
ESC101: Fundamentals of Computing

Hashing, File I/O

 Nisheeth

1

ESC101

Hashing for Very Fast Search

• Hashing is a method to search an element in an array in constant time

• “Constant time” also denoted as O(1) – means time taken does not depend on number of elements N in
the array (unlike like binary/brute force search)

• Since we can search in constant time, can also update/delete in constant time

• Basic idea: Use a “hash table” to store the elements

• The hash table is just like an array

• Index of each element to be stored is calculated using the element’s value

• To search the element, compute its index and directly find it at that index

• This can be done in constant time (if index can be found in constant time)

2

ESC101

Hash Function

• Index is computed using a hash function

• Hash function uses the element’s value to compute its index

• An example of a simple hash function is the modulo operator

 index = value % number_of_slots

3

Value Index = Value % No. of Slots
26 26 % 10 = 6
70 70 % 10 = 0
18 18 % 10 = 8
31 31 % 10 = 1
54 54 % 10 = 4
93 93 % 10 = 3

To search for an element, say 93, we simply apply
the hash function again: 93%10 = 3
and can find the index of this element in constant time

ESC101

A potential problem - collisions

• What if more than multiple elements get mapped to the same index?

• Yes, a very real problem.

4

ESC101

A potential problem - collisions

• What if more than multiple elements get mapped to the same index?

• Yes, a very real problem.

• Consider the previous hash table

• Suppose we wish to insert 60. Its index = 60%10 = 0 => clash with 70

• Some hash functions are good in the sense that the indices they generate are uniformly distributed (so
less collision - desirable for good hash functions)

• Despite that, we may still have collisions and we need to handle that

5

ESC101

Linear Probing

• Linear Probing is a simple technique to handle collisions

• The idea: Keep searching for the “next available” free index

• Assume the first index P that we get is not free. Then compute

• If the new index P is free, store the element there, else repeat the above

• Suppose we wish to insert 60 in this table, 60%10 = 0, but 0 if not free

• Try P = (P+1)%10 = (0+1)%10 = 1, but index 1 is also not free (31 there)

• Let’s try P = (P+1)%10 = (1+1)%10 = 2. Index 2 is free. Store 60 at that index

• When searching for 60, we won’t find it in first attempt but in third attempt

6

P = (P+1) % number_of_slots

ESC101

Hashing: Some final thoughts..

• A very very useful technique

• We have only scratched the surface – the basic idea of hashing

• More advanced hashing methods exist
• Better methods to avoid collisions

• Better and cheap to compute hashing functions

• Discussion of these is beyond the scope of ESC101

7

ESC101

 File Input/Output

8

ESC101

Files

 What is a file?
 Collection of bytes stored on secondary storage like hard disks

(not RAM which is primary storage).
 Any addressable part of the file system in an operating

system can be a file.
 includes such strange things as /dev/null (nothing), /dev/usb

(USB port), /dev/audio (speakers), and of course, files that a
user creates (/home/don/input.txt,
/home/don/Esc101/lab12.c)

9

ESC101

File Access

 3 files are always connected to a C program :
− stdin : the standard input, from where scanf,

getchar(), gets() etc. read input from
− stdout : the standard output, to where printf(),

putchar(), puts() etc. output to.
− stderr : standard error console.

10

ESC101

File handling in C
1. Open the file for reading/writing etc.: fopen

• return a file pointer
• pointer points to an internal structure containing information about the file:

•location of a file
•the current position being read in the file, etc.

FILE* fopen (char *name, char *mode)
2. Read/Write to the file

int fscanf(FILE *fp, char *format, …)
int fprintf(FILE *fp, char *format, …)
int fputs(const char* str, FILE *fp)

3. Close the File.
int fclose(FILE *fp)

Compared to scanf
and printf – a new
(first) argument fp is
added

11

ESC101

Opening Files
FILE* fopen (char *name, char *mode)
 The first argument is the name of the file

─ can be given in short form (e.g. “inputfile”) or the full path name (e.g.
“/home/don/inputfile”)

 The second argument is the mode in which we want to open the file.
Common modes include:

– “r” : read-only. Any write to the file will fail. File must exist.
–“w” : write. The first write happens at the beginning of the file, by default. Thus,
may overwrite the current content. A new file is created if it does not exist.
–“a” : append. The first write is to the end of the current content. File is created if
it does not exist.

12

ESC101

13

Opening Files

 If successful, fopen returns a file pointer – this is later used for fprintf,
fscanf etc.

 If unsuccessful, fopen returns a NULL.
 It is a good idea to check for errors (e.g. Opening a file on a CDROM

using “w” mode etc.)

Closing Files
 An open file must be closed after last use

allows reuse of FILE* resources
flushing of buffered data (to actually write!)

ESC101

File I/O: Example
 Write a program that will take two filenames, and print contents to the standard output.

The contents of the first file should be printed first, and then the contents of the second.

 The algorithm:
1. Read the file names.

2. Open file 1. If open failed, we exit

3. Print the contents of file 1 to stdout

4. Close file 1

5. Open file 2. If open failed, we exit

6. Print the contents of file 2 to stdout

7. Close file 2

14

ESC101

15

int main()
{
 FILE *fp; char filename1[128], filename2[128];
 scanf(“%s”, filename1);
 scanf(“%s”, filename2);
 fp = fopen(filename1, "r");
 if(fp == NULL) {
 fprintf(stderr, "Opening File %s failed\n", filename1);
 return -1;
 }
 copy_file(fp, stdout);
 fclose(fp);
 fp = fopen(filename2, "r");
 if (fp == NULL) {
 fprintf(stderr, "Opening File %s failed\n", filename2);
 return -1;
 }
 copy_file (fp, stdout);
 fclose(fp);
 return 0;
}

ESC101

Esc101,FileIO 16

void copy_file(FILE *fromfp, FILE *tofp)
{
 char ch;

 while (!feof (fromfp)) {
 fscanf (fromfp, "%c", &ch);
 fprintf (tofp, "%c", ch);
 }
}

The Program: copy_file

ESC101

Some other file handling functions

 int feof (FILE* fp);
− Checks whether the fp has reached EOF – that is, the EOF

chracter has been encountered. If EOF is found, it returns
nonzero. Otherwise, returns 0.

 int ferror (FILE *fp);
− Checks whether the error indicator has been set for fp. (for

example, write errors to the file.)

17

ESC101

Some other file handling functions
 int fseek(FILE *fp, long int offset,
 int origin);

 To set the current position associated with fp, to a new
position = origin + offset.

 Origin can be:
 SEEK_SET: beginning of file
 SEEK_CURR: current position of file pointer
 SEEK_END: End of file

 Offset is the number of bytes.
 int ftell(FILE *fp)

− Returns the current value of the position indicator of the
stream.

18

ESC101

Opening Files: More modes

 There are other modes for opening files, as well.
− “r+” : open a file for read and update. The file must be present.
− “w+” : write/read. Create an empty file or overwrite an existing

one.
− “a+” : append/read. File is created if it doesn’t exist. The file

position for reading is at the beginning, but output is appended
to the end.

19

ESC101

File I/O example

20

#include <stdio.h>
int main () {
 FILE * fp = fopen("file.txt","w+");
 fputs("This is tutorialspoint.com", fp);
 fseek(fp, 7, SEEK_SET);
 fputs(" C Programming Language", fp);
 fclose(fp);

 int c;
 fp = fopen("file.txt","r");
 while(1) {
 c = fgetc(fp);
 if(feof(fp)) break;
 printf("%c", c);
 }
 fclose(fp);
 return 0;
}

This is C Programming Language

	ESC101: Fundamentals of Computing
	Hashing for Very Fast Search
	Hash Function
	A potential problem - collisions
	A potential problem - collisions
	Linear Probing
	Hashing: Some final thoughts..
	 File Input/Output
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	File I/O: Example
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	File I/O example

