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Evaluation 
• Evaluation is key to building effective and 

efficient search engines 
– measurement usually carried out in controlled 

laboratory experiments 
– online testing can also be done 

• Effectiveness, efficiency and cost are related 
– e.g., if we want a particular level of effectiveness 

and efficiency, this will determine the cost of the 
system configuration 

– efficiency and cost targets may impact 
effectiveness 



Evaluation Corpus 

• Test collections consisting of documents, 
queries, and relevance judgments, e.g.,  



Test Collections 



TREC Topic Example 



Relevance Judgments 

• Obtaining relevance judgments is an 
expensive, time-consuming process 
– who does it? 
– what are the instructions? 
– what is the level of agreement? 

• TREC judgments 
– depend on task being evaluated 
– generally binary 
– agreement good because of “narrative” 



Pooling 
• Exhaustive judgments for all documents in a 

collection is not practical 
• Pooling technique is used in TREC 

– top k results (for TREC, k varied between 50 and 200) 
from the rankings obtained by different search 
engines (or retrieval algorithms) are merged into a 
pool 

– duplicates are removed 
– documents are presented in some random order to 

the relevance judges 
• Produces a large number of relevance judgments 

for each query, although still incomplete 



Query Logs 

• Used for both tuning and evaluating search 
engines 
– also for various techniques such as query suggestion 

• Typical contents 
– User identifier or user session identifier 
– Query terms - stored exactly as user entered 
– List of URLs of results, their ranks on the result list, 

and whether they were clicked on 
– Timestamp(s) - records the time of user events such as 

query submission, clicks 



Query Logs 

• Clicks are not relevance judgments 
– although they are correlated 
– biased by a number of factors such as rank on 

result list 

• Can use clickthough data to predict 
preferences between pairs of documents 
– appropriate for tasks with multiple levels of 

relevance, focused on user relevance 
– various “policies” used to generate preferences 



Example Click Policy 

• Skip Above and Skip Next 
– click data 

 
 
 

– generated preferences 



Query Logs 

• Click data can also be aggregated to remove 
noise 

• Click distribution information 
– can be used to identify clicks that have a higher 

frequency than would be expected 
– high correlation with relevance 
– e.g., using click deviation to filter clicks for 

preference-generation policies 



Filtering Clicks 

• Click deviation CD(d, p) for a result d in 
position p: 
 
 

O(d,p): observed click frequency for a document in a 
rank position p over all instances of a given query 

E(p): expected click frequency at rank p averaged 
across all queries 

 
 



Effectiveness Measures 

A is set of relevant documents,  
B is set of retrieved documents 



Classification Errors 

• False Positive (Type I error) 
– a non-relevant document is retrieved 

 
• False Negative (Type II error) 

– a relevant document is not retrieved 
– 1- Recall 

• Precision is used when probability that a 
positive result is correct is important 

 



F Measure 

• Harmonic mean of recall and precision 
 
 
– harmonic mean emphasizes the importance of 

small values, whereas the arithmetic mean is 
affected more by outliers that are unusually large 

• More general form 
 
– β is a parameter that determines relative 

importance of recall and precision 



Ranking Effectiveness 



Summarizing a Ranking 

• Calculating recall and precision at fixed rank 
positions 

• Calculating precision at standard recall levels, 
from 0.0 to 1.0 
– requires interpolation 

• Averaging the precision values from the rank 
positions where a relevant document was 
retrieved 



Average Precision 



Averaging Across Queries 



Averaging 

• Mean Average Precision (MAP) 
– summarize rankings from multiple queries by 

averaging average precision 
– most commonly used measure in research papers 
– assumes user is interested in finding many 

relevant documents for each query 
– requires many relevance judgments in text 

collection 
• Recall-precision graphs are also useful 

summaries 



MAP 



Recall-Precision Graph 



Interpolation 
• To average graphs, calculate precision at 

standard recall levels: 

 
– where S is the set of observed (R,P) points 

• Defines precision at any recall level as the 
maximum precision observed in any recall-
precision point at a higher recall level 
– produces a step function 
– defines precision at recall 0.0 

 



Interpolation 



Average Precision at  
Standard Recall Levels 

•  Recall-precision graph plotted by simply  
    joining the average precision points at  
    the standard recall levels 



Average Recall-Precision Graph 



Graph for 50 Queries 



Focusing on Top Documents 

• Users tend to look at only the top part of the 
ranked result list to find relevant documents 

• Some search tasks have only one relevant 
document 
– e.g., navigational search, question answering 

• Recall not appropriate 
– instead need to measure how well the search 

engine does at retrieving relevant documents at 
very high ranks 



Focusing on Top Documents 

• Precision at Rank R 
– R typically 5, 10, 20 
– easy to compute, average, understand 
– not sensitive to rank positions less than R 

• Reciprocal Rank 
– reciprocal of the rank at which the first relevant 

document is retrieved 
– Mean Reciprocal Rank (MRR) is the average of the 

reciprocal ranks over a set of queries 
– very sensitive to rank position 



Discounted Cumulative Gain 

• Popular measure for evaluating web search 
and related tasks 

• Two assumptions: 
– Highly relevant documents are more useful than 

marginally relevant document 
– the lower the ranked position of a relevant 

document, the less useful it is for the user, since it 
is less likely to be examined 



Discounted Cumulative Gain 

• Uses graded relevance as a measure of the 
usefulness, or gain, from examining a 
document 

• Gain is accumulated starting at the top of the 
ranking and may be reduced, or discounted, at 
lower ranks 

• Typical discount is 1/log (rank) 
– With base 2, the discount at rank 4 is 1/2, and at 

rank 8 it is 1/3 



Discounted Cumulative Gain 

• DCG is the total gain accumulated at a 
particular rank p: 
 
 

• Alternative formulation: 
 
 

– used by some web search companies 
– emphasis on retrieving highly relevant documents 

 



DCG Example 

• 10 ranked documents judged on 0-3 relevance 
scale:  
3, 2, 3, 0, 0, 1, 2, 2, 3, 0 

• discounted gain:  
3, 2/1, 3/1.59, 0, 0, 1/2.59, 2/2.81, 2/3, 3/3.17, 0  
= 3, 2, 1.89, 0, 0, 0.39, 0.71, 0.67, 0.95, 0 

• DCG: 
3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61 

 
 



Normalized DCG 

• DCG numbers are averaged across a set of 
queries at specific rank values 
– e.g., DCG at rank 5 is 6.89 and at rank 10 is 9.61 

• DCG values are often normalized by 
comparing the DCG at each rank with the DCG 
value for the perfect ranking 
– makes averaging easier for queries with different 

numbers of relevant documents 



NDCG Example 

• Perfect ranking: 
3, 3, 3, 2, 2, 2, 1, 0, 0, 0 

• ideal DCG values: 
3, 6, 7.89, 8.89, 9.75, 10.52, 10.88, 10.88, 10.88, 10 

• NDCG values (divide actual by ideal): 
1, 0.83, 0.87, 0.76, 0.71, 0.69, 0.73, 0.8, 0.88, 0.88 
– NDCG ≤ 1 at any rank position 



Using Preferences 

• Two rankings described using preferences can 
be compared using the Kendall tau coefficient 
(τ ): 

 
– P is the number of preferences that agree and Q is 

the number that disagree 

• For preferences derived from binary relevance 
judgments, can use BPREF 
 



BPREF 

• For a query with R relevant documents, only 
the first R non-relevant documents are 
considered 
 
 

– dr is a relevant document, and Ndr gives the 
number of non-relevant documents 

• Alternative definition 



Efficiency Metrics 



Comparing samples 



t-Test 

• Assumption is that the difference between the 
effectiveness values is a sample from a normal 
distribution 

• Null hypothesis is that the mean of the 
distribution of differences is zero 

• Test statistic 
 
– for the example, 



Wilcoxon Signed-Ranks Test 
• Nonparametric test based on differences 

between effectiveness scores 
• Test statistic 

 
 
– To compute the signed-ranks, the differences are 

ordered by their absolute values (increasing), and 
then assigned rank values 

– rank values are then given the sign of the original 
difference 

 



Comparing samples 



Wilcoxon Example 

• 9 non-zero differences are (in rank order of 
absolute value): 
 2, 9, 10, 24, 25, 25, 41, 60, 70 

• Signed-ranks: 
-1, +2, +3, -4, +5.5, +5.5, +7, +8, +9 

• w = 35, p-value = 0.025 



Sign Test 

• Ignores magnitude of differences 
• Null hypothesis for this test is that 

– P(B > A) = P(A > B) = ½ 
– number of pairs where B is “better” than A would 

be the same as the number of pairs where A is 
“better” than B 

• Test statistic is number of pairs where B>A 
• For example data,  

– test statistic is 7, p-value = 0.17 
– cannot reject null hypothesis 



Setting Parameter Values 

• Retrieval models often contain parameters 
that must be tuned to get best performance 
for specific types of data and queries 

• For experiments: 
– Use training and test data sets 
– If less data available, use cross-validation by 

partitioning the data into K subsets 
– Using training and test data avoids overfitting – 

when parameter values do not generalize well to 
other data 
 



Finding Parameter Values 

• Many techniques used to find optimal 
parameter values given training data 
– standard problem in machine learning 

• In IR, often explore the space of possible 
parameter values by brute force 
– requires large number of retrieval runs with small 

variations in parameter values (parameter sweep) 
• SVM optimization is an example of an efficient 

procedure for finding good parameter values 
with large numbers of parameters 



Online Testing 

• Test (or even train) using live traffic on a 
search engine 

• Benefits: 
– real users, less biased, large amounts of test data 

• Drawbacks: 
– noisy data, can degrade user experience 

• Often done on small proportion (1-5%) of live 
traffic 



Summary 

• No single measure is the correct one for any 
application 
– choose measures appropriate for task 
– use a combination 
– shows different aspects of the system 

effectiveness 

• Use significance tests (t-test) 
• Analyze performance of individual queries 
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