Sorting algorithms

ESC101: Fundamentals of Computing
Nisheeth

What is Sorting?

Useful in itself — internet search |
and recommendation systems 50

Time-taken

50 100 150 200 @ 250 300 350 @ 400
No. of items

Sorting is the process of arranging items systematically, ordere

by some criterion

Search within n unsorted | @ Makes searching very fast — can
elements can take as much | | search within n sorted elements

as O(n) operations 'n just O(log n) operations using
Binary Search

Sorting Algorithms

Bubble Sort

Bubble Sort

® Consider an array (514 2 8). Goal: Sortitin ascending order
® |dea: Repeatedly swap the adjacent elements if they are in wrong order

First Pass Second Pass

(51428)->(15428) (14258)->(14258)
(15428)-> (14528) (14258)->(12458)
(14528)-> (14258) (12458)->(12458)
(14258)—>(14258) (12458)-> (12458)

Third Pass
(12458)->(12458)

(1 2458)—:-(1 2458) No swaps in this pass,
(12458)—>(1 2458) ‘ hence done! ©

(12458)->(12458)

Bubble Sort

// A function to implement bubble sort
void bubbleSort(int arr[], int n)
{

int i, j;

for (1 =0; i < n-1; i++)

// Last i elements are already in place
for (j = 0; j < n-i-1; j++)
if (arr[j] > arr[j+1])
swap(&arr[j], &arr[j+l1l]);

Sorting Algorithms

Selection Sort

Selection Sort

* Another very simple sorting algorithm

* Like binary search, maintains active range a|0: R|with0 < R < N
* |nitially the active range is entire arrayi.e. R =N —1

* We will ensure two things

* At all points of time, the non-active portion will be sorted in ascending order i.e. for
all R <i < j we will ensure ali] < alj]

* The non-active elements will never be smaller than the elements in the active range
i.e.ifi <R < jthenali] < alj]

* Active region will shrink by one element at each step (details in next class)

L e

Selection Sort

* Already saw Bubble Sort. Selection sort is another very simple sorting algo

* Like binary search, maintains active range a|0: R|with0 < R < N
* |nitially the active range is entire arrayi.e. R =N —1

* We will ensure two things

* At all points of time, the non-active portion will be sorted in ascending order i.e. for
all R <i < j we will ensure ali] < alj]

* The non-active elements will never be smaller than the elements in the active range
i.e.ifi <R < jthenali] < alj]

* The active region will shrink by one element at each step

L e

8

Selection Sort

® Once an element goes to non-active region, we never touch it again @

® To maintain our conditions and still shrink the active region

®* We find the Iargest elementin the active region

® Bringitto the right-most end of the active region using a swap

Verify that our conditions

still hold

L T

Exercise: write a recursive

Selection Sort

version
':' e mm—— ercise: convert this to proper C
| SELECTIO code
\

1 Given: Array a with N elements

i2. ForR=N—-1,R>0;R— — //Initial active range is full array
| 1. i « FINDMAX(a,0,R) //Location of largest element in a[0, R] }
' 2. SWAP(q,i,R) // Bring largest element to the end
P ——— B | ["= R RO A el S e e ——— T -—
: SWAP ' FINDMAX

I
:1. Given: Array a, location i,jt 1. Given: Array a, locations i,j

12. Let tmp « ali] 2. Letk « i,max = alk]

:3. et ali] « alj] 3. Forl=ii<j;l++

1_4. _et alj] « tmp 1. If a[l] > max,max = all],k =1
CTTT T T T T T T T 4, Return k

L’"- L

)
l
l
-

A
o

Time Complexity

* Let T(N) be the time taken for selection sort to sort N elements
* Let M(N) be the time taken to find location of max of N elements

* At any time step when active region is [0: R|, we do two things
* Find the largest element within the active region — takes time M(R + 1)
« Swap the largest element with the element at a[R] - takes time ¢ (const)

* Thus, we have T(N) < M(N) +c+T(N — 1)
* It is easy to show that M(N) < d - N for all N for some constant d
* Exercise: expand the recurrence as before and show that

T(N) < 0(N?)
Assume T(1) < c

* Notice that selection sort (also bubble sort) doesn’t need any extra memory
(except a few tmp variables to store one integer each) —in-place sorting

M

Summary so far..

* Applications of sorting: ranking,

recommendation, internet search 100

* Brute force search O(N) 50

* Fast searches on sorted arrays: binary —_
search 0(10g N) 50 100 150 200 0 250 300 | 350 400

* Bubble sort O(N?4)
e Selection sort O(N?)

* Next: fast sorting O(N log N)
* Merge Sort
* Quick Sort

50 100 @ 150 200 250 300 350 400

12

Partition based Sorting Techniques

* Let T(N) be the time taken for selection sort to sort N elements

* Let M(N) be the time taken to find location of max of N elements
* For selection sort, we sawthat T(N) < M(N)+c+ T(N — 1)

* Active region shrank too slowly which gave us T(N) < O(N?)

* Selection sort (also bubble sort) is quite expensive (imagine O(N?) time
complexity for N = 1,000,000 items ®) — much better can be done

* Will study two sorting algorithms based on divide and conquer technique

* Both algorithms will split an array of N elements into two arrays, sort each
smaller array and then do some clean up operations
* Merge Sort: popular for sorting large scale databases
* Quick Sort: extremely popular in general (see gsort() in stdlib.h)

13

Sorting Algorithms

I\/\erge Sort

I\/\erge Sort

DONEDDEOEEDEEEEE

2 Merge Sort 2 Merge Sort

nnaankEEE naEnhEhn

?

donanRannnanannEa

Trick: Merging two sorted arrays IS very easy!

15

Merge Sort

il

el A T A T T

W n

Given: Sorted array a wi

. While L <R

1. Let M « ceil((L+ R)/2)
2. IfalM] == K, return M
3. IfalM] > K,setR « M — 1
4. IfalM] < K,setL « M + 1

4. Return —1

- An effort to quantify the speed of algorithrms im a mannmner that is

iNndependent of the computer on which they are executed

- Arguably binary search seems “faster” thanmn brute force search
- We saw that in the worse case . brute force search om an

unsorted array Mmust check all vV elements before answering

- Can binary search on sorted arrays also be forced to do so™?
- Let 7T7(IV) denote the time taken by bimnary search to search for a

key iNn a sorted array with IV elements

- We know that at every iteration of the while loop. binary search
either discovers the elerment being searched or else reduces the

Why didn't we splitas [0: N —2],[N—1:N —1] ?
.............. No need to find middle element. Also, would
have made one of the mergesort calls so simplel

LletL < 0and R <« N — 1 // Initial active raonge is full array ;

r
L . -
/ A sort algorithm is called in-place if
It does not use extra memory e.g.

/, extra arrays, to sort the given array

16

Time Complexity If we had splitas [0: N — 2],[N — 1: N — 1] then
T(N)<T(N—-1)+T(1)+ M(N) would have given us

2
e Let T(N) be the time take.. T(N) = 0(N?) (divide properly to rule powerfully ©)

* Let M(N) be time merz=g<«wo sorted arrays with total N elements
* Thus, we have T(N) < 2-T(N/2) + M(N) + d (d: time to find middle index)
* We will show next that we cando M(N) < ¢ N time

* This recurrence is a bit harder to solve but we can still try
T(IN/2) <2-T(N/4)+c-N/2+d
T(N) <4-T(N/4)+2c-N+(1+2)-d
T(N) <2K-T(N/2¥)+ kc-N+2%-d
* Set k = ceil(logN) anduse T(1) < ctogetT(N) < O(NlogN)
* The version of merging we will show uses extra O(N) memory. Can you

develop a version that uses only 2-3 extra integer variables i.e. an in-place
version of merge sort?

17

The Merge Operation

* Given 2 arrays int a|M|, b|N]; both sorted in ascending order
« Want a combined array int c[M + N]; sorted in ascending order

 Will maintain active ranges for both arrays a[0: R{] and b[0: R, | with 0 <
Ri,<Mand0O<R, <N

* |nitially the active ranges are the entire arraysi.e. Ry =M —1,R, =N —1

* At all points of time, we will ensure that elements in the non-active regions
of the arrays would have been inserted into ¢ at their proper locations

* At least one active region will shrink by one element at each step

* Trick: the largest element of ¢ can be found in O(1) time since the arrays
a, b are sorted. If unsorted it would have taken O(M + N)

18

The Merge Operation

ECE ﬁhnn
- A

B

3

N

C

The Merge Operation

|* Given a (non-sorted) array int a[N]; count the number of swaps |

Aswapisapair0<i=#j<Nsuchthati<jbutali]l > al[j]

* This problem is related to a ranking metric known as area under the ROC
curve. Check it out if interested

* We have two arrays of N numbers int P[N],F[N]; containing
12t marks of N students each who cleared and did not clear JEE

* Find out the number of students who did not clear JEE but had 12t std
marks more than at least 5S0% of students who did clear JEE

» Solve these problems faster than O(N?) time (Hint may involve
sorting). Assume you have a routine that can sort N elements in
O(N log N) time — will see such methods soon.

20

Sorting Algorithms

Quick Sort

Quick Sort

* \Very popular sorting algorithm — try this before anything else
* O(N log N) time complexity but in practice faster than merge sort

* Like selection sort, merge sort lazily divides the array into two equal halves,
sorts the halves recursively and then spends time merging them

* Quick sort is more careful in splitting the array so that no need for merging
once the subarrays are sorted!

* Based on a cool trick known as partitioning

* Analysis of quick sort is much more advanced — in worst case quicksort takes
O(N?) time but this happens very very rarely.

* On average quicksort enjoys O(N log N) time complexity

22

The Partition Technique

« Given array int a|N| and any element of the array p (called pivot)

 Create a new array int b[N] which is arranged as follows
[elements of a < p, D, elements of a > p]

1N { N I I | R

dEnaRnaDnanaanna

* Notice that left and right halves are not sorted yet! ©
* Also, the two halves are not balanced (of same size) either ®

23

Quick Sort l

dEanaRnaDnanEaanna
L - R B

* Notice that even though the subarrays L, R not sorted, every
element of L is smaller than or equal to every element of R

* This means that if we sort L, R recursively, no need to merge ©

* Key to quicksort’'s success - partition and recursively sort!

* Will discuss a partition algorithm that ensures a stricter condition
lelements of a < p, all instances of p, elements of a > p]

* However, our algorithm will use extra memory
* Time complexity analysis of quicksort beyond scope of ESC101

24

Quick Sort

r—”*

[ORT]
=1_ Given: Array a WI S the new location :
2. If N < 2 return a Lof the pivot element or singleton array is sorted:
3. Let p « CH2ESSePIVOT(a) // Choose a pivot value :
4. Let (b,i) « PARTITION(a, p) // Partition along chosen pivot
'45 QUICKSORT(b[0:i — 1]) // Sort the left half
,,6 QUICKSORT(b[i + 1,N — 1]) // Sort the right half
I
R e [expoptegene |

N~

Also common, mexpenswe

’ Ensures balanced partition but
expensive

Common choices for pivot value

 al[0] ora[N — 1]i.e. end elements
e ali] fori ~ random(N) i.e. a random element
« MEDIAN(a) i.e. median element of the array

The Partition Procedure

® The partition procedure maintains an interesting structure of one active region sandwiched between

two inactive regions @

o o

L R

® Elements in the left inactive region are strictly less than the pivot, those in right invariant region strictly

Iarger than pivot
® What about element(s) equal to the pivot — need to be careful
® We will see a visualization of the partition procedure in action

® Note: these regions will be maintained on a separate array and not the original array —we will only
take a simple Ieft-to-right pass on the original array

26

occurrences of pivot 4 that we omitted earlier e done with non-pivot elements

hd
1N { N I I | I R

We are sure now that any blank spaces left must be [l occurrences of the pivot element

DDDDDDDDDDDDDDDD

Can’t insert 4 now as there are still
B<s4iiee mstoragystoo R elements of L/R left to be processed. If
we insert 4 now, we may violate our
conditions later

27

The Partition Procedure

| PARTITION ,

'1 Given: Array a with N elements, pivg

'2 Letint b[N],L < O,R <« N //Ini
|3 Fort—O I < N;i++

‘ Verify that after the first loop
” has ended, we must have L <R
l.e. some space left for pi

' 1. Ifali]l <p.letb[L] « alil.and L++ //We found a left element,
: . If a[i] > p, let b[R] « a[i], and R-- // We found a right e/ement'
4. For L= L;i < R;i++ [In fact, the entire range b[L: R]

: 1. Leth[j]l<p /] Fill tuintb=——""is filled with the pivot element
L Return (b,R) * *
- ————— R has to be (one of) the new
l location(s) of the pivot element
Hint: the in-place algorithm uses an identical notion of
Explore/invent yourself an
in-place partitioning algorithm

inactive regions but swaps elements at the boundaries of the

regions which are wrongly placed

Choice of Pivot

* Most crucial step in quicksort — I Ironically, if the array is already sorted

* Suppose we are so unlucky that
smallest or the largest element o,

1N { N I I | I

* Choosing an element close to the median is most beneficial

dEnaanEnnEoaaan

 Quicksort becomes selection sorti.e. O(N?) time ®

and we use end elements as pivots,
then quicksort takes O(N?) time ®

a
!

]

29

Next class and next week..

® Wrap up the discussion on sorting

® Hashing: a very efficient method for search

* File handlingin C

® Solving numerical problems using programming

® Future directions and wrapping up the course

30

	ESC101: Fundamentals of Computing
	What is Sorting?
	Sorting Algorithms
	Bubble Sort
	Bubble Sort
	Sorting Algorithms
	Selection Sort
	Selection Sort
	Selection Sort
	Selection Sort
	Time Complexity
	Summary so far..
	Partition based Sorting Techniques
	Sorting Algorithms
	Merge Sort
	Merge Sort
	Time Complexity
	The Merge Operation
	The Merge Operation
	The Merge Operation
	Sorting Algorithms
	Quick Sort
	The Partition Technique
	Quick Sort
	Quick Sort
	The Partition Procedure
	The Partition Procedure
	The Partition Procedure
	Choice of Pivot
	Next class and next week..

