Search and BSTs

ESC101: Fundamentals of Computing
Nisheeth

Internet Searches

GO g Ie translate c code to python Q

All Videos News Images Maps More Settings Tools

Most relevant webpage

About 17,60,000 resulis (0.43 seconds)

How can we convert a C code into Python? - Quora

https:/fiww quora com/How-can-we-convert-a-C-code-into-Python

Dec 2, 2017 - The conversion of code from one language to another follows a standard set of rules
these are:- A basic understanding of both the language(in terms of concept and syntax . Concept
and algorithm of code which u want to convert. if your code is working in ¢ language then it is not
hard to convert it into python as most of the ...

How do | convert this C code into Python? - Stack Overflow
https://stackoverflow.com/questions/.. /how-do-i-convert-this-c-code-into-python »

Mov 14, 2011 - In your translation, the first thing | would worry about is making sensical variable
names, particularly for those arrays. Regardless, much of that translates directly. Nwt and Ndt are

2D arrays, Nt is & one dimensional array. It looks like you're looping over all the 'columns' in the z I b M d M
array, and generating a random number for ... G Oog e SO rtS We Pages I n ecreaSI n g

ctopy(1): quick/dirty C to Python translator) - Linux man page reI evance to the q u er>) you as ked!

https:/inux.die.net/man/1/ctopy ~
ciopy automates the parts of translating C source code to Python source code that are difficult
for a human but easy for a machine.

Source code conversion online: C# - VB - Java - C++ - Ruby - Python ...
https:/iwww.varycode.com/ v

If you need flexibility, functionality, performance and source code portability at the same time C++
comes to the aid. With this language you have power in one hand and complexity in the other. It
comprises both high-level and low-level features and is very hard to parse and convert or refactor
But we achieved significant ..

GitHub - pybee/seasnake: A tool to convert C++ code to Python code.
https:/fgithub.com/pybee/seasnake «

README.rst. SeaSnake. hitps://travis-ci.org/pybee/seasnake.svg? A tool to manage conversion of
C++ code to Python. Sometimes you will find a great algorithm, but find that the only
implementation of that algorithm is written in C or C++. In some cases it might be possible to wrap
that C/C++ code in a Python C module.

Less relevant webpage

Conversion From C To Python - Python | Dream.In.Code
www.dreamincode.net » Dream.In.Code » Programming Help » Python =

Oct 29, 2013 -1 am trying to convert a C program to Python and used an online converter to try
to help. But as | suspected, the online converter did not do a good job and | need a lot of direction to 2
clean up the code as | am brand new to Python. | am posting the original C code and also the

online converter's code in hopes ...

Brute Force Search

6 4 9 1 1 4 1 8 2 3 8

® |sthe element 4 presentin the array?

® Cansearch the array from left to right or right to left

e for(i=0;i<11l;i++) if(a[i]l==4) return i; return -1;
e for(i=10;1i>=0;1--) if(a[i]l==4) return i; return -1;

o Searching from left seems faster for the query 4
® |sthe element 3 presentin the array?
® |sthe element5 presentin the array?

® |f there are N elements in the array we have to do at least N operations (to verify absence) - can we do

any better?

Binary Search

* The above array is sorted in ascending order ali] < a[i + 1]
 Can sort arrays in descending order too i.e. ali] = ali + 1]
* Now lets try searching again by exploiting sortedness

* Crucial insight: if we are searching for the element K and if we know alj] <
K and array is sorted in increasing order then ali] < K forall i < j

* Proof: a[i] < a[j] since i < j and array is sorted and we know a[j] < K
« Similarly, if a[j] > K then we also know a[i] > K foralli > j

* We will use the above to eliminate vast swathes of the array

Binary Search l

 Suppose we check a[6] == K? Three possible outcomes
* Case 1: a|[6] = K. Great we have found K. Go home and rest
« Case 2: a|6] < K (e.g. K = 5). The left half of the array can never contain K

» Continue search on a[7: 11] -- use the same trick again
* Case 3:al[6] > K (e.g. K = 2). The right half of the array can never contain K

» Continue search on a[1: 5] -- use the same trick again
* So a win-win situation — we either find the element or else reduce the search
space to only half of the array

* Example of the Divide and Conquer technique — divide original problem into
smaller instances of the same problem

Binary Search l

* Lets take an example — search for the element 1 in the array

* We will always maintain an active range a|L: Rl withO < L <R <N
* Initially the active range is entire arrayi.,e. L=0,R =N —1
* At every time step, we check the middle element of active range

* We will ensure two things

* At all points of time, if the key we are searching for is at all present in the array, it must
be present within our chosen active range

* At every time step, we will halve the size of the active range

 Will need to be careful about termination criterion — more later

Binary Search l

* Lets take an example - search for the element / in the array

* We will always maintain an active range a[L: Rl with0 < L <R <N
* Initially the activerange isentirearrayie. L=0,R=N—1
* At every time step, we check the middle element of active range

* Invariants: we will ensure two things

» At all points of time, if the key we are searching for is at all present in the
array, it must be present within our chosen active range

* At every time step, we will halve the size of the active range

* Will need to be careful about termination criterion — more later

Exercise: write a recursive

ercise: convert this to proper C
code

Binary Search

version

I BINARY SEARCH

:l_ Given: Sorted array a with N elements, key to search K !
2. letL<=0andR <N -1 // Initial active range is full array |
13. WhileL <R]
! 1 LetM « ceil((L +R)/2) :
I 2. Ifa[M] ==K, return M // Found key, return /ocotfon:
: 3. Ifa|lM| >K,setR« M —1 // Right portion can't host K i
= 4. Ifa|[M] < K,setL« M+ 1 // Left portion can’t host K :
L4. Return —1 /] We failed to find the key ® |

The above is often known as pseudo code, something that gives details of an algorithm but does

not strictly follow rules of C or any other programming Ianguage

Asymptotic Time Complexity

* An effort to quantify the speed of algorithms in a manner that is
Independent of the computer on which they are executed

* Arguably binary search seems “faster” than brute force search

* We saw that in the worse case, brute force search on an
unsorted array must check all N elements before answering

* Can binary search on sorted arrays also be forced to do so”

* Let T(N) denote the time taken by binary search to search for a
key in a sorted array with N elements

* We know that at every iteration of the while loop, binary search
either discovers the element being searched or else reduces the
length of the active range by a factor of 2

Asymptotic Time Complexity

* Thus, we must have T(N) < c + T(N/2)

* ¢ is the time taken to compare the middle element and update L, R
* Note that ¢ does not depend on N at all. Also note that T (1) < ¢
* The above is a recurrence relation. It expresses T in terms of itself

* Applying the above to T(N/2) givesus T(N/2) < c+T(N/4)i.e.T(N) <
2¢ + T(N/4) = 2¢ + T(N/2%)

* Repeating this givesus T(N) < cm + T(N/2™) foranym > 0

* However for m = ceil(log, N) we have 2™ > N

* This means that T(N) < c - ceil(logN) + T(1) < ¢ - ceil(logN) + ¢

* Forall N = 4 we have ceil(logN) + 1 < 2log N which gives us
T(N) < 2c-logN

10

Big-Oh Notation

* Suppose we have two functions f, g: R, — R, such that there exists a
constant ¢ > 0 so that for all “large” values of x € R, i.e. forall x = M for

some M > 0, we have
fx) <c-gx)

Then we say that f(x) = 0(g(x))
* Be careful that ¢ must not depend on x for the above statement

* The above discussion shows that the runtime complexity of Binary search is
T(N) = O(log N) since for some constant ¢ that doesn’t depend on N we
have T(N) < 2c -logN forall N > 4

 Exercise: show that the runtime of brute force search is O(N)

M

Practice problems

* Given a array 1nt a[N];sorted in ascending order
* Find the number of occurrences of a given number K in the array
* Generalizes the search problem we just studied

* Find the predecessor of a given number K in the array
* Largest number in the array that is strictly smaller than K. Return NULL if none.
« Be careful, the key K may itself occur say N/2 times in the array

* Given a positive integer M < N, find the element of the array whichis
greater than or equal to exactly M elements of the array

* M =1 gives the smallest element, M = N the largest element, M = N/2 the median
* |If you are interested, look up the term guanti/fe on the internet for more info

» Make sure your algorithms take no more than 0(log N) steps!
« Can you do the above operations as fast if the array is not sorted?

12

Binary search trees

o Searching sorted arrays is much faster than

unsorted arrays
® But sorting arrays itself is an expensive operation

* If you keep updating your data between searches,

sorting the array over and over may not be optimal

® Binary search trees (BSTs) to the rescue:

® Each node has two possible children (can be empty)

® The left sub-tree of each node must only contain values

smaller than the node value

® The right sub-tree of each node must only contain

values |arger than the node value

® There should be no duplicate nodes

Left sub-tree
for top node

13

Building a Binary Tree

® Given some numbers, we can build a binary tree with each number being at one of the nodes

(internal nodes or leaf nodes)
lea lea
P Insert 48 /! Y
28 See -------- > 28 sSea
!/ \ !/ \
18 38 18 38

\
18

® Many ways to build the tree

® How we build it depends on how we want to organize the numbers in this tree. Butin general

® Decide which number will be at the root node, use a structure to store the number and pointers (initially NULL)

to left and right subtrees

® Send each subsequent number along the left or right branch and add to an existing leaf node

14

Traversing a Binary Tree

® We won't discuss building the binary tree. Suppose we are given an

already built tree
® Traversal: Visit each node in the binary tree exactly once

* Easy to traverse recu rsively

® Three common ways of visit
® inorder: left, root, right
® preorder: root, left, right

® postorder: left, right, root

15

void inorder (tree t)

{

if (t == NULL)
return,

inorder (t—>1eft) ;

printf (“%d ”°, t-
>data) ;

inorder (t—>right) ;

)

Inorder Traversal

root
2N
/ ~.
2 IR A [l
/ /
NULL
1 \ [l B
I) !) !]
NULL NULL NULL NULL NULL NULL
Result
-1 1 3 4 7 13

16

void preorder (tree t)

{

if (t == NULL)
return,

printf (“%d »°, t-
>data) :

preorder (t—>left) ;

preorder (t—>right)

Preorder Traversal
root |
4 |
/ .
/| ! [T
/ /
NULL
1y [l 3]\ [l B
) } v } J y
NULL NULL NULL NULL NULL NULL
Result
4 1 -13 7 13

17

Postorder Traversal

void postorder (tree t)

{

if (t == NULL)
return;

postorder (t—>1left) :

postorder (t->right) ;

printf (““%d “, t-
>data) :
}

root
4 N
/ ~.
/| ! [l
/ /
~ NULL 1=
LYy 2 I \
] | ! I \
NULL NULL NULL NULL NULL NULL
Result
-1 3 1 13 7 4

18

Binary search vs binary search trees

You will know you’re ready for your programming interview if you can intelligently answer which you’d prefer to use
for any given application

Lots of considerations affect the choice: memory caching policy, application resource intensity, etc.

Search O(log N) O(log N)
Insertion O(N) O(log N)
Update O(1) O(log N)

Deletion O(N) O(log N)

19

	ESC101: Fundamentals of Computing
	Internet Searches
	Brute Force Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Asymptotic Time Complexity
	Asymptotic Time Complexity
	Big-Oh Notation
	Practice problems
	Binary search trees
	Building a Binary Tree
	Traversing a Binary Tree
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Binary search vs binary search trees

