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Internet Searches 
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Google sorts webpages in decreasing 
relevance to the query you asked! 

Most relevant webpage 

Less relevant webpage 
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Brute Force Search 

• Is the element 4 present in the array? 
• Can search the array from left to right or right to left 

•  for(i=0;i<11;i++) if(a[i]==4) return i; return -1; 
•  for(i=10;i>=0;i--) if(a[i]==4) return i; return -1; 
• Searching from left seems faster for the query 4 

• Is the element 3 present in the array? 

• Is the element 5 present in the array? 

• If there are N elements in the array we have to do at least N operations (to verify absence) - can we do 
any better? 
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6 4 9 1 1 4 1 8 2 3 8 
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Binary Search 
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1 1 1 2 3 4 4 6 8 8 9 
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Binary Search 
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Binary Search 
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Binary Search 
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1 1 1 2 3 4 4 6 8 8 9 
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Binary Search 
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The above is often known as pseudo code, something that gives details of an algorithm but does 
not strictly follow rules of C or any other programming language 

Exercise: convert this to proper C 
code 

Exercise: write a recursive 
version 
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Asymptotic Time Complexity 
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Asymptotic Time Complexity 
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Big-Oh Notation 
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Practice problems 
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Binary search trees 

• Searching sorted arrays is much faster than 
unsorted arrays 

• But sorting arrays itself is an expensive operation 

• If you keep updating your data between searches, 
sorting the array over and over may not be optimal 

• Binary search trees (BSTs) to the rescue: 
• Each node has two possible children (can be empty) 

• The left sub-tree of each node must only contain values 
smaller than the node value 

• The right sub-tree of each node must only contain 
values larger than the node value 

• There should be no duplicate nodes 
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Left sub-tree 
for top node 
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Building a Binary Tree 

• Given some numbers, we can build a binary tree with each number being at one of the nodes 
(internal nodes or leaf nodes) 

 

• Many ways to build the tree 

 

• How we build it depends on how we want to organize the numbers in this tree. But in general 
• Decide which number will be at the root node, use a structure to store the number and pointers (initially NULL) 

to left and right subtrees 

• Send each subsequent number along the left or right branch and add to an existing leaf node 
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Traversing a Binary Tree 

• We won’t discuss building the binary tree. Suppose we are given an 
already built tree 

• Traversal: Visit each node in the binary tree exactly once 

• Easy to traverse recursively 

• Three common ways of visit 
• inorder: left, root, right 

• preorder: root, left, right 

• postorder: left, right, root 
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NULL 
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-1 

root 
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NULL NULL NULL NULL 
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NULL NULL 

Inorder Traversal 

void inorder(tree  t) 
{ 
    if (t == NULL) 
return; 
    inorder(t->left);  
    printf(“%d ”, t-
>data); 
    inorder(t->right); 
} 

-1 1 3 4 7 13 

Result 
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NULL NULL NULL NULL 
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NULL NULL 

Preorder Traversal 

void preorder(tree  t) 
{ 
    if (t == NULL) 
return; 
    printf(“%d ”, t-
>data); 
    preorder(t->left);  
    preorder(t->right); 
} 

4 1 -1 3 7 13 

Result 
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NULL NULL NULL NULL 
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NULL NULL 

Postorder Traversal 

void postorder(tree  t) 
{ 
    if (t == NULL) 
return; 
    postorder(t->left);  
    postorder(t->right); 
    printf(“%d “, t-
>data); 
} 

-1 3 1 7 13 4 

Result 
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Binary search vs binary search trees 

Binary search Binary search tree 

Search O(log N) O(log N) 

Insertion O(N) O(log N) 

Update O(1) O(log N) 

Deletion O(N) O(log N) 
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You will know you’re ready for your programming interview if you can intelligently answer which you’d prefer to use 
for any given application 
 
Lots of considerations affect the choice: memory caching policy, application resource intensity, etc.  
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