
ESC101: Fundamentals of Computing

Stacks, queues and DP

Nisheeth

1

Recap: Linked Lists

4 2 1 -2 NULL
head

head tail

4 2 7 -1

NULL

NULL

Singly Linked List

Doubly Linked List

2

tail

Pro tip: Although not necessary,
sometimes helpful to keep the tail
pointer for singly linked list as well

Can store both head
and tail in a struct (like
for we did for a doubly
linked list)

Recap: Stack
• A “last in first out” (LIFO) data structure

• We saw how to implement it using arrays

 Figure: www.faceprep.in 3

2 1 -2

NULL

head

Push 4,8 in stack: insert_front(4, head);
 insert_front(8, head);

Pop from stack: val = head->data;
 delete(head,NULL);

isEmpty function: return !head ;

4 2 1 -2

NULL

head

8

Implementing stack using Linked List

4 2 1 -2

NULL

head

4

Queue

• A linear data structure where addition happens at one end (`back') and deletion
happens at the other end (`front')
– First-in-first-out (FIFO)
– Only the element at the front of the queue is accessible at any point of time

• Operations:
– Enqueue: Add element to the back
– Dequeue: Remove element from the front
– IsEmpty: Checks whether the queue is empty or not.

• Just like stacks, we can implement a queue using arrays or using linked lists
• Queue using arrays is easy but somewhat unnatural to implement (e.g., requires

moving elements by one location forward after each dequeue operation)
5

2 1 -2

NULL

head

Enqueue 4: //make a node pnew with data=4
 insert_after_node(tail, pnew);

Dequeue: val = head->data;
 delete(head,NULL);

isEmpty function: return !head ;

2 1 -2 4

NULL

head

1 -2 4

NULL

head

Queue using Linked List

6

tail

tail

tail

Binary Tree

(ii)
data

(i) pointer to left
child node Each node has 3 fields

typedef struct _btnode *Btree;
struct _btnode {
 int data;
 Btree left;
 Btree right;
};

Defining Binary Tree and declaring it

(iii) pointer to right
child node

NULL

1

4

7

-1

root

3

NULL NULL NULL NULL

13

NULL NULL

Btree root; 7

Three types of nodes
• Root node
• Internal nodes
• Leaf nodes (left and right

subtrees are NULL)

Dynamic Programming

8

A Motivating Problems: Coin Collection

0 1 2

0 5 8 2

1 3 6 9

2 10 15 2

For example, here is a 3x3 grid of coins:

You have an n x n grid.
1. Each cell has certain number of coins.
2. Grid cells are indexed by (i,j),
 0 <= i,j <= n-1

9

Coin Collection: Problem Statement

• You have to go from cell (0, 0) to (n-1, n-1).
• Whenever you pass through a cell, you collect all the

coins in that cell.
• You can only move right or down from your current cell.

Goal: Collect the maximum number of coins.

0 1 2

0 5 8 2

1 3 6 9

2 10 15 2

10

5 8 2

3 6 9

10 15 2

Consider the example grid

5 8 2

3 6 9

10 15 2

5 8 2

3 6 9

10 15 2

5 8 2

3 6 9

10 15 2

5 8 2

3 6 9

10 15 2

5 8 2

3 6 9

10 15 2

5 8 2

3 6 9

10 15 2

There are many ways to go from (0,0) to (n-1,n-1)

Total = 35

Total = 30 Total = 26

Total = 25 Total = 31

Total = 36

Max = 36 11

Building a Solution

• We cannot afford to check every possible path (using
brute force approach) and find the maximum.
– Why?
– Too many paths
– (2n choose n) actually which
 is bigger than even 2^n 

• Instead we will iteratively try to build a solution.

12

Solution Idea
• Consider a portion of
 the matrix
• What is the maximum number of coins that

I can collect when I reach the brown cell?
– This number depends only on the maximum

number of coins that I can collect when I reach
the two green cells!

– Why? Because I can only come to the blue cell
via one of the two green cells.

13

Solution Idea

Max-coins (browncell) =
 max(Max-coins (greencell-1),
 Max-coins (greencell-2))
 + No. of coins (browncell))

14

Solution Idea

• Let a(i,j) be the number of coins in cell (i,j)
• Let coin(i,j) be the maximum number of coins

collected when travelling from (0,0) to (i,j).
• Then,
 coin(i,j) = max(coin(i,j-1), coin(i-1,j)) + a(i,j)

15

Great. Seems like I
can try recursion to

solve this

Sure but let’s use a non-recursive
way (“dynamic programming” to
solve the above recurrence which
will work too. Try the recursive
approach at home 

A Non-recursive Implementation

• Use an additional two dimensional array, whose (i,j)-th
cell will store the maximum number of coins collected
when travelling from (0,0) to (i,j).

• Fill this array one row at a time, from left to right.
• When the array is completely filled, return the (n-1, n-

1)-th element.

16

Implementation: Boundary Cases

• To fill a cell of this array, we need to know the
information of the cell above and to the left of the cell.

• What about elements in the top most row and left most
column?
– Cell in top row: no cell above
– Cell in leftmost column: no cell on left

• Before starting with the other elements, we will fill
these first.

17

Boundary cases

1. Unique path for cells on the boundary.
2. Add entries along the arrows.
3. Then fill the rest of the matrix.

18

Comparison

• We had two strategies:
– Brute force (required more than 2^n operations)
– Dynamic programming (at most 3-4 operations per cell and n^2 cells)

n 2 5 8 15 20
BF(> 2^n) 4 32 128 32768 1048576
DP(< 4 n^2) 16 100 256 900 1600

19

int max(int a, int b){
 if (a>b) return a;
 else return b;
}

int main(){
 int m[100][100],i,j,n;

 scanf("%d", &n);
 for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 scanf("%d", &m[i][j]);

 printf("%d\n", coin_collect(m,n));
 return 0;
}

20

int coin_collect(int a[][100], int n){
 int i,j, coins[100][100];

 coins[0][0] = a[0][0]; //initial cell

 for (i=1; i<n; i++) //first row
 coins[0][i] = coins[0][i-1] + a[0][i];

 for (i=1; i<n; i++) //first column
 coins[i][0] = coins[i-1][0] + a[i][0];

 for (i=1; i<n; i++) //filling up the rest of the array
 for (j=1; j<n; j++)
 coins[i][j] = max(coins[i-1][j], coins[i][j-1])
 + a[i][j];

 return coins[n-1][n-1]; //value of last cell
}

21

Dynamic programming (DP) vs Recursion

• In DP, we start from the trivial sub-problem and move towards the
bigger problem. In this process, it is guaranteed that the sub-
problems are solved and their results stored before solving the
bigger problems

• DP is somewhat similar to recursion but in DP the results of the
smaller subproblems are stored explicitly for easy access later on

• Usually, anything that can be solved using DP can be solved using
recursion and vice-versa

• More details in later courses such as Data Structures and Algorithms

22

	ESC101: Fundamentals of Computing
	Recap: Linked Lists
	Recap: Stack
	Slide Number 4
	Queue
	Slide Number 6
	Slide Number 7
	Slide Number 8
	A Motivating Problems: Coin Collection
	Coin Collection: Problem Statement
	Slide Number 11
	Building a Solution
	Solution Idea
	Solution Idea
	Solution Idea
	A Non-recursive Implementation
	Implementation: Boundary Cases
	Boundary cases
	Comparison
	Slide Number 20
	Slide Number 21
	Dynamic programming (DP) vs Recursion

