Hashing, File I/O

ESC101: Fundamentals of Computing
Nisheeth

Hashing for Very Fast Search

° Hashing is a method to search an elementin an array in constant time

® “Constant time” also denoted as O(1) — means time taken does not depend on number of elements NVin

the array (unlike like binary/brute force search)
® Since we can search in constant time, can also update/delete in constant time
® Basicidea: Use a “hash table” to store the elements

® The hash table is just like an array

Fig. Hash Table

® Index of each element to be stored is calculated using the element’s value

® Tosearch the element, compute its index and directly find it at that index

® This can be done in constant time (if index can be found in constant time) ©

Hash Function

® Indexis computed using a hash function
® Hash function uses the element’s value to compute its index

® An example of a simple hash function is the modulo operator

index = value % number of slots

¢ 1 2 3 4 5 6 7 8 89

Value Index = Value % No. of Slots
26 26% 10=6 70 | 31 93 |54 26 18
70 70%10=0 :
° Fig. Hash Table
18 18% 10=8
31 31%10=1 T h f I 93 impl I
5 _ o search for an element, say 93, we simply apply
>4 54? 10=4 the hash function again: 93%10 =3
93 93%10=3 and can find the index of this element in constant time ©

A potential problem - collisions

® What if more than multiple elements get mapped to the same index?
P g PP

® Yes, avery real problem.
y

A potential problem - collisions

® What if more than multiple elements get mapped to the same index?
® Yes, avery real problem.

® Consider the previous hash table

c 1 2 3 4 5 6 7 8 89
70 | 31 93 | 54 26 18

Fig. Hash Table

® Suppose we wish to insert 60. Its index = 60%10 = 0 => clash with 70

® Some hash functions are good in the sense that the indices they generate are uniformly distributed (so
less collision - desirable for good hash functions)

® Despite that, we may still have collisions and we need to handle that

Linear Probing
70 | 31

93 |54 26

18

® lLinear Probing isa simple technique to handle collisions
® The idea: Keep searching for the “next available” free index

® Assume the firstindex P that we get is not free. Then compute
P=(P+1) % number_of slots

® If the new index P is free, store the element there, else repeat the above

® Suppose we wish to insert 60 in this table, 60%10 = 0, but O if not free

® Try P=(P+1)%10 = (0+1)%10 =1, butindex 1 is also not free (31 there)

® Let'stry P=(P+1)%10 = (1+1)%10 = 2. Index 2 is free. Store 60 at that index

® When searching for 60, we won't find it in first attempt but in third attempt

Fig. Hash Table

Hashing: Some final thoughts..

® Avery very useful technique

® We have only scratched the surface — the basic idea of hashing

® More advanced hashing methods exist

® Better methods to avoid collisions

® Better and cheap to compute hashing functions

® Discussion of these is beyond the scope of ESC1011

File Input/Output

Files

What is a file?

Collection of bytes stored on secondary storage like hard disks
(not RAM which is primary storage).

Any addressable part of the file system in an operating
system can be a file.

includes such strange things as /dev/null (nothing), /dev/usb
(USB port), /dev/audio (speakers), and of course, files that a
user creates (/home/don/input.txt,
/home/don/Esc101/lab12.c)

File Access

3 files are always connected to a C program :

stdin : the standard input, from where scanf,
getchar(), gets() etc. read input from

stdout : the standard output, to where printf(),
putchar(), puts() etc. output to.

stderr : standard error console.

File handling in C

1. Open the file for reading/writing etc.: fopen
e return a file pointer

e pointer points to an internal structure containing information about the file:
e|location of a file
*the current position being read in the file, etc.

FILE* fopen (char *name, char *mode)

2. Read/Write to the file
int fscanf(FILE *fp, char *format, ...)
int fprintf(FILE *fp, char *format, ...) Compared to scanf
int fputs(const char* str, FILE *fp) and printf — a new

3. Close the File. (first) argument fp is
int fclose(FILE *fp) added

M

Opening Files

FILE* fopen (char *name, char *mode)
The first argument is the name of the file

— can be given in short form (e.g. “inputfile”) or the full path name (e.g.
“/home/don/inputfile”)
The second argument is the mode in which we want to open the file.
Common modes include:

o7

— “r” 1 read-only. Any write to the file will fail. File must exist.

—“w” : write. The first write happens at the beginning of the file, by default. Thus,
may overwrite the current content. A new file is created if it does not exist.

—“a” : append. The first write is to the end of the current content. File is created if
it does not exist.

12

Opening Files

If successful, fopen returns a file pointer — this is later used for fprintf,
fscanf etc.

If unsuccessful, fopen returns a NULL.

It is a good idea to check for errors (e.g. Opening a file on a CDROM
using “w” mode etc.)

Closing Files

An open file must be closed after last use
allows reuse of FILE* resources

flushing of buffered data (to actually write!)

13

File 1/O: Example

Write a program that will take two filenames, and print contents to the standard output.

The contents of the first file should be printed first, and then the contents of the second.

The algorithm:

1. Read the file names.

2. Openfile 1. If open failed, we exit
3. Print the contents of file 1 to stdout
4. Close file 1

5. Openfile 2. If open failed, we exit
6. Print the contents of file 2 to stdout

7. Close file 2

int main()
{
FILE *fp; char filenamel[128], filename2[128];
scanf(“%s”, filenamel);
scanf(“%s”, filename?2);
fp = fopen(filename1l, "r");
if(fp == NULL) {
fprintf(stderr, "Opening File %s failed\n", filename1l);
return -1;
}
copy_file(fp, stdout);
fclose(fp);
fp = fopen(filename2, "r");
if (fp == NULL) {
fprintf(stderr, "Opening File %s failed\n", filename2);
return -1;
}
copy_file (fp, stdout);
fclose(fp);
return O;

N3

15

/ The Program: copy_file \

void copy_file(FILE *fromfp, FILE *tofp)
{

char ch;

while (!feof (fromfp)) {
fscanf (fromfp, "%c", &ch);
fprintf (tofp, "%c", ch);
}
}

o /

Some other file handling functions

int feof (FILE* fp):

Checks whether the fp has reached EOF — that is, the EOF
chracter has been encountered. If EOF is found, it returns
nonzero. Otherwise, returns O.

int ferror (FILE *fp);

Checks whether the error indicator has been set for fp. (for
example, write errors to the file.)

17

Some other file handling functions

. INt fseek(FILE *fp, long Int offset,
int origin);
< To set the current position associated with fp, to a new
position = origin + offset.
< Origin can be:
« SEEK_SET: beginning of file

« SEEK_CURR: current position of file pointer
~ SEEK_END: End of file

« Offset is the number of bytes.
. INnt ftell(FILE *fp)

— Returns the current value of the position indicator of the
stream.

18

Opening Files: More modes

There are other modes for opening files, as well.

o

r+” : open a file for read and update. The file must be present.

o

w+" : write/read. Create an empty file or overwrite an existing
one.

o

a+” : append/read. File is created if it doesn’t exist. The file
position for reading is at the beginning, but output is appended
to the end.

19

File I/O example

#include <stdio.h>

int main () {
FILE * fp = fopen("file.txt","w+");
fputs("This is tutorialspoint.com", fp);
fseek(fp, 7, SEEK_SET);
fputs(" C Programming Language", fp);
fclose(fp);

int c;
fp = fopen("file.txt","r");
while(1) {
c = fgetc(fp);
if(feof(fp)) break;
printf("%c", c);
}

fclose(fp); .)
return 0; This is C Programming Language

	ESC101: Fundamentals of Computing
	Hashing for Very Fast Search
	Hash Function
	A potential problem - collisions
	A potential problem - collisions
	Linear Probing
	Hashing: Some final thoughts..
	 File Input/Output
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	File I/O: Example
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	File I/O example

