(J, M, A, E, B) =  P(J, M | A, E, B) P(A| E, B) P(E, B) 

 
                           ~  P(J, M | A)         P(A| E, B) P(E) P(B) 
 
       ~  P(J | A) P(M | A) P(A| E, B) P(E) P(B) 
 
   
    These CI assumptions are reflected in the graph structure 

of the Bayesian network 
 
 
 

 



Graph structure of network 

Burglary Earthquake 

Alarm 

John Calls Mary Calls 



Constructing this Bayesian Network: 
Step 2  

• P(J, M, A, E, B) =     

         P(J | A)  P(M | A)  P(A | E, B)  P(E)  P(B) 

 

 

 

 

 

• There are 3 conditional probability tables to be determined: 
 P(J | A),  P(M | A),  P(A | E, B)  
– Requiring 2 + 2 + 4 = 8 probabilities 

 

• And 2 marginal probabilities P(E),  P(B) -> 2 more probabilities 

 

 

• Where do  these probabilities come from? 
– Expert knowledge 

– From data (relative frequency estimates or regression analyses) 

 

 

 

 

 

 



The Bayesian network 



Intuitive display of conditional independence 

A node is conditionally independent 
of all other nodes in the network 
given its Markov blanket (in gray) 



Number of probabilities in Bayesian 
Networks 

• Consider n binary variables 
 

• Unconstrained joint distribution requires O(2n) probabilities 
 
 

• If we have a Bayesian network, with a maximum of k parents for 
any node, then we need O(n 2k) probabilities 
 

• Example 
– Full unconstrained joint distribution 

• n = 30:  need 109 probabilities for full joint distribution 

– Bayesian network 
• n = 30, k = 4:  need 480 probabilities 

 



Inference (Reasoning) in Bayesian 
Networks 

• Consider answering a query in a Bayesian Network 

– Q = set of query variables 

– e = evidence (set of instantiated variable-value pairs) 

– Inference = computation of conditional distribution P(Q | e) 

 

 

 

• Examples 

– P(burglary | alarm) 

 

– P(earthquake | JCalls, MCalls) 

 

– P(JCalls, MCalls | burglary, earthquake) 

 

 

 

• Can we use the structure of the Bayesian Network  
  to answer such queries efficiently?  Answer = yes 

– Generally speaking, complexity is inversely proportional to sparsity of graph 



Example: Tree-Structured Bayesian 
Network 

D 

A 

B 

C F 

E 

G 

  

  p(a, b, c, d, e, f, g) is modeled as p(a|b)p(c|b)p(f|e)p(g|e)p(b|d)p(e|d)p(d)   
 



Example 

D 

A 

B 

c F 

E 

g 

Say we want to compute p(a | c, g) 



Example 

D 

A 

B 

c F 

E 

g 

Direct calculation:  p(a|c,g) = Sbdef p(a,b,d,e,f | c,g) 

 

Complexity of the sum is O(m4) 



Example 

D 

A 

B 

c F 

E 

g 

Reordering: 

  Sb p(a|b) Sd p(b|d,c) Se p(d|e) Sf p(e|f,g)p(f|g) 

 



Example 

D 

A 

B 

c F 

E 

g 

Reordering: 

  Sb p(a|b) Sd p(b|d,c) Se p(d|e) Sf p(e,f |g) 

 
p(e|g) 



Example 

D 

A 

B 

c F 

E 

g 

Reordering: 

  Sb p(a|b) Sd p(b|d,c) Se p(d|e) p(e|g) 

 

p(d|g) 



Example 

D 

A 

B 

c F 

E 

g 

Reordering: 

  Sb p(a|b) Sd p(b|d,c) p(d|g) 

 

p(b|c,g) 



Example 

D 

A 

B 

c F 

E 

g 

Reordering: 

  Sb p(a|b) p(b|c,g) 

 

p(a|c,g) Complexity is O(m), compared to O(m4) 



Example with numbers 



General Strategy for inference 
• Want to compute P(q | e) 

 
Step 1: 

    P(q | e) = P(q,e)/P(e)  = a P(q,e),    since P(e) is constant wrt Q 
 

Step 2: 
    P(q,e)  =  Sa..z  P(q, e, a, b, …. z),   by the law of total probability 

 

Step 3: 
 Sa..z  P(q, e, a, b, …. z)  = Sa..z  Pi P(variable i | parents i)   
                                                    (using Bayesian network factoring) 
  

Step 4: Distribute summations across product terms for efficient 
computation 



Recommender system example 

type 

user 

group 

item 

Can you calculate p(item/user) for a particular user?  

𝑝(𝑖|𝑢) =
1

𝑝(𝑢)
 𝑝 𝑖|𝑔 𝑝 𝑢 𝑡 𝑝(𝑔)𝑝(𝑡)

𝑔,𝑡

 



Recommender system example 

type 

user 

group 

item 

Try now 𝑝(𝑖|𝑢) =
1

𝑝(𝑢)
 𝑝 𝑖|𝑔 𝑝 𝑢 𝑡 𝑝 𝑔 𝑡 𝑝(𝑡)

𝑔,𝑡

 

Personalization 

Context inference 


