
ESC101: Fundamentals of Computing

Hashing, File I/O

 Nisheeth

1

ESC101

Hashing for Very Fast Search

• Hashing is a method to search an element in an array in constant time

• “Constant time” also denoted as O(1) – means time taken does not depend on number of elements N in
the array (unlike like binary/brute force search)

• Since we can search in constant time, can also update/delete in constant time

• Basic idea: Use a “hash table” to store the elements

• The hash table is just like an array

• Index of each element to be stored is calculated using the element’s value

• To search the element, compute its index and directly find it at that index

• This can be done in constant time (if index can be found in constant time) 

2

ESC101

Hash Function

• Index is computed using a hash function

• Hash function uses the element’s value to compute its index

• An example of a simple hash function is the modulo operator

 index = value % number_of_slots

3

Value Index = Value % No. of Slots
26 26 % 10 = 6
70 70 % 10 = 0
18 18 % 10 = 8
31 31 % 10 = 1
54 54 % 10 = 4
93 93 % 10 = 3

To search for an element, say 93, we simply apply
the hash function again: 93%10 = 3
and can find the index of this element in constant time 

ESC101

A potential problem - collisions

• What if more than multiple elements get mapped to the same index?

• Yes, a very real problem.

4

ESC101

A potential problem - collisions

• What if more than multiple elements get mapped to the same index?

• Yes, a very real problem.

• Consider the previous hash table

• Suppose we wish to insert 60. Its index = 60%10 = 0 => clash with 70

• Some hash functions are good in the sense that the indices they generate are uniformly distributed (so
less collision - desirable for good hash functions)

• Despite that, we may still have collisions and we need to handle that

5

ESC101

Linear Probing

• Linear Probing is a simple technique to handle collisions

• The idea: Keep searching for the “next available” free index

• Assume the first index P that we get is not free. Then compute

• If the new index P is free, store the element there, else repeat the above

• Suppose we wish to insert 60 in this table, 60%10 = 0, but 0 if not free

• Try P = (P+1)%10 = (0+1)%10 = 1, but index 1 is also not free (31 there)

• Let’s try P = (P+1)%10 = (1+1)%10 = 2. Index 2 is free. Store 60 at that index

• When searching for 60, we won’t find it in first attempt but in third attempt

6

P = (P+1) % number_of_slots

ESC101

Hashing: Some final thoughts..

• A very very useful technique

• We have only scratched the surface – the basic idea of hashing

• More advanced hashing methods exist
• Better methods to avoid collisions

• Better and cheap to compute hashing functions

• Discussion of these is beyond the scope of ESC101

7

ESC101

 File Input/Output

8

ESC101

Files

 What is a file?
 Collection of bytes stored on secondary storage like hard disks

(not RAM which is primary storage).
 Any addressable part of the file system in an operating

system can be a file.
 includes such strange things as /dev/null (nothing), /dev/usb

(USB port), /dev/audio (speakers), and of course, files that a
user creates (/home/don/input.txt,
/home/don/Esc101/lab12.c)

9

ESC101

File Access

 3 files are always connected to a C program :
− stdin : the standard input, from where scanf,

getchar(), gets() etc. read input from
− stdout : the standard output, to where printf(),

putchar(), puts() etc. output to.
− stderr : standard error console.

10

ESC101

File handling in C
1. Open the file for reading/writing etc.: fopen

• return a file pointer
• pointer points to an internal structure containing information about the file:

•location of a file
•the current position being read in the file, etc.

FILE* fopen (char *name, char *mode)
2. Read/Write to the file

int fscanf(FILE *fp, char *format, …)
int fprintf(FILE *fp, char *format, …)
int fputs(const char* str, FILE *fp)

3. Close the File.
int fclose(FILE *fp)

Compared to scanf
and printf – a new
(first) argument fp is
added

11

ESC101

Opening Files
FILE* fopen (char *name, char *mode)
 The first argument is the name of the file

─ can be given in short form (e.g. “inputfile”) or the full path name (e.g.
“/home/don/inputfile”)

 The second argument is the mode in which we want to open the file.
Common modes include:

– “r” : read-only. Any write to the file will fail. File must exist.
–“w” : write. The first write happens at the beginning of the file, by default. Thus,
may overwrite the current content. A new file is created if it does not exist.
–“a” : append. The first write is to the end of the current content. File is created if
it does not exist.

12

ESC101

13

Opening Files

 If successful, fopen returns a file pointer – this is later used for fprintf,
fscanf etc.

 If unsuccessful, fopen returns a NULL.
 It is a good idea to check for errors (e.g. Opening a file on a CDROM

using “w” mode etc.)

Closing Files
 An open file must be closed after last use

allows reuse of FILE* resources
flushing of buffered data (to actually write!)

ESC101

File I/O: Example
 Write a program that will take two filenames, and print contents to the standard output.

The contents of the first file should be printed first, and then the contents of the second.

 The algorithm:
1. Read the file names.

2. Open file 1. If open failed, we exit

3. Print the contents of file 1 to stdout

4. Close file 1

5. Open file 2. If open failed, we exit

6. Print the contents of file 2 to stdout

7. Close file 2

14

ESC101

15

int main()
{
 FILE *fp; char filename1[128], filename2[128];
 scanf(“%s”, filename1);
 scanf(“%s”, filename2);
 fp = fopen(filename1, "r");
 if(fp == NULL) {
 fprintf(stderr, "Opening File %s failed\n", filename1);
 return -1;
 }
 copy_file(fp, stdout);
 fclose(fp);
 fp = fopen(filename2, "r");
 if (fp == NULL) {
 fprintf(stderr, "Opening File %s failed\n", filename2);
 return -1;
 }
 copy_file (fp, stdout);
 fclose(fp);
 return 0;
}

ESC101

Esc101,FileIO 16

void copy_file(FILE *fromfp, FILE *tofp)
{
 char ch;

 while (!feof (fromfp)) {
 fscanf (fromfp, "%c", &ch);
 fprintf (tofp, "%c", ch);
 }
}

The Program: copy_file

ESC101

Some other file handling functions

 int feof (FILE* fp);
− Checks whether the fp has reached EOF – that is, the EOF

chracter has been encountered. If EOF is found, it returns
nonzero. Otherwise, returns 0.

 int ferror (FILE *fp);
− Checks whether the error indicator has been set for fp. (for

example, write errors to the file.)

17

ESC101

Some other file handling functions
 int fseek(FILE *fp, long int offset,
 int origin);

 To set the current position associated with fp, to a new
position = origin + offset.

 Origin can be:
 SEEK_SET: beginning of file
 SEEK_CURR: current position of file pointer
 SEEK_END: End of file

 Offset is the number of bytes.
 int ftell(FILE *fp)

− Returns the current value of the position indicator of the
stream.

18

ESC101

Opening Files: More modes

 There are other modes for opening files, as well.
− “r+” : open a file for read and update. The file must be present.
− “w+” : write/read. Create an empty file or overwrite an existing

one.
− “a+” : append/read. File is created if it doesn’t exist. The file

position for reading is at the beginning, but output is appended
to the end.

19

ESC101

File I/O example

20

#include <stdio.h>
int main () {
 FILE * fp = fopen("file.txt","w+");
 fputs("This is tutorialspoint.com", fp);
 fseek(fp, 7, SEEK_SET);
 fputs(" C Programming Language", fp);
 fclose(fp);

 int c;
 fp = fopen("file.txt","r");
 while(1) {
 c = fgetc(fp);
 if(feof(fp)) break;
 printf("%c", c);
 }
 fclose(fp);
 return 0;
}

This is C Programming Language

	ESC101: Fundamentals of Computing
	Hashing for Very Fast Search
	Hash Function
	A potential problem - collisions
	A potential problem - collisions
	Linear Probing
	Hashing: Some final thoughts..
	 File Input/Output
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	File I/O: Example
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	File I/O example

