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Recap: Linked Lists 
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Pro tip: Although not necessary, 
sometimes helpful to keep the tail 
pointer for singly linked list as well 

Can store both head 
and tail in a struct (like 
for we did for a doubly 
linked list) 



Recap: Stack 
• A “last in first out” (LIFO) data structure 

 
 
 
 
 

 
• We saw how to implement it using arrays 

 Figure: www.faceprep.in 3 
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Push 4,8 in stack:  insert_front(4, head); 
   insert_front(8, head);   

Pop from stack:  val = head->data;  
   delete(head,NULL); 

isEmpty function: return !head ;  
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Implementing stack using Linked List 
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Queue 

• A linear data structure where addition happens at one end (`back') and deletion 
happens at the other end (`front') 
– First-in-first-out (FIFO) 
– Only the element at the front of the queue is accessible at any point of time 

• Operations: 
– Enqueue: Add element to the back 
– Dequeue: Remove element from the front 
– IsEmpty: Checks whether the queue is empty or not. 

• Just like stacks, we can implement a queue using arrays or using linked lists 
• Queue using arrays is easy but somewhat unnatural to implement (e.g., requires 

moving elements by one location forward after each dequeue operation) 
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Enqueue 4:   //make a node pnew with data=4  
   insert_after_node(tail, pnew);   

Dequeue:   val = head->data;  
   delete(head,NULL); 

isEmpty function: return !head ;  
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Queue using Linked List 
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Binary Tree 

(ii) 
data 

(i) pointer to left 
child node Each node has 3 fields 

typedef struct _btnode *Btree; 
struct _btnode { 
      int data; 
      Btree left; 
      Btree right; 
}; 

Defining Binary Tree and declaring it 

(iii) pointer to right 
child node 

NULL 
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NULL NULL NULL NULL 
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NULL NULL 

Btree root; 7 

Three types of nodes 
• Root node 
• Internal nodes 
• Leaf nodes (left and right 

subtrees are NULL) 



Dynamic Programming 
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A Motivating Problems: Coin Collection 

0 1 2 

0 5 8 2 

1 3 6 9 

2 10 15 2 

For example, here is a 3x3 grid of coins: 

You have an n x n grid. 
1. Each cell has certain number of coins. 
2. Grid cells are indexed by (i,j),  
                     0 <= i,j  <= n-1 
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Coin Collection: Problem Statement 

• You have to go from cell (0, 0) to (n-1, n-1). 
• Whenever you pass through a cell, you collect all the 

coins in that cell. 
• You can only move right or down from your current cell. 
 
Goal: Collect the maximum number of coins. 

0 1 2 

0 5 8 2 

1 3 6 9 

2 10 15 2 
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5 8 2 

3 6 9 

10 15 2 

Consider the example grid 

5 8 2 

3 6 9 

10 15 2 
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3 6 9 
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There are many ways to go from (0,0) to (n-1,n-1) 

Total = 35 

Total = 30 Total = 26 

Total = 25 Total = 31 

Total = 36 

Max = 36 11 



Building a Solution 

• We cannot afford to check every possible path (using 
brute force approach) and find the maximum. 
– Why? 
– Too many paths 
– (2n choose n) actually which 
   is bigger than even 2^n   
 

 
• Instead we will iteratively try to build a solution. 

12 



Solution Idea 
• Consider a portion of 
   the matrix 
• What is the maximum number of coins that 

I can collect when I reach the brown cell? 
– This number depends only on the  maximum 

number of coins that I can collect when I reach 
the two green cells! 

– Why? Because I can only come to the blue cell 
via one of the two green cells. 
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Solution Idea  

Max-coins (browncell) = 
         max(Max-coins (greencell-1),  
              Max-coins (greencell-2)) 
            + No. of coins (browncell)) 
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Solution Idea 

• Let a(i,j) be the number of coins in cell (i,j) 
• Let coin(i,j) be the maximum number of coins 

collected when travelling from (0,0) to (i,j). 
• Then, 
             coin(i,j) = max(coin(i,j-1), coin(i-1,j)) + a(i,j) 

15 

Great. Seems like I 
can try recursion to 

solve this 

Sure but let’s use a non-recursive 
way (“dynamic programming” to 
solve the above recurrence which 
will work too. Try the recursive 
approach at home  



A Non-recursive Implementation 

• Use an additional two dimensional array, whose (i,j)-th 
cell will store the maximum number of coins collected 
when travelling from (0,0) to (i,j). 

• Fill this array one row at a time, from left to right. 
• When the array is completely filled, return the (n-1, n-

1)-th element. 
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Implementation: Boundary Cases 

• To fill a cell of this array, we need to know the 
information of the cell above and to the left of the cell. 

• What about elements in the top most row and left most 
column? 
– Cell in top row: no cell above 
– Cell in leftmost column: no cell on left 

• Before starting with the other elements, we will fill 
these first. 
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Boundary cases 

1. Unique path for cells on the boundary. 
2. Add entries along the arrows. 
3. Then fill the rest of the matrix. 
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Comparison 

• We had two strategies: 
– Brute force (required more than 2^n operations) 
– Dynamic programming (at most 3-4 operations per cell and n^2 cells) 

n 2 5 8 15 20 
BF(> 2^n) 4 32 128 32768 1048576 
DP(< 4 n^2) 16 100 256 900 1600 
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int max(int a, int b){ 
  if (a>b) return a; 
  else return b; 
} 
 
int main(){ 
  int m[100][100],i,j,n; 
 
  scanf("%d", &n); 
  for (i=0; i<n; i++) 
    for (j=0; j<n; j++) 
      scanf("%d", &m[i][j]); 
 
  printf("%d\n", coin_collect(m,n)); 
  return 0; 
} 
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int coin_collect(int a[][100], int n){ 
  int i,j, coins[100][100]; 
 
  coins[0][0] = a[0][0]; //initial cell 
 
  for (i=1; i<n; i++) //first row 
    coins[0][i] = coins[0][i-1] + a[0][i]; 
   
  for (i=1; i<n; i++) //first column 
    coins[i][0] = coins[i-1][0] + a[i][0]; 
 
  for (i=1; i<n; i++) //filling up the rest of the array 
    for (j=1; j<n; j++) 
      coins[i][j] = max(coins[i-1][j], coins[i][j-1]) 
                    + a[i][j]; 
 
  return coins[n-1][n-1]; //value of last cell 
} 
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Dynamic programming (DP) vs Recursion 

• In DP, we start from the trivial sub-problem and move towards the 
bigger problem. In this process, it is guaranteed that the sub-
problems are solved and their results stored before solving the 
bigger problems 

• DP is somewhat similar to recursion but in DP the results of  the 
smaller subproblems are stored explicitly for easy access later on 

• Usually, anything that can be solved using DP can be solved using 
recursion and vice-versa 

• More details in later courses such as Data Structures and Algorithms 

22 


	ESC101: Fundamentals of Computing
	Recap: Linked Lists
	Recap: Stack
	Slide Number 4
	Queue
	Slide Number 6
	Slide Number 7
	Slide Number 8
	A Motivating Problems: Coin Collection
	Coin Collection: Problem Statement
	Slide Number 11
	Building a Solution
	Solution Idea
	Solution Idea 
	Solution Idea
	A Non-recursive Implementation
	Implementation: Boundary Cases
	Boundary cases
	Comparison
	Slide Number 20
	Slide Number 21
	Dynamic programming (DP) vs Recursion

