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What is Sorting?

Useful in itself — internet search |
and recommendation systems 50

Time-taken

50 100 150 200 @ 250 300 350 @ 400
No. of items

Sorting is the process of arranging items systematically, ordere

by some criterion

Search within n unsorted | @ Makes searching very fast — can
elements can take as much | | search within n sorted elements

as O(n) operations 'n just O(log n) operations using
Binary Search
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Bubble Sort

® Consider an array (514 2 8). Goal: Sortitin ascending order
® |dea: Repeatedly swap the adjacent elements if they are in wrong order

First Pass Second Pass

(51428)->(15428) (14258)->(14258)
(15428)-> (14528) (14258)->(12458)
(14528)-> (14258) (12458)->(12458)
(14258)—>(14258) (12458)-> (12458)

Third Pass
(12458)->(12458)

(1 2458)—:-(1 2458) No swaps in this pass,
(12458)—>(1 2458) ‘ hence done! ©

(12458)->(12458)



Bubble Sort

// A function to implement bubble sort
void bubbleSort(int arr[], int n)
{

int i, j;

for (1 =0; i < n-1; i++)

// Last i elements are already in place
for (j = 0; j < n-i-1; j++)
if (arr[j] > arr[j+1])
swap(&arr[j], &arr[j+l1l]);
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Selection Sort

* Another very simple sorting algorithm

* Like binary search, maintains active range a|0: R|with0 < R < N
* |nitially the active range is entire arrayi.e. R =N —1

* We will ensure two things

* At all points of time, the non-active portion will be sorted in ascending order i.e. for
all R <i < j we will ensure ali] < alj]

* The non-active elements will never be smaller than the elements in the active range
i.e.ifi <R < jthenali] < alj]

* Active region will shrink by one element at each step (details in next class)

L e



Selection Sort

* Already saw Bubble Sort. Selection sort is another very simple sorting algo

* Like binary search, maintains active range a|0: R|with0 < R < N
* |nitially the active range is entire arrayi.e. R =N —1

* We will ensure two things

* At all points of time, the non-active portion will be sorted in ascending order i.e. for
all R <i < j we will ensure ali] < alj]

* The non-active elements will never be smaller than the elements in the active range
i.e.ifi <R < jthenali] < alj]

* The active region will shrink by one element at each step

L e
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Selection Sort

® Once an element goes to non-active region, we never touch it again @

® To maintain our conditions and still shrink the active region

®* We find the Iargest elementin the active region

® Bringitto the right-most end of the active region using a swap

Verify that our conditions

still hold
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Exercise: write a recursive

Selection Sort

version
':' e mm—— ercise: convert this to proper C
| SELECTIO code
\

1 Given: Array a with N elements

i2. ForR=N—-1,R>0;R— — //Initial active range is full array
| 1. i « FINDMAX(a,0,R) //Location of largest element in a[0, R] }
' 2. SWAP(q,i,R) // Bring largest element to the end
P ——— B | [ "= R RO A el S e e ——— T -—
: SWAP ' FINDMAX

I
:1. Given: Array a, location i,jt 1. Given: Array a, locations i,j

12. Let tmp « ali] 2. Letk « i,max = alk]

:3. et ali] « alj] 3. Forl=ii<j;l++

1_4. _et alj] « tmp 1. If a[l] > max,max = all],k =1
CTTT T T T T T T T 4, Return k
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Time Complexity

* Let T(N) be the time taken for selection sort to sort N elements
* Let M(N) be the time taken to find location of max of N elements

* At any time step when active region is [0: R|, we do two things
* Find the largest element within the active region — takes time M(R + 1)
« Swap the largest element with the element at a[R] - takes time ¢ (const)

* Thus, we have T(N) < M(N) +c+T(N — 1)
* It is easy to show that M(N) < d - N for all N for some constant d
* Exercise: expand the recurrence as before and show that

T(N) < 0(N?)
Assume T(1) < c

* Notice that selection sort (also bubble sort) doesn’t need any extra memory
(except a few tmp variables to store one integer each) —in-place sorting

M



Summary so far..

* Applications of sorting: ranking,

recommendation, internet search 100

* Brute force search O(N) 50

* Fast searches on sorted arrays: binary —_
search 0(10g N) 50 100 150 200 0 250 300 | 350 400

* Bubble sort O(N?4)
e Selection sort O(N?)

* Next: fast sorting O(N log N)
* Merge Sort
* Quick Sort

50 100 @ 150 200 250 300 350 400
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Partition based Sorting Techniques

* Let T(N) be the time taken for selection sort to sort N elements

* Let M(N) be the time taken to find location of max of N elements
* For selection sort, we sawthat T(N) < M(N)+c+ T(N — 1)

* Active region shrank too slowly which gave us T(N) < O(N?)

* Selection sort (also bubble sort) is quite expensive (imagine O(N?) time
complexity for N = 1,000,000 items ®) — much better can be done

* Will study two sorting algorithms based on divide and conquer technique

* Both algorithms will split an array of N elements into two arrays, sort each
smaller array and then do some clean up operations
* Merge Sort: popular for sorting large scale databases
* Quick Sort: extremely popular in general (see gsort() in stdlib.h)
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I\/\erge Sort

DONEDDEOEEDEEEEE

2 Merge Sort 2 Merge Sort

nnaankEEE naEnhEhn

?

donanRannnanannEa

Trick: Merging two sorted arrays IS very easy!
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Merge Sort

il

el A T A T T

W n

Given: Sorted array a wi

. While L <R

1. Let M « ceil((L+ R)/2)
2. IfalM] == K, return M
3. IfalM] > K,setR « M — 1
4. IfalM] < K,setL « M + 1

4. Return —1

- An effort to quantify the speed of algorithrms im a mannmner that is

iNndependent of the computer on which they are executed

- Arguably binary search seems “faster” thanmn brute force search
- We saw that in the worse case . brute force search om an

unsorted array Mmust check all vV elements before answering

- Can binary search on sorted arrays also be forced to do so™?
- Let 7T7(IV) denote the time taken by bimnary search to search for a

key iNn a sorted array with IV elements

- We know that at every iteration of the while loop. binary search
either discovers the elerment being searched or else reduces the

Why didn't we splitas [0: N —2],[N—1:N —1] ?
.............. No need to find middle element. Also, would
have made one of the mergesort calls so simplel

LletL < 0and R <« N — 1 // Initial active raonge is full array ;

r
L . -
/ A sort algorithm is called in-place if
It does not use extra memory e.g.

/, extra arrays, to sort the given array
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Time Complexity If we had splitas [0: N — 2],[N — 1: N — 1] then
T(N)<T(N—-1)+T(1)+ M(N) would have given us

2
e Let T(N) be the time take.. T(N) = 0(N?) (divide properly to rule powerfully ©)

* Let M(N) be time merz=g<«wo sorted arrays with total N elements
* Thus, we have T(N) < 2-T(N/2) + M(N) + d (d: time to find middle index)
* We will show next that we cando M(N) < ¢ N time

* This recurrence is a bit harder to solve but we can still try
T(IN/2) <2-T(N/4)+c-N/2+d
T(N) <4-T(N/4)+2c-N+(1+2)-d
T(N) <2K-T(N/2¥)+ kc-N+2%-d
* Set k = ceil(logN) anduse T(1) < ctogetT(N) < O(NlogN)
* The version of merging we will show uses extra O(N) memory. Can you

develop a version that uses only 2-3 extra integer variables i.e. an in-place
version of merge sort?
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The Merge Operation

* Given 2 arrays int a|M|, b|N]; both sorted in ascending order
« Want a combined array int c[M + N]; sorted in ascending order

 Will maintain active ranges for both arrays a[0: R{] and b[0: R, | with 0 <
Ri,<Mand0O<R, <N

* |nitially the active ranges are the entire arraysi.e. Ry =M —1,R, =N —1

* At all points of time, we will ensure that elements in the non-active regions
of the arrays would have been inserted into ¢ at their proper locations

* At least one active region will shrink by one element at each step

* Trick: the largest element of ¢ can be found in O(1) time since the arrays
a, b are sorted. If unsorted it would have taken O(M + N)
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The Merge Operation

ECE ﬁhnn
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The Merge Operation

|* Given a (non-sorted) array int a[N]; count the number of swaps |

Aswapisapair0<i=#j<Nsuchthati<jbutali]l > al[j]

* This problem is related to a ranking metric known as area under the ROC
curve. Check it out if interested

* We have two arrays of N numbers int P[N],F[N]; containing
12t marks of N students each who cleared and did not clear JEE

* Find out the number of students who did not clear JEE but had 12t std
marks more than at least 5S0% of students who did clear JEE

» Solve these problems faster than O(N?) time (Hint may involve
sorting). Assume you have a routine that can sort N elements in
O(N log N) time — will see such methods soon.
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Quick Sort

* \Very popular sorting algorithm — try this before anything else
* O(N log N) time complexity but in practice faster than merge sort

* Like selection sort, merge sort lazily divides the array into two equal halves,
sorts the halves recursively and then spends time merging them

* Quick sort is more careful in splitting the array so that no need for merging
once the subarrays are sorted!

* Based on a cool trick known as partitioning

* Analysis of quick sort is much more advanced — in worst case quicksort takes
O(N?) time but this happens very very rarely.

* On average quicksort enjoys O(N log N) time complexity

22



The Partition Technique

« Given array int a|N| and any element of the array p (called pivot)

 Create a new array int b[N] which is arranged as follows
[elements of a < p, D, elements of a > p]

1N { N I I | R

dEnaRnaDnanaanna

* Notice that left and right halves are not sorted yet! ©
* Also, the two halves are not balanced (of same size) either ®

23



Quick Sort l

dEanaRnaDnanEaanna
L - R B

* Notice that even though the subarrays L, R not sorted, every
element of L is smaller than or equal to every element of R

* This means that if we sort L, R recursively, no need to merge ©

* Key to quicksort’'s success - partition and recursively sort!

* Will discuss a partition algorithm that ensures a stricter condition
lelements of a < p, all instances of p, elements of a > p]

* However, our algorithm will use extra memory
* Time complexity analysis of quicksort beyond scope of ESC101

24



Quick Sort

r—”*

[ ORT ]
=1_ Given: Array a WI S the new location :
2. If N < 2 return a Lof the pivot element or singleton array is sorted:
3. Let p « CH2ESSePIVOT(a) // Choose a pivot value :
4. Let (b,i) « PARTITION(a, p) // Partition along chosen pivot
'45 QUICKSORT(b[0:i — 1]) // Sort the left half
,,6 QUICKSORT(b[i + 1,N — 1]) // Sort the right half
I
R e [ expoptegene |

N~

Also common, mexpenswe

’ Ensures balanced partition but
expensive

Common choices for pivot value

 al[0] ora[N — 1]i.e. end elements
e ali] fori ~ random(N) i.e. a random element
« MEDIAN(a) i.e. median element of the array




The Partition Procedure

® The partition procedure maintains an interesting structure of one active region sandwiched between

two inactive regions @

o o

L R

® Elements in the left inactive region are strictly less than the pivot, those in right invariant region strictly

Iarger than pivot
® What about element(s) equal to the pivot — need to be careful
® We will see a visualization of the partition procedure in action

® Note: these regions will be maintained on a separate array and not the original array —we will only
take a simple Ieft-to-right pass on the original array

26



occurrences of pivot 4 that we omitted earlier e done with non-pivot elements

hd
1N { N I I | I R

We are sure now that any blank spaces left must be [l occurrences of the pivot element

DDDDDDDDDDDDDDDD

Can’t insert 4 now as there are still
B<s4iiee mstoragystoo R elements of L/R left to be processed. If
we insert 4 now, we may violate our
conditions later

27




The Partition Procedure

| PARTITION ,

'1 Given: Array a with N elements, pivg

'2 Letint b[N],L < O,R <« N //Ini
|3 Fort—O I < N;i++

‘ Verify that after the first loop
” has ended, we must have L <R
l.e. some space left for pi

' 1. Ifali]l <p.letb[L] « alil.and L++ //We found a left element,
: . If a[i] > p, let b[R] « a[i], and R-- // We found a right e/ement'
4. For L= L;i < R;i++ [ In fact, the entire range b[L: R]

: 1. Leth[j]l<p /] Fill tuintb=——""is filled with the pivot element
L Return (b,R) * *
- ————— R has to be (one of) the new
l location(s) of the pivot element
Hint: the in-place algorithm uses an identical notion of
Explore/invent yourself an
in-place partitioning algorithm

inactive regions but swaps elements at the boundaries of the

regions which are wrongly placed




Choice of Pivot

* Most crucial step in quicksort — I Ironically, if the array is already sorted

* Suppose we are so unlucky that
smallest or the largest element o,

1N { N I I | I

* Choosing an element close to the median is most beneficial

dEnaanEnnEoaaan

 Quicksort becomes selection sorti.e. O(N?) time ®

and we use end elements as pivots,
then quicksort takes O(N?) time ®

a
!

]
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Next class and next week..

® Wrap up the discussion on sorting

® Hashing: a very efficient method for search

* File handlingin C

® Solving numerical problems using programming

® Future directions and wrapping up the course

30
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