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What regression gives us 
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What causality inference gives us 

type 

user 

group 

item 



What we’re missing 

type 

user 

group 

item 

Type Prob 

1 0.65 

2 0.35 

We’re missing the conditional probability tables 

We can get them from empirical frequencies, but empirical frequencies of what? 

Type Prob 

A 0.45 

B 0.55 



Words shape reality 



Need succinct phenomena descriptors 



Categories compress information 



Today 

• Clustering 
• Types of clusters 

– We focus on exclusive clusters 

• Types of clustering algorithms 
– Distance-based 
– Contiguity-based 
– Density-based 
– Hierarchical 

• Validation 
• Suggested reading: Pan, Kumar & Steinbach Ch 8 

– Lots of slides drawn from that book chapter 

 



Clustering 

Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 

minimized 



Distance measures 

• Vectorize the data 

– Turn each attribute into a binary label 

• Use any of the following measures 

– Euclidean 

 

– Cosine 

 

– Manhattan  

 



Types of clusters 

•  Well-separated clusters 

 

•  Center-based clusters 

 

•  Contiguous clusters 

 

•  Density-based clusters 

 

• Conceptual clusters 

 



Well-separated clusters 

• Well-Separated Clusters:  
– A cluster is a set of points such that any point in a cluster is closer 

(or more similar) to every other point in the cluster than to any 
point not in the cluster.  

 

3 well-separated clusters 



Center-based clusters 

• Center-based 
–  A cluster is a set of objects such that an object in a cluster is closer 

(more similar) to the “center” of a cluster, than to the center of any 
other cluster   

– The center of a cluster is often a centroid, the average of all the 
points in the cluster, or a medoid, the most “representative” point 
of a cluster  

 

4 center-based clusters 



Contiguity-based clusters 

• Contiguous Cluster (Nearest neighbor or 
Transitive) 
– A cluster is a set of points such that a point in a cluster is closer (or 

more similar) to one or more other points in the cluster than to any 
point not in the cluster. 

 

8 contiguous clusters 



Density-based 

• Density-based 
– A cluster is a dense region of points, which is separated by low-

density regions, from other regions of high density.  

– Used when the clusters are irregular or intertwined, and when noise 
and outliers are present.  

6 density-based clusters 



Conceptual clusters 

• Shared Property or Conceptual Clusters 
– Finds clusters that share some common property or represent a 

particular concept.  

.  

2 Overlapping Circles 



Algorithm to cluster types mapping 

• K-means and its variants 

– Center-based 

– Density-based 

• DBSCAN clustering 

– Density-based 

– Contiguity-based 
 

 



K means clustering 
• Exclusive clustering approach  

• Each cluster is associated with a centroid (center point)  

• Each point is assigned to the cluster with the closest 
centroid 

• Number of clusters, K, must be specified 

• The basic algorithm is very simple 



Details 

• Initial centroids are often chosen randomly. 
– Clusters produced vary from one run to another. 

• The centroid is (typically) the mean of the points in the cluster. 

• ‘Closeness’ is measured by Euclidean distance, cosine similarity, 
correlation, etc. 

• K-means will converge for common similarity measures 
mentioned above. 

• Most of the convergence happens in the first few iterations. 
– Often the stopping condition is changed to ‘Until relatively few points 

change clusters’ 

• Complexity is O( n * K * I * d ) 
– n = number of points, K = number of clusters,  

I = number of iterations, d = number of attributes 



Stochasticity 
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Good initialization 
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Good result 
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Poor initialization 
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Bad result 
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How to measure bad? 
• Most common measure is Sum of Squared Error (SSE) 

– For each point, the error is the distance to the nearest cluster 

– To get SSE, we square these errors and sum them. 

 

 

 

– x is a data point in cluster Ci and mi is the representative point for 
cluster Ci  
•  can show that mi corresponds to the center (mean) of the cluster 

– Given two clusters, we can choose the one with the smallest error 

– One easy way to reduce SSE is to increase K, the number of clusters 
•  A good clustering with smaller K can have a lower SSE than a poor 

clustering with higher K 
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How to fix? 

• Multiple runs 
– Helps, but probability is not on your side 

• Select more than k initial centroids and then 
select among these initial centroids 

• Select most widely separated initial centroids 

• Bisecting K-means 
– Not as susceptible to initialization issues 



Bisecting K means 

• Bisecting K-means algorithm 
– Variant of K-means that can produce a partitional or a hierarchical 

clustering 
 

 



Example 



Other problems 

• K-means has problems when clusters are of 
differing  

– Sizes 

– Densities 

– Non-globular shapes 

 

• K-means has problems when the data contains 
outliers. 



Different sizes 

Original Points K-means (3 Clusters) 



Different densities 

Original Points K-means (3 Clusters) 



Non-globular shapes 

Original Points K-means (2 Clusters) 



Can increase K 

Original Points    K-means Clusters 



Can increase K 

Original Points    K-means Clusters 



Can increase K 

Original Points    K-means Clusters 



WHAT TO DO? 
Bigger K = Bigger CPT table = sparser observations per cell = uncertainty 



DBSCAN 

• DBSCAN is a density-based algorithm. 
– Density = number of points within a specified radius (Eps) 

 

– A point is a core point if it has more than a specified number of 

points (MinPts) within Eps  

• These are points that are at the interior of a cluster 
 

– A border point has fewer than MinPts within Eps, but is in the 
neighborhood of a core point 

 

– A noise point is any point that is not a core point or a border 
point.  

 



Definitions 



DBSCAN algorithm 

• Eliminate noise points 

• Perform clustering on the remaining points 



Example 

Original Points Point types: core, border 
and noise 

Eps = 10, MinPts = 4 



Strengths 

Original Points Clusters 

• Resistant to Noise 

• Can handle clusters of different shapes and sizes 



Weaknesses 

Original Points 
(MinPts=4, Eps=9.75).  

 (MinPts=4, Eps=9.92) 

• Varying densities 

• High-dimensional data O(n2) 

•But see (Gan & Tao, 2015) 



Parameter fitting 
• Idea is that for points in a cluster, their kth nearest 

neighbors are close by 

• Noise points have the kth nearest neighbor far away 

• So, plot sorted distance of every point to its kth nearest 
neighbor 



Validation 
• For supervised classification we have a variety of measures to 

evaluate how good our model is 
– Accuracy, precision, recall 

 

• For cluster analysis, the analogous question is how to evaluate 
the “goodness” of the resulting clusters? 
 

• But “clusters are in the eye of the beholder”!  
 

• Then why do we want to evaluate them? 
– To avoid finding patterns in noise 
– To compare clustering algorithms 
– To compare two sets of clusters 
– To compare two clusters 



Clusters in random data 
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Cluster correlation 

• Two matrices  
– Proximity Matrix 

– “Incidence” Matrix 

• One row and one column for each data point 

• An entry is 1 if the associated pair of points belong to the same cluster 

• An entry is 0 if the associated pair of points belongs to different clusters 

• Compute the correlation between the two matrices 
– Since the matrices are symmetric, only the correlation between  

n(n-1) / 2 entries needs to be calculated. 

• High correlation indicates that points that belong to the same 
cluster are close to each other.  

• Not a good measure for some density or contiguity based 
clusters. 



Correlation as measure of quality 

• Correlation of incidence and proximity 
matrices for the K-means clusterings of these 
two data sets.  
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Similarity matrix visualization 
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For random data 
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For random data 
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Can give you fine detail 
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Can also use residuals 
• Clusters in more complicated figures aren’t well separated 

• Internal Index:  Used to measure the goodness of a clustering 
structure without respect to external information 

– SSE 

• SSE is good for comparing two clusterings or two clusters 
(average SSE). 

• Can also be used to estimate the number of clusters 
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What’s a good SSE? 

• Example 
– Compare SSE of 0.005 against three clusters in random data 

– Histogram shows SSE of three clusters in 500 sets of random data points 
of size 100 distributed over the range 0.2 – 0.8 for x and y values 
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Cohesion and separation 

• Cluster Cohesion: Measures how closely related 
are objects in a cluster 
– Example: SSE 

• Cluster Separation: Measures how distinct or 
well-separated a cluster is from other clusters 

• Example: Squared Error 
– Cohesion is measured by the within cluster sum of squares (SSE) 

 

 

– Separation is measured by the between cluster sum of squares 

 

 

– Where |Ci| is the size of cluster i  
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Entropy and purity 


