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What we want




What regression gives us




What causality inference gives us
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What we’re missing

“type | prob

A 0.45
B 0.55 S

“type | prob

1 0.65
2 0.35

We’re missing the conditional probability tables

We can get them from empirical frequencies, but empirical frequencies of what?



Words shape reality




Need succinct phenomena descriptors

THE MAN LWHO COULD
NOT SUMMARIZE

IT ALL STARTED
453 BILLION YEARS
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HOURS LATER

... AND
THAT
FORMED
WHAT WE
CALL THE
MOON.

MAYBE ILL
JUST ASK
SOMEONE
ELSE WHAT
TIME IT IS.
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Categories compress information



Today

Clustering

Types of clusters

— We focus on exclusive clusters

Types of clustering algorithms

— Distance-based

— Contiguity-based

— Density-based

— Hierarchical

Validation

Suggested reading: Pan, Kumar & Steinbach Ch 8
— Lots of slides drawn from that book chapter



Intra-cluster
distances are
minimized

Clustering

Inter-cluster
distances are
maximized




Distance measures

e Vectorize the data

— Turn each attribute into a binary label

Use any of the following measures

— Euclidean  de.@=d@p)= /(@ -p) +(@-p) + -+ (g —pn)’

\Z{q pi)’.
] 5 A;B;
— COSI ne similarity = cos(f) = ||i|||]BS|| = — =
| S fffi B}
i=1 b i=1

— Manhattan & (p,a) = |Ip — all: zm—q'



Types of clusters

Well-separated clusters
Center-based clusters
Contiguous clusters
Density-based clusters

Conceptual clusters



Well-separated clusters

* Well-Separated Clusters:

— A cluster is a set of points such that any point in a cluster is closer
(or more similar) to every other point in the cluster than to any
point not in the cluster.

3 well-separated clusters



Center-based clusters

* Center-based

— Acluster is a set of objects such that an object in a cluster is closer
(more similar) to the “center” of a cluster, than to the center of any
other cluster

— The center of a cluster is often a centroid, the average of all the
points in the cluster, or a medoid, the most “representative” point
of a cluster

4 center-based clusters
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Contiguity-based clusters

Contiguous Cluster (Nearest neighbor or
Transitive)

— A cluster is a set of points such that a point in a cluster is closer (or
more similar) to one or more other points in the cluster than to any
point not in the cluster.

8 contiguous clusters



Density-based
* Density-based

— A cluster is a dense region of points, which is separated by low-
density regions, from other regions of high density.

— Used when the clusters are irregular or intertwined, and when noise
and outliers are present.

6 density-based clusters



Conceptual clusters

e Shared Property or Conceptual Clusters

— Finds clusters that share some common property or represent a
particular concept.

2 Overlapping Circles



Algorithm to cluster types mapping

e K-means and its variants
— Center-based
— Density-based

 DBSCAN clustering

— Density-based
— Contiguity-based



K means clustering

Exclusive clustering approach
Each cluster is associated with a (center point)

Each point is assigned to the cluster with the closest
centroid

Number of clusters, K, must be specified
The basic algorithm is very simple

: Select K points as the initial centroids.

repeat
Form K clusters by assigning all points to the closest centroid.
Recompute the centroid of each cluster.

until The centroids don’t change




Details

Initial centroids are often chosen randomly.
— Clusters produced vary from one run to another.

The centroid is (typically) the mean of the points in the cluster.

‘Closeness’ is measured by Euclidean distance, cosine similarity,
correlation, etc.

K-means will converge for common similarity measures
mentioned above.

Most of the convergence happens in the first few iterations.

— Often the stopping condition is changed to ‘Until relatively few points
change clusters’

Complexity isO(n *K*1*d)

— n = number of points, K= number of clusters,
| = number of iterations, d = number of attributes
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How to measure bad?

Most common measure is Sum of Squared Error (SSE)

— For each point, the error is the distance to the nearest cluster
— To get SSE, we square these errors and sum them.

K
SSE =) > dist*(m;, x)
=1 xeC;
— X is a data point in cluster C;and m;, is the representative point for
cluster C,

* can show that m;corresponds to the center (mean) of the cluster
— Given two clusters, we can choose the one with the smallest error

— One easy way to reduce SSE is to increase K, the number of clusters

* A good clustering with smaller K can have a lower SSE than a poor
clustering with higher K



How to fix?

Multiple runs
— Helps, but probability is not on your side

Select more than k initial centroids and then
select among these initial centroids

Select most widely separated initial centroids

Bisecting K-means
— Not as susceptible to initialization issues




Bisecting K means

* Bisecting K-means algorithm

—  Variant of K-means that can produce a partitional or a hierarchical
clustering

1:
2:
3:

4
5
6:
7
8

Initialize the list of clusters to contain the cluster containing all points.
repeat
Select a cluster from the list of clusters
for i = 1 to number_of _iterations do
Bisect the selected cluster using basic K-means
end for
Add the two clusters from the bisection with the lowest SSE to the list of clusters.

- until Until the list of clusters contains K clusters




Example

lteration 10
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Other problems

* K-means has problems when clusters are of
differing
— Sizes
— Densities
— Non-globular shapes

* K-means has problems when the data contains
outliers.



Different sizes
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Different densities
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Non-globular shapes

10+

Original Points K-means (2 Clusters)
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Can increase K
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Can increase K
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Can increase K
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Bigger K = Bigger CPT table = sparser observations per cell = uncertainty

WHAT TO DO?



DBSCAN

DBSCAN is a density-based algorithm.

—  Density = number of points within a specified radius (Eps)

— A pointis a core point if it has more than a specified number of
points (MinPts) within Eps

* These are points that are at the interior of a cluster

— A border point has fewer than MinPts within Eps, but is in the
neighborhood of a core point

— A noise point is any point that is not a core point or a border
point.
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DBSCAN algorithm

* Eliminate noise points
* Perform clustering on the remaining points

current_cluster_label < 1
for all core points do
if the core point has no cluster label then
current_cluster_label «— current_cluster_label + 1
Label the current core point with cluster label current_cluster_label
end if
for all points in the Eps-neighborhood, except i*" the point itself do
if the point does not have a cluster label then
Label the point with cluster label current_cluster_label
end if
end for

end for



Point types: core, border

and noise

Original Points
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Strengths

Clusters

Original Points

e Resistant to Noise

e Can handle clusters of different shapes and sizes



knesses

Original Points

e Varying densities

¢ High-dimensional data O(n?)

*But see (Gan & Tao, 2015)

(MinPts=4, Eps=9.92)



Parameter fitting

Idea is that for points in a cluster, their k™" nearest
neighbors are close by

Noise points have the k" nearest neighbor far away

So, plot sorted distance of every point to its k™" nearest
neighbor
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Validation

For supervised classification we have a variety of measures to
evaluate how good our model is

— Accuracy, precision, recall

For cluster analysis, the analogous question is how to evaluate
the “goodness” of the resulting clusters?

But “clusters are in the eye of the beholder”!

Then why do we want to evaluate them?
— To avoid finding patterns in noise
— To compare clustering algorithms
— To compare two sets of clusters
— To compare two clusters



Clusters in random data
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Cluster correlation

Two matrices
— Proximity Matrix
— “Incidence” Matrix
. One row and one column for each data point
. An entry is 1 if the associated pair of points belong to the same cluster
. An entry is O if the associated pair of points belongs to different clusters
Compute the correlation between the two matrices
Since the matrices are symmetric, only the correlation between
n(n-1) / 2 entries needs to be calculated.

High correlation indicates that points that belong to the same
cluster are close to each other.

Not a good measure for some density or contiguity based
clusters.



Correlation as measure of quality

* Correlation of incidence and proximity
matrices for the K-means clusterings of these
two data sets.
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Similarity matrix visualization
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For random data
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For random data
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Can give you fine detail
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Can also use residuals

Clusters in more complicated figures aren’t well separated

Internal Index: Used to measure the goodness of a clustering
structure without respect to external information

— SSE

SSE is good for comparing two clusterings or two clusters
(average SSE).

Can also be used to estimate the number of clusters
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What’s a good SSE?

 Example

— Compare SSE of 0.005 against three clusters in random data

— Histogram shows SSE of three clusters in 500 sets of random data points
of size 100 distributed over the range 0.2 — 0.8 for x and y values
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Cohesion and separation

* Cluster Cohesion: Measures how closely related

are objects in a cluster
— Example: SSE

* Cluster Separation: Measures how distinct or

well-separated a cluster is from other clusters
 Example: Squared Error

— Cohesion is measured by the within cluster sum of squares (SSE)

WSS =>» (x—m,)

i XECi
— Separation is measured by the between cluster sum of squares

BSS =) [Ci|(m—m,)’

— Where |C,| is the size of cluster i



Entropy and purity

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster | Entertainment | Financial | Foreign | Metro | National | Sports | Entropy | Purity
1 3 5 40 506 96 27 1.2270 | 0.7474
2 4 7 280 29 39 2 1.1472 | 0.7756
3 1 1 1 7 4 671 0.1813 | 0.9796
4 10 162 3 119 73 2 1.7487 | 0.4390
5 331 22 5 70 13 23 1.3976 | 0.7134
6 5 358 12 212 48 13 1.5523 | 0.5525
Total 354 555 341 943 273 738 1.1450 | 0.7203

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j
we compute p;;, the ‘probability’ that a member of cluster 7 belongs to class ¢ as follows:
Pi; = méj/mj, where m; is the number of values in cluster j and m,; is the number of values
of class ¢ in cluster 7. Then using this class distribution, the entropy of each cluster j is
calculated using the standard formula e; = Zf=1péj log, psj, where the L is the number of
classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each
cluster weighted by the size of each cluster, i.e., e = Zil e, where m; is the size of cluster

1, K 1s the number of clusters, and m is the total number of data points.

purity Using the terminology derived for entropy, the purity of cluster j, is given by purity; =
max p;; and the overall purity of a clustering by purity = Zfil L purity;.



