
ESC101: Fundamentals of Computing

Search and BSTs

 Nisheeth

1

ESC101

Internet Searches

2

Google sorts webpages in decreasing
relevance to the query you asked!

Most relevant webpage

Less relevant webpage

ESC101

Brute Force Search

• Is the element 4 present in the array?
• Can search the array from left to right or right to left

• for(i=0;i<11;i++) if(a[i]==4) return i; return -1;
• for(i=10;i>=0;i--) if(a[i]==4) return i; return -1;
• Searching from left seems faster for the query 4

• Is the element 3 present in the array?

• Is the element 5 present in the array?

• If there are N elements in the array we have to do at least N operations (to verify absence) - can we do
any better?

3

6 4 9 1 1 4 1 8 2 3 8

ESC101

Binary Search

4

1 1 1 2 3 4 4 6 8 8 9

ESC101

Binary Search

5

1 1 1 2 3 4 4 6 8 8 9

ESC101

Binary Search

6

1 1 1 2 3 4 4 6 8 8 9

ESC101

Binary Search

7

1 1 1 2 3 4 4 6 8 8 9

ESC101

Binary Search

8

The above is often known as pseudo code, something that gives details of an algorithm but does
not strictly follow rules of C or any other programming language

Exercise: convert this to proper C
code

Exercise: write a recursive
version

ESC101

Asymptotic Time Complexity

9

ESC101

Asymptotic Time Complexity

10

ESC101

Big-Oh Notation

11

ESC101

Practice problems

12

ESC101

Binary search trees

• Searching sorted arrays is much faster than
unsorted arrays

• But sorting arrays itself is an expensive operation

• If you keep updating your data between searches,
sorting the array over and over may not be optimal

• Binary search trees (BSTs) to the rescue:
• Each node has two possible children (can be empty)

• The left sub-tree of each node must only contain values
smaller than the node value

• The right sub-tree of each node must only contain
values larger than the node value

• There should be no duplicate nodes

13

Left sub-tree
for top node

ESC101

Building a Binary Tree

• Given some numbers, we can build a binary tree with each number being at one of the nodes
(internal nodes or leaf nodes)

• Many ways to build the tree

• How we build it depends on how we want to organize the numbers in this tree. But in general
• Decide which number will be at the root node, use a structure to store the number and pointers (initially NULL)

to left and right subtrees

• Send each subsequent number along the left or right branch and add to an existing leaf node

14

ESC101

Traversing a Binary Tree

• We won’t discuss building the binary tree. Suppose we are given an
already built tree

• Traversal: Visit each node in the binary tree exactly once

• Easy to traverse recursively

• Three common ways of visit
• inorder: left, root, right

• preorder: root, left, right

• postorder: left, right, root

15

ESC101

NULL

1

4

7

-1

root

3

NULL NULL NULL NULL

13

NULL NULL

Inorder Traversal

void inorder(tree t)
{
 if (t == NULL)
return;
 inorder(t->left);
 printf(“%d ”, t-
>data);
 inorder(t->right);
}

-1 1 3 4 7 13

Result

16

ESC101

NULL

1

4

7

-1

root

3

NULL NULL NULL NULL

13

NULL NULL

Preorder Traversal

void preorder(tree t)
{
 if (t == NULL)
return;
 printf(“%d ”, t-
>data);
 preorder(t->left);
 preorder(t->right);
}

4 1 -1 3 7 13

Result

17

ESC101

NULL

1

4

7

-1

root

3

NULL NULL NULL NULL

13

NULL NULL

Postorder Traversal

void postorder(tree t)
{
 if (t == NULL)
return;
 postorder(t->left);
 postorder(t->right);
 printf(“%d “, t-
>data);
}

-1 3 1 7 13 4

Result

18

ESC101

Binary search vs binary search trees

Binary search Binary search tree

Search O(log N) O(log N)

Insertion O(N) O(log N)

Update O(1) O(log N)

Deletion O(N) O(log N)

19

You will know you’re ready for your programming interview if you can intelligently answer which you’d prefer to use
for any given application

Lots of considerations affect the choice: memory caching policy, application resource intensity, etc.

	ESC101: Fundamentals of Computing
	Internet Searches
	Brute Force Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Asymptotic Time Complexity
	Asymptotic Time Complexity
	Big-Oh Notation
	Practice problems
	Binary search trees
	Building a Binary Tree
	Traversing a Binary Tree
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Binary search vs binary search trees

